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Abstract

This paper studies the optimal investment plan for a pension scheme with refund of contributions,
stochastic salary and affine interest rate model. A modified model which allows for refund of
contributions to death members’ families is considered. In this model, the fund managers invest in a risk
free (treasury) and two risky assets (stock and zero coupon bond) such that the price of the risky assets
are modelled by geometric Brownian motions and the risk free interest rate is of affine structure. Using
the game theoretic approach, an extended Hamilton Jacobi Bellman (HJB) equation which is a system of
non linear PDE is established. Furthermore, the extended HJB equation is then solved by change of
variable and variable separation technique to obtain explicit solutions of the optimal investment plan for
the three assets using mean variance utility function. Finally, theoretical analyses of the impact of some
sensitive parameters on the optimal investment plan are presented.
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1 Introduction

The practice of defined contribution (DC) pension scheme has increase rapidly in so many countries across
the world due to the fact that it provides a comfortable platform for its members to be involved in the day to
day activities of the pension fund. The most enticing feature of the DC plan is that members are fully
involved in planning for their retirement benefits. Since members benefits depend on the various investment
in the financial market which may include cash, bond, loan and stock etc., there is need to develop and
understand how best their funds can be invested for optimal profit with minimal risk. This has led to the
study of optimal invest plan for a DC pension scheme.

In a DC scheme, the study of optimal investment plan with refund clauses have been explored by some
authors under different assumptions which include [1], considered investment in one risk free asset and one
risky asset and assumed the risk-free asset is modelled by geometric Brownian motion. [2], assumed the
stock market price was modelled by Heston volatility and considered investment in both accumulation and
distribution phase. [3], studied optimization problem with return of premium in a DC pension with multiple
contributors; in their work, the stock market price was driven by constant elasticity of variance model (CEV)
model. [4] solved the optimal investment problem for a DC pension plan with default risk and return of
premiums clauses; they assumed they stock market price followed constant elasticity of variance (CEV)
model. [5], investigated investment plan with return of premium clauses under inflation risk and volatility
risk; they considered investment in a risk-free asset, the inflation index bond and the stock whose price was
modelled by Heston volatility. [6], studied optimal investment plan for four different assets modelled by
geometric Brownian motion whose return of contributions was with risk free interest. [7], studied investment
strategies when the returned contributions are with predetermined interest; they assumed that the return
contributions are with risk free interest. In this paper, we study the optimal investment plan with refund of
contributions with stochastic salary and stochastic interest rate which is of affine structure.

The optimal investment plan in a DC pension plan with stochastic interest rate have been studied by some
authors such as [8,9], where they assume the interest rate to be of Vasicek model. [10,11], studied the same
problem but assume the interest rate to have an affine structure i.e a model with Vasicek and Cox — Ingeroll
— Ross (CIR) model. [8], studied optimal investment plan with risk generated from the salary and inflation
using vasicek model. [12], studied optimal investment plan with stochastic salary under affine interest rate.
The effect of extra contribution on stochastic optimal investment strategies in a DC pension with stochastic
salary under affine interest rate model was studied by [13], they considered a case where the extra
contributions rate was with both stochastic and constant.

In this paper, we study the optimal investment plan with refund of contributions with stochastic salary and

stochastic interest rate which is of affine structure. We will give theoretical analyses of the impact of some
sensitive parameters on the optimal investment plan.

2 The Investment Plan Model

Starting with a complete and frictionless financial market that is continuously open over the fixed time
interval [0, T], for T > 0 representing the retirement time of a given shareholder.

We assume that the market is made up of risk free asset (cash) a zero coupon bond and risky asset (stock).
Let (QQ,F,P) be a complete probability space where Q is a real space andP is a probability measure,

{B,(t), Bs(t):t = 0} is a standard two dimensional motion such that they orthogonal to each other.F is the
filtration and denotes the information generated by the Brownian motion {B,(t), Bs(t)}.

Let C(t) denote the price of the risk free asset at time t and it is modelled as follows

de() =r(e@dt  €(0) >0 @.1)
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r(t) is the short interest rate process and is given as
dr (t) = (a—br (t)) dt —o,dB,(t), 2.2)

o, = Jour(t) + ¢, t =0,

Where a, b, (0), ¢;, and c,are positive real numbers. Here the term structure of the short interest rates is
affine, which has been studied by [10,11,12,14].

