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Abstract 
 

This paper aims at making Bayesian analysis on the shape parameter of the exponential inverse 
exponential distribution using informative and non-informative priors. Bayesian estimation was carried 
out through a Monte Carlo study under 10,000 replications. To assess the effects of the assumed prior 
distributions and loss function on the Bayesian estimators, the mean square error has been used as a 
criterion. Overall, simulation results indicate that Bayesian estimation under QLF outperforms the 
maximum likelihood estimation and Bayesian estimation under alternative loss functions irrespective of 
the nature of the prior and the sample size. Also, for large sample sizes, all methods perform equally well. 
 

 
Keywords: Exponential inverse exponential distribution; Bayesian analysis; prior distributions; loss 

functions; mean square error. 
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1 Introduction 
 
Some standard probability distributions have been used over the years for modeling real life datasets. 
However, research has shown that most of these distributions do not adequately describe heavily slewed 
datasets, which limits their applicability in many real-world situations. Recently, numerous extended or 
compound probability distributions have been proposed in the literature for modeling real life situations. 
These compound distributions are found to be skewed, flexible and much better in statistical modeling 
compared to their standard counterparts [1-14]. 

 
Due to the abovementioned facts, [15] developed an exponential inverse exponential distribution (EIED) 
with two parameters (a shape and scale parameter). This distribution has been found to be skewed and 
flexible with an increasing hazard rate and different shapes and also performed better than the exponential 
distribution based on applications of the models to three lifetime datasets [15]. 

 
In [15], the probability density function (pdf), the cumulative distribution function (cdf), the survival 
function (sf), the hazard function (or failure rate) and quantile function (qf) of the EIED are respectively 
defined as: 
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For 0, , 0x     where u  is a uniform variate on the interval 0 1u  ,   is a shape parameter and 

  is a scale parameter of the exponential inverse exponential distribution (EIED). 
 
A graphical representation of the above functions using some arbitrary parameter values is displayed in the 
following figures: 
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Fig. 1. Plots of the PDF, CDF, survival function and hazard function of the EIED for selected 
parameter values 

 
More about the important mathematical and statistical properties, maximum likelihood estimation of 
parameters and applications of the Exponential Inverse Exponential distribution showing its efficiency over 
Inverse Exponential distribution using real life datasets can be found in [15]. 
 
There are two basic approaches to parameter estimation and these are the frequentist (or classical) and the 
Bayesian approaches (or non-classical methods). The classical theory of estimation involves a situation 
where the parameters are considered to be constant but unknown whereas the parameters are considered to 
be unknown and random just like variables under non classical approach. The most widely used method in 
classical theory is the method of maximum likelihood estimation while the Bayesian estimation method is 
used in the non classical theory. However, in most real life problems described by life time distributions, the 
parameters cannot be considered as constants in all the life testing period [16-18]. Following this narrative, it 
becomes obvious that the classical (frequentist) approach can no longer handle adequately problems of 
parameter estimation in life time models and therefore the need for non classical or Bayesian estimation in 
life time models.  
 
Estimation of parameters in a distribution differs by method from one parameter of the distribution to 
another and therefore this study aims at estimating the shape parameter of the EIED using Bayesian 
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approach and making a comparison between the Bayesian approach and the method of maximum likelihood 
estimation.  
 
The aim of this article is to estimate the shape parameter of the EIED using Bayesian approach assuming 
uniform prior, Jeffrey’s prior and gamma prior distributions with three loss functions. The rest of this paper 
is organized as follows: in Section 2, maximum likelihood estimator (MLE) for the shape parameter is 
obtained. In Section 3, Bayesian estimators based on the different loss functions by assuming uniform, 
Jeffrey’s and gamma prior distributions are derived. The proposed estimators are compared in relation of 
their mean squared error (MSE) in Section 4. Finally, the conclusion is provided in Section 5. 
 