Let S(t) denote the price of stock and its dynamics is given based on the stochastic differential equation at
t > 0 and the price process is described as follows:

dS(t) =S)[r®)dt + a,(dB(t) + 4,dt) + n,0,.(dB.(t) + A,0,dt)], S(0) = S, (2.3)
with 44, 1,, 05, ny are positive constant [ 10-12].

Next we consider a zero-coupon bond with maturityT, whose price at time tis denoted by B(t,T),t = 0, and
it dynamics is given by the SDE below [10,11].

dB(t,T) = B(t, T)[r(t)dt + a5(T — t,7(t))(dB,(t) + A,0,dD)], B(T,T) = 1 (2.4)

Where a5 (T — t, r(t)) = f(T — t)o, and

- 2e®-1) N (CETYACES)
9 = d—(b—c122)+e (d+b—c1lz)’ d=y(b-at)+2¢ (2.5)

Stochastic Salary: From the works of [8,9,11,12], we denote the salary at time tby L(t) which is described by

dL(t) = L)[6.(t,r (t)) dt + n,0,.dB,.(t) + nyo,dBs(t)], L(0) = L, (2.6)

where n,,n; are real constants, representing instantaneous volatility which measures the risk sources of
interest rate and stock affecting the salary. That is to say, the salary volatility is supposed to a hedgeable
volatility whose risk source belongs to the set of the financial market risk sources. This is in accordance with
the assumption in [11] but is differs from those of [8,9] who also suggest that the salary was influence by
non hedgeable risk source (i.e., non-financial market).

Also [12,13], assume that the instantaneous mean of the salary is such that 6L(t,r(t)) = r(t) + @, where
w, is a real constant.

Let Z(t) represent the accumulated wealth of the pension fund at time t andconsidering the time interval
[t, t + i], the differential form associated with the fund size is given as:

: ) L imL(t) — tmL(£)iMg,1¢
Z(t+i)=—— C(t+i) S(t+i) B(t+i) 2.7
1-iMyg 4 \ +Z(£) (;11 . (:; + 1= (:)l + Uy B(:)’) 2.7)
imL(t) — tmL(£)iM g, 4t
. (t+i)—-C(t)
) = (Ro0re T4+ (1=t — 1) (Fo
2+ = ()| 2= 1) (o) 23)

, (s(p;izt—)sa)) g (B(H;’it—)B(t))

Where u,,1,, and pzare the optimal control planscash, equity and loan respectively such that y; = 1 — u, —
U3, m is the members’ contributions received by the pension fund at any given time, J;, the initial age of
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accumulation phase, T, the time frame of the accumulation period such that 9, + T is the end age. Suppose
[ My, +¢ is the mortality rate from time tto ¢+ i, tL(t) is the accumulated contributions at time ¢,
tmL(t)i Wy, 4 is the returned accumulated contributions of death members.

Following [1,2], we have

t
The conditional death probability b, =1— a, =1-— e o ”(‘9°+t+s)ds, where 7(t) is the force function
of the mortality at time t, and for i = 0,

i
Mygee =1— exp{—f Ty +t+s)ds} = w(9y + )i + 0(i)
0

iMg,e  1—exp{-— foin(ﬁo +t + s)ds}
1— My 4t exp{— foln'(ﬁo +t+s)ds}

= exp{fln'(ﬁo +t+s)ds}—1=n(d,+t)i+0()
0

>0, 20t — (9 + £)dt,iMy, 4 = (I + t)dtmi — mdt, cHn-c@ _, e

T 1-iMyg 4 c® cw’

S(t+)=S(t ds(t) (B(t+D)—B(t) dB(t)
( 50 )_)s(t)’( B(6) )_)B(t) 29)

Substituting (2.9) into (2.8), we have

mL(t)dt — tmL(t)T (9, + t)dt
e
Z(t+10) = (1+ w9, + t)dt) 1+ A=) 5y (2.10)
+2(0) as(e) dB(D)

M2 TR B

Substituting (2.1), (2.3) and (2.4) into (2.10), we have

T'(t) + |25 (/110-5 + /120'r2n1)
Z(t) +zd,0.0p

1
dt +
dz(t) = t oot Z(0) = z, @.11)

+mL(¢) (""’O‘Zt)

99—t
Z(t)((opus + 120,0,)dB,(t) + 051, d B, (1))

Where 9 is the maximal age of the life table and 7(t)is the force function given by
n(t) ===, 0<t<9¥ (2.12)

When it is time for retirement the contributor will be interested in preserving his standard of living and will
be interested in his retirement income relative to his predetermine salary. Assume we consider the
contributor’s salary as a numeraire. Let the relative wealth be defined as follows

Z(t)
(O (2.13)

Applying product rule and Ito’s formula to (2.13) and making use of (2.6) and (2.11) we arrive at the
following equation
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1
X() (91 + Uy 0; + us6, + —ﬁ—ﬂo—t) 4
9 t+ z(0) 3
_ 9—0y-2t _ _ %0
dx(t) = +mL(t) (Ff;_t) X(0) =75 =2 (2.14)

X(t)((03#3 + W00y — 0,03)dB,(t) + 05 (u; — nz)st(t))
6, =r(t) — 8, + ny2%0,% + nz2ag?
0, = 050, (4, — n3) (2.15)
05 = 405 + 1,0,.°ny + 05°n;3 — nyn,0,°

3 Optimization Problem

Consider a pension fund manager whose interest is to maximize his profit while penalising risk by using the
mean-variance utility function given as

F(T,x,7) = sup{E; ., X*(T) — Var, . X*(T)} (3.1

Applying the game theoretic method described in [15], the mean-variance control problem in (3.1) is similar
to the following Markovian time inconsistent stochastic optimal control problem with value function
F(T,x,1).

Gt %7, 1) = Eyp [XH(T)] - §Vart,x,r [X4(T)]

g(t, X7, li) = Et,x,r [Xﬂ (T)] - g (Et,x,r [Xﬂ (T)z] - (Et,x,r [Xﬂ (T)Dz)
F(T,x,r) =supg(t,x,r,u)
u

From [15], the optimal control plan u* satisfies:

F(T,x,r) =supG(t,x,r,u*)

I

B is a constant representing risk aversion coefficient of the members.
Let p*(t,x,7) = Ep o, [X*(T)], q*(t, x,7) = E; - [X*(T)?] then

F(T,x,r) =s upu(t, x,r,pH(t x, 1), q" (¢, x, r))

I

Where,

ut,x7,p,9) =p—5(q-p? G2
And

Ut = Up = Uy Uy = Upg = Upg = Ugq = 0, up =1+ Bp,up, =P, ug = —g (3.3)

Theorem 3.1 (verification theorem). Suppose, there exist three real functions U, V,W:[0,T] XR > R
satisfying the following extended Hamilton Jacobi Bellman equation equations:
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U —up) + [x (91 + 14203 + 36, + 19_1910_,:) +m (ﬂ_ﬂo_Zt)] (Uy —uy)

90—t
1
sup +(a - br)(ur - ur) + 50}2 (urr - f/lrr)
=0 34
" + ;xz[(aB‘u3 + 120,01 — 0,02)? + 0F (U — 13)?] (U — Ayy) 34
—x0, (03 + 20,1y — Urnz)(urx - Uqrx)
WU(T, x,1) = u(t,x,7,x,x%)
Where,
Ay = Uy + zuxppx + zuxq%c + uppp)% + Zupqpx%c + uqqqg = vaz (3.5)
Ayr = Uy + UypPr + UxqQr + UprPx + UgrQx + UppPxPr + UpgPxGr
FUpgDrx + Ugqqrqx = YWYy (3.6)
Apr = Uy + Zurppr + Zurqqr + upppg + ZupqprQr + uqqqg = erz (3.7)
1 Y-99-2t
Vy + [x (91 + 1,05 + us0, + 19—190—t) + m(ﬁ_;o_t )] Vy
+(a—br)V, + %UEVW —0
1 (3.8)
+;x2[(03#3 + 20,0y — 0,05) + 08 (U — 13)? [V,
—x0,(0pls + Up0p1y — 0; 1) Vi
V(T,x,7)=x
1 9—0p—2t
W, + [x (01 + 11205 + 26, + —ﬁ_ﬁo_t) +m o W,
+(a = br)W, + %arzWrr —0
1 3.9
+Ex2[(63,u3 + 10,01 = 0,10,)? + 0 (U — 03)* | Wy

—x0,(0ptts + U070y — 0 ) Wiy
W(T, x,r) = x?