2 Maximum Likelihood Estimation 
 

Let 1 2, ,...., nX X X
 be a random sample from a population X of size ‘n’ independently and identically 

distributed random variables with probability density function
 f x

. The likelihood is the joint probability 
function of the data, but viewed as a function of the parameters, treating the observed data as fixed 

quantities. Given that the values, 
 1 2, ,..., nx x x x

 are obtained independently from an EIED with 
unknown parameters α and Ө, the likelihood function is given by: 
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The likelihood function, 
 | ,L x  

 based on the pdf of EIED is defined to be the joint density of the 

random variables 1 2, ,......, nx x x
 and it is given as: 
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For the shape parameter of the EIED  , the likelihood function is given by; 
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Let 
 log |l L x 

 denote the log-likelihood function such that 
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Differentiating l  with respect to   and setting the derivative equal to zero gives; 
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Solving equation (2.5) for  yields the maximum likelihood estimator (MLE) ̂  as: 
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Details concerning the maximum likelihood estimation of the scale parameter of the EIED can be found in 
[15]. 
 

3 Bayesian Estimation 
 
The Bayesian inference requires appropriate choice of prior(s) for the parameter(s). From the Bayesian 
viewpoint, there is no clear cut way from which one can conclude that one prior is better than the other. 
Nevertheless, very often priors are chosen according to one’s subjective knowledge and beliefs. However, if 
one has adequate information about the parameter(s), it is better to choose informative prior(s); otherwise, it 
is preferable to use non-informative prior(s). 
 
In this study, two non-informative priors (uniform and Jeffrey) and an informative prior (gamma) will be 
considered for estimating the shape parameter of the EIED. These assumed prior distributions have been 
used widely by several authors including [19-27]. This study also considers three loss functions including 
square error, quadratic and precautionary loss functions which have also been used previously by some 
researchers such as [28-38] etc. The study also considered deriving the estimators of the shape parameter in 
closed-form using the Bayesian approach because of the usefulness of Closed-form estimators as recently 
demonstrated by [39] and [40]. The stated prior distributions and loss functions are defined as follows: 
 
a. The uniform prior is defined as: 
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                                                                                                   (3.1) 

 
b. Also, the Jeffrey’s prior is defined as: 
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c. Also, the gamma prior is defined as: 
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i. Squared Error Loss Function (SELF) 
 

The squared error loss function relating to the shape parameter   is defined as: 
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where SELF
 is the estimator of the parameter   under SELF. 

 
ii. Quadratic Loss Function (QLF)  
 
The quadratic loss function is defined from [41] as 
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where QLF
 is the estimator of the parameter   under QLF. 

 
iii. Precautionary Loss Function (PLF) 
 
The precautionary loss function (PLF) introduced by [42] is an asymmetric loss function and is defined as 
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 where PLF
 is the estimator of the shape parameter   under PLF. 

 
The posterior distribution of a parameter is the distribution of the parameter after observing the available 

data and it is obtained by using Bayes’ theorem in relation to the shape parameter  , likelihood function 
and prior distribution as follows:  
 

 
 
 

   
 

   
   

   
   

, | | |
|

| |

P x P x P P x P L x P
P x

P x P x P x P d L x P d

      


     
   

         (3.7) 
 

where 
 P x

 is the marginal distribution of X and 
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3.1 Bayesian analysis under uniform prior with three loss functions 
 
The posterior distribution of the shape parameter   assuming a uniform prior distribution is obtained from 
(3.7) using integration by substitution method as: 
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Bayes estimators under uniform prior with SELF, QLF and PLF are given respectively as: 
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3.2 Bayesian analysis under Jeffrey’s prior with three loss functions 
 
The posterior distribution of the shape parameter   for a given data assuming a Jeffrey’s prior distribution 
is obtained from (3.7) using integration by substitution method as: 
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Bayes estimators under Jeffrey’s prior with SELF, QLF and PLF are given respectively as: 
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3.3 Bayesian analysis under gamma prior with three loss functions 
 
The posterior distribution of the shape parameter   for a given data assuming a gamma prior distribution is 
obtained from (3.7) using integration by substitution method as 
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Bayes estimators under gamma prior with SELF, QLF and PLF are given respectively as: 
 

   
0

1

| |
e

1 e

xi

xi

SELF
n

i

n b
E x P x d

a





    








  

 
 
  




                                                 (3.17) 
 

 
 

 

 

1
1

0

2
2

0 1

|
| 2

| e|

1 e

xi

xi

QLF
n

i

P x d
E x n b

E x
P x d a





  





  






 





 
  

 
 
  



 
                                        (3.18) 



 
 
 

Eraikhuemen et al.; AJPAS, 7(2): 28-43, 2020; Article no.AJPAS.56249 
 
 
 

36 
 
 

and 
 

    
  

1
21

2

0.5

2 2

0

1

1
| |

e

1 e

xi

xi

PLF
n

i

n b n b
E x P x d

a





    







          
   
 
  




                       (3.19) 
 

4 Results and Discussion 
 
In this section, Monte Carlo simulation with R software under 10,000 replications is considered to generate 
random samples of sizes n = (25, 50, 75, 100, 125, 150) from the EIED using the quantile function (inverse 
transformation method of simulation) under the following combination of parameter values: 

1.0, 1.0, 1.0, 1.0a b     , 3.0, 0.5, 0.5, 0.5a b     , 0.5, 2.5, 0.5, 0.5a b      

and 2.5, 1.0, 1.0, 1.0a b     . The following tables present the results of a simulation study by 
listing the average estimates of the shape parameter with their respective Mean Square Errors (MSEs) under 
the appropriate estimation methods which include the Maximum Likelihood Estimation (MLE), Squared 
Error Loss Function (SELF), Quadratic Loss Function (QLF), and Precautionary Loss Function (PLF) under 
Uniform Jeffrey and gamma priors respectively. The criterion for evaluating the performance of the 

estimators in this study is the Mean Square Error (MSE): 
 

21 ˆ .
n

MSE E   
 

 

Table 1. Estimates and mean squared errors (within parenthesis) for ̂  under uniform prior 
 

Sample 
size (n) 

Parameter (True value) Methods of estimation 
    

a  b  ˆ
MLE

 
ˆ

SELF
 

ˆ
QLF

 
ˆ

PLF
 

25 1.0 1.0 1.0 1.0 1.0393 
(0.0475) 

1.0809 
(0.0562) 

0.9977 
(0.0424) 

1.1014 
(0.0619) 

3.0 0.5 0.5 0.5 3.1178 
(0.4274) 

3.2426 
(0.5061) 

2.9931 
(0.3812) 

3.3043 
(0.5571) 

0.5 2.5 0.5 0.5 0.5196 
(0.0119) 

0.5404 
(0.0141) 

0.4989 
(0.0106) 

0.5507 
(0.0155) 

2.5 1.0 1.0 1.0 2.5982 
(0.2968) 

2.7021 
(0.3515) 

2.4943 
(0.2647) 

2.7536 
(0.3869) 

50 1.0 1.0 1.0 1.0 1.0198 
(0.0221) 

1.0401 
(0.0242) 

0.9994 
(0.0209) 

1.0503 
(0.0256) 

3.0 0.5 0.5 0.5 3.0593 
(0.1989) 

3.1204 
(0.2178) 

2.9981 
(0.1877) 

3.1509 
(0.2301) 

0.5 2.5 0.5 0.5 0.5099 
(0.0055) 

0.5201 
(0.0061) 

0.4997 
(0.0052) 

0.5251 
(0.0064) 

2.5 1.0 1.0 1.0 2.5494 
(0.1382) 

2.6004 
(0.1513) 

2.4984 
(0.1303) 

2.6257 
(0.1598) 

75 1.0 1.0 1.0 1.0 1.0145 
(0.0143) 

1.0280 
(0.0153) 

1.0009 
(0.0138) 

1.0347 
(0.0159) 

3.0 0.5 0.5 0.5 3.0434 
(0.1291) 

3.0840 
(0.1377) 

3.0028 
(0.1239) 

3.1042 
(0.1432) 

0.5 2.5 0.5 0.5 0.5072 
(0.0036) 

0.5140 
(0.0038) 

0.5005 
(0.0034) 

0.5174 
(0.0040) 

2.5 1.0 1.0 1.0 2.5362 
(0.0897) 

2.5700 
(0.0956) 

2.5023 
(0.0860) 

2.5868 
(0.0994) 
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Sample 
size (n) 

Parameter (True value) Methods of estimation 
    

a  b  ˆ
MLE

 
ˆ

SELF
 

ˆ
QLF

 
ˆ

PLF
 

100 1.0 1.0 1.0 1.0 1.0111 
(0.0107) 

1.0212 
(0.0113) 

1.0010 
(0.0104) 

1.0263 
(0.0116) 

3.0 0.5 0.5 0.5 3.0334 
(0.0965) 

3.0637 
(0.1013) 

3.0031 
(0.0934) 

3.0789 
(0.1044) 

0.5 2.5 0.5 0.5 0.5056 
(0.0027) 

0.5106 
(0.0028) 

0.5005 
(0.0026) 

0.5131 
(0.0029) 

2.5 1.0 1.0 1.0 2.5278 
(0.0670) 

2.5531 
(0.0704) 

2.5025 
(0.0649) 

2.5657 
(0.0725) 

125 1.0 1.0 1.0 1.0 1.0081 
(0.0081) 

1.0162 
(0.0085) 

1.0000 
(0.0079) 

1.0202 
(0.0087) 

3.0 0.5 0.5 0.5 3.0243 
(0.0733) 

3.0485 
(0.0762) 

3.0001 
(0.0715) 

3.0606 
(0.0781) 

0.5 2.5 0.5 0.5 0.5041 
(0.0020) 

0.5081 
(0.0021) 

0.500 
(0.002) 

0.5101 
(0.0022) 

2.5 1.0 1.0 1.0 2.5203 
(0.0509) 

2.5404 
(0.0529) 

2.5001 
(0.0497) 

2.5505 
(0.0543) 

150 1.0 1.0 1.0 1.0 1.007 
(0.0070) 

1.0138 
(0.0072) 

1.0004 
(0.0068) 

1.0172 
(0.0073) 

3.0 0.5 0.5 0.5 3.0213 
(0.0627) 

3.0415 
(0.0648) 

3.0012 
(0.0614) 

3.0515 
(0.0661) 

0.5 2.5 0.5 0.5 0.5036 
(0.0017) 

0.5069 
(0.0018) 

0.5002 
(0.0017) 

0.5086 
(0.0018) 

2.5 1.0 1.0 1.0 2.5178 
(0.0435) 

2.5346 
(0.0450) 

2.5010 
(0.0426) 

2.5429 
(0.0459) 

MLE=Maximum likelihood estimator, SELF=Square error loss function, QLF= Quadratic loss function, 
PLF= Precautionary loss function 

 

Table 2. Estimates and mean squared errors (within parenthesis) for ̂  under Jeffrey’s prior 
 

Sample 
size (n) 

Parameter (True value) Methods of estimation 
    

a  b  ˆ
MLE

 
ˆ

SELF
 

ˆ
QLF

 
ˆ

PLF
 

25 1.0 1.0 1.0 1.0 1.0393 
(0.0475) 

1.0393 
(0.0475) 

0.9561 
(0.0408) 

1.0599 
(0.0514) 

3.0 0.5 0.5 0.5 3.1178 
(0.4274) 

3.1178 
(0.4274) 

2.8684 
(0.3673) 

3.1796 
(0.4623) 

0.5 2.5 0.5 0.5 0.5196 
(0.0119) 

0.5196 
(0.0119) 

0.4781 
(0.0102) 

0.5299 
(0.0128) 

2.5 1.0 1.0 1.0 2.5982 
(0.2968) 

2.5982 
(0.2968) 

2.3904 
(0.2551) 

2.6497 
(0.3211) 

50 1.0 1.0 1.0 1.0 1.0198 
(0.0221) 

1.0198 
(0.0221) 

0.9790 
(0.0205) 

1.0299 
(0.0230) 

3.0 0.5 0.5 0.5 3.0593 
(0.1989) 

3.0593 
(0.1989) 

2.9369 
(0.1841) 

3.0897 
(0.2074) 

0.5 2.5 0.5 0.5 0.5099 
(0.0055) 

0.5099 
(0.0055) 

0.4895 
(0.0051) 

0.5149 
(0.0058) 

2.5 1.0 1.0 1.0 2.5494 
(0.1382) 

2.5494 
(0.1382) 

2.4474 
(0.1278) 

2.5747 
(0.1440) 

75 1.0 1.0 1.0 1.0 1.0145 
(0.0143) 

1.0145 
(0.0143) 

0.9874 
(0.0135) 

1.0212 
(0.0148) 

3.0 0.5 0.5 0.5 3.0434 
(0.1291) 

3.0434 
(0.1291) 

2.9622 
(0.1219) 

3.0636 
(0.1330) 
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Sample 
size (n) 

Parameter (True value) Methods of estimation 
    

a  b  ˆ
MLE

 
ˆ

SELF
 

ˆ
QLF

 
ˆ

PLF
 

0.5 2.5 0.5 0.5 0.5072 
(0.0036) 

0.5072 
(0.0036) 

0.4937 
(0.0034) 

0.5106 
(0.0037) 

2.5 1.0 1.0 1.0 2.5362 
(0.0897) 

2.5362 
(0.0897) 

2.4685 
(0.0847) 

2.5530 
(0.0923) 

100 1.0 1.0 1.0 1.0 1.0111 
(0.0107) 

1.0111 
(0.0107) 

0.9909 
(0.0103) 

1.0162 
(0.0110) 

3.0 0.5 0.5 0.5 3.0334 
(0.0965) 

3.0334 
(0.0965) 

2.9727 
(0.0923) 

3.0485 
(0.0986) 

0.5 2.5 0.5 0.5 0.5056 
(0.0027) 

0.5056 
(0.0027) 

0.4955 
(0.0026) 

0.5081 
(0.0027) 

2.5 1.0 1.0 1.0 2.5278 
(0.0670) 

2.5278 
(0.0670) 

2.4773 
(0.0641) 

2.5404 
(0.0685) 

125 1.0 1.0 1.0 1.0 1.0081 
(0.0081) 

1.0081 
(0.0081) 

0.9920 
(0.0079) 

1.0121 
(0.0083) 

3.0 0.5 0.5 0.5 3.0243 
(0.0733) 

3.0243 
(0.0733) 

2.9759 
(0.0710) 

3.0364 
(0.0746) 

0.5 2.5 0.5 0.5 0.5041 
(0.0020) 

0.5041 
(0.0020) 

0.496 
(0.002) 

0.5061 
(0.0021) 

2.5 1.0 1.0 1.0 2.5203 
(0.0509) 

2.5203 
(0.0509) 

2.4799 
(0.0493) 

2.5303 
(0.0518) 

150 1.0 1.0 1.0 1.0 1.007 
(0.0070) 

1.0071 
(0.0070) 

0.9937 
(0.0068) 

1.0105 
(0.0071) 

3.0 0.5 0.5 0.5 3.0213 
(0.0627) 

3.0213 
(0.0627) 

2.9811 
(0.0609) 

3.0314 
(0.0636) 

0.5 2.5 0.5 0.5 0.5036 
(0.0017) 

0.5036 
(0.0017) 

0.4968 
(0.0017) 

0.5052 
(0.0018) 

2.5 1.0 1.0 1.0 2.5178 
(0.0435) 

2.5178 
(0.0435) 

2.4842 
(0.0423) 

2.5262 
(0.0442) 

MLE=Maximum likelihood estimator, SELF=Square error loss function, QLF= Quadratic loss function, 
PLF= Precautionary loss function 

 

Table 3. Estimates and mean squared errors (within parenthesis) for ̂  under gamma prior 
 

Sample 
size (n) 

Parameter (True value) Methods of estimation 
    

a  b  ˆ
MLE

 
ˆ

SELF
 

ˆ
QLF

 
ˆ

PLF
 

25 1.0 1.0 1.0 1.0 1.0393 
(0.0475) 

1.036 
(0.043) 

0.9563 
(0.0374) 

1.0558 
(0.0464) 

3.0 0.5 0.5 0.5 3.1178 
(0.4274) 

2.9866 
(0.3320) 

2.7523 
(0.3432) 

3.0446 
(0.3468) 

0.5 2.5 0.5 0.5 0.5196 
(0.0119) 

0.5244 
(0.0120) 

0.4832 
(0.0100) 

0.5345 
(0.0131) 

2.5 1.0 1.0 1.0 2.5982 
(0.2968) 

2.4390 
(0.2073) 

2.2514 
(0.2353) 

2.4854 
(0.2116) 

50 1.0 1.0 1.0 1.0 1.0198 
(0.0221) 

1.0189 
(0.0211) 

0.9790 
(0.0196) 

1.0289 
(0.0220) 

3.0 0.5 0.5 0.5 3.0593 
(0.1989) 

2.9963 
(0.1759) 

2.8777 
(0.1772) 

3.0258 
(0.1800) 

0.5 2.5 0.5 0.5 0.5099 
(0.0055) 

0.5123 
(0.0056) 

0.4920 
(0.0051) 

0.5174 
(0.0058) 

2.5 1.0 1.0 1.0 2.5494 
(0.1382) 

2.4718 
(0.1156) 

2.3749 
(0.1216) 

(0.1171) 
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Sample 
size (n) 

Parameter (True value) Methods of estimation 
    

a  b  ˆ
MLE

 
ˆ

SELF
 

ˆ
QLF

 
ˆ

PLF
 

75 1.0 1.0 1.0 1.0 1.0145 
(0.0143) 

1.0141 
(0.0139) 

0.9874 
(0.0132) 

1.0207 
(0.0143) 

3.0 0.5 0.5 0.5 3.0434 
(0.1291) 

3.0020 
(0.1187) 

2.9224 
(0.1185) 

3.0218 
(0.1208) 

0.5 2.5 0.5 0.5 0.5072 
(0.0036) 

0.5089 
(0.0036) 

0.4954 
(0.0034) 

0.5122 
(0.0037) 

2.5 1.0 1.0 1.0 2.5362 
(0.0897) 

2.4848 
(0.0794) 

2.4194 
(0.0815) 

2.5011 
(0.0802) 

100 1.0 1.0 1.0 1.0 1.0111 
(0.0107) 

1.0109 
(0.0105) 

0.9909 
(0.0100) 

1.0159 
(0.0107) 

3.0 0.5 0.5 0.5 3.0334 
(0.0965) 

3.0026 
(0.0906) 

2.9428 
(0.0902) 

3.0175 
(0.0918) 

0.5 2.5 0.5 0.5 0.5056 
(0.0027) 

0.5068 
(0.0027) 

0.4967 
(0.0026) 

0.5093 
(0.0028) 

2.5 1.0 1.0 1.0 2.5278 
(0.0670) 

2.4895 
(0.0611) 

2.4402 
(0.0622) 

2.5018 
(0.0616) 

125 1.0 1.0 1.0 1.0 1.0081 
(0.0081) 

1.008 
(0.008) 

0.9920 
(0.0078) 

1.0120 
(0.0082) 

3.0 0.5 0.5 0.5 3.0243 
(0.0733) 

2.9998 
(0.0698) 

2.9520 
(0.0699) 

3.0118 
(0.0705) 

0.5 2.5 0.5 0.5 0.5041 
(0.0020) 

0.505 
(0.002) 

0.497 
(0.002) 

0.5070 
(0.0021) 

2.5 1.0 1.0 1.0 2.5203 
(0.0509) 

2.4898 
(0.0474) 

2.4503 
(0.0483) 

2.4997 
(0.0477) 

150 1.0 1.0 1.0 1.0 1.007 
(0.0070) 

1.0070 
(0.0069) 

0.9937 
(0.0067) 

1.0103 
(0.0070) 

3.0 0.5 0.5 0.5 3.0213 
(0.0627) 

3.0010 
(0.0601) 

2.9611 
(0.0601) 

3.0109 
(0.0606) 

0.5 2.5 0.5 0.5 0.5036 
(0.0017) 

0.5044 
(0.0017) 

0.4977 
(0.0017) 

0.5061 
(0.0018) 

2.5 1.0 1.0 1.0 2.5178 
(0.0435) 

2.4925 
(0.0410) 

2.4594 
(0.0415) 

2.5007 
(0.0412) 

MLE=Maximum likelihood estimator, SELF=Square error loss function, QLF= Quadratic loss function, 
PLF= Precautionary loss function 

 
Looking at the results from table 1-3, one can see that the estimators of the shape parameter using QLF 
under Gamma, uniform and Jeffrey priors is better than the other estimators based on the fact that it has the 
lowest MSE despite the changes in the samples and chosen parameter values. This consistency in the result 
for Bayesian estimators (using QLF under Uniform, Jeffrey and gamma priors) is a proof that the approach 
is the more efficient for estimating the shape parameter compared to MLE and Bayesian with the other two 
loss functions. Also, based on the prior distributions it is found that the QLF under the gamma prior has the 
smallest MSEs compared to uniform and Jeffrey priors irrespective of the parameter values and the sample 
sizes and this excellent performance of the QLF is found to be consistent despite all differences. 
 
Generally and conclusively, the results in Tables 1, 2 and 3 have proven that the average estimates of the 
shape parameter get closer to the true parameter value when sample size increases and the mean square 
errors (MSEs) all decrease as sample size increases which satisfies the first-order asymptotic theory. 
Similarly, Bayesian estimators and maximum likelihood estimators (MLEs) all become better when the 
sample size increases. In fact, for very large sample sizes the performances of these estimators are observed 
to be relatively the same for both methods of estimation. 
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5 Conclusion 
 
This paper has derived Bayesian estimators for the shape parameter of exponential inverse exponential 
distribution by assuming Uniform, Jeffrey and gamma prior distributions with three loss functions which 
include Squared Error Loss Function, Quadratic Loss Function and Precautionary Loss Function. Posterior 
distributions and Bayes estimators of this parameter are derived using the priors and loss functions 
respectively. The efficiency of these estimators have been evaluated in relation to their mean square errors 
using the inverse transformation method of Monte Carlo Simulations with various parameter values and 
sample sizes. The results of the simulation and comparison show that using quadratic loss function gives 
estimators with the lowest MSEs under all the prior distributions (gamma, Jeffreys and uniform). Precisely, 
it is found that Bayesian Method using Quadratic Loss Function under gamma prior produces the best 
estimators of the shape parameter compared to estimators of Maximum Likelihood method, Squared Error 
Loss Function and Precautionary Loss Function (PLF) under both Uniform and Jeffrey priors irrespective of 
the chosen parameters values and the allocated sample sizes. This research also found that the variation in 
the values of the scale parameter of the distribution does not affect or change the performance of the 
estimators of the estimated shape parameter, however, it is recommended that since this study considers only 
the shape parameter of the exponential inverse exponential distribution, subsequent works should consider 
the scale parameter of the distribution due to the fact that in statistical applications of this model it will be 
very important to identify and understand the best method for estimating both the scale and shape parameters 
of the model. 
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