Then F(T,x,r) = U(T,x,1), p"* =V(T,x,1), q“* = W(T, x, r)for the optimal investment plan p*.
The details of the proof can be found in [16-18].

Substituting (3.3) into (3.4) and differentiating it with respect to u, and ps and solving for p,and ps, we
have

x0513 (Ugy—Axx)— (A1 +1302)U
ﬂz* - 513 (Uxx icx) ( 173 S) X (310)
(Uxx—Axx)X0s
xX0r(My—Nn1N3) (Uxx—Axx) 0407 Uyt 0p(Uyyp—A
”3* — r(My—nqn3z) (Uxy icx) 407 Ux+ oy (Uyr—Axr) (311)
(Uxx—Axx)x0B
Osny+ny A +nn30% 150
g, = Zrztmahitminios—Ae0s (3.12)

Os

Substituting (3.4), (3.8) and (3.9) into (3.3), we have

9 — 9y — Zt)] uz

1
- - _ 32
U + U, [x((po too 90— t) + m<19 mry— + 2, — VD) 2oy — (ar (O + )42 —nz)?)
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Uy Upg=yVxVy) (Upx—=yVyVy)?
+(A, —ny)(eyr (8) + CZ)W —(ar () + cz)m + (a—bN)U, +

(e (&) + ) Uy =YV = 0 (3.13)

1 9 — 9y — 2t UV, ,
T2 ()| - e @~ e © + e~ )
Vx (Urx=YVxVr) 1 1
+(; —n)(ar () + ) 2(‘117—);173) +(a—-br)V +-(ar () + )V + Exzvxx[(O-Bﬂg +

w2(clr (¢) + c2nl—(clr (t) + c2n2)2+0s2u2-—n32—x(clr (¢) + c2)Var(cbu3+uznl(clr
) +c2)—n2(clr (¢) +c2))=0 (3.14)

Ve + 7V, [x((po +

©o = Nz 05 + 020, + 2n3c? — @,

1
_/112

1
_ 4,2 2.3
@1 =5 0gN5 —N50; — N3d 05 — 2

2
gt = r(t) + ¢
Next, we conjecture a solution forU (¢, x,7) and V(t, x,7) as follows:

r 1

U(t,x, 1) = xH(t) +EM(t) +EN(t)}[(T) =1, M(T)=0, N({t)=0
V(t,x, 1) = xH () + %J\_/[(t) + %ﬁ(t)ﬁ(T) =1, MM =0, N({t)=0
(3.15)
Uy = xH + M+ s Ml = HO), Uy = 2 M), Une = Uy = Uy = 0
Ve=xHo+ 5 M, + %Eux =H®),V, = gﬁ(t).vxx =V =V =0
Substituting (3.15) into (3.13) and (3.14), we have
x[H, () + (00 + 575—=) H (O] = 0
TV~ bM(0) + i ‘(“ oy — nz) +¢( — )M (@©)] =0 16
L+ mp (G2 Zt)?f(t) 0, TOHO L IO ¢, (3, —n, )2
H () 2}[ (t)
+aM (t) + c,(A, —n)M ()] =0
X[H @ + (00 + 55=) O] = 0
LM () - M (0) + 250 ¢, 2, - nz) + (A — 1) M ()] = (3.17)
SV @ +mp (T2 7 () - 20, %’({;” +aM () + (A — n )M ()] = 0
Solving (3.16) and (3.17), we have
9-9 _
HE) = (19—0;) Po(T-0) (3.18)

(l_ ) c1(42-1n3)

_ ©1Gamm2)? (¢ (Ap-np)-b)(T-t) _ 11 4 €1(A2-n2)? b c1(2-n2)-b| _p(t-T)

M((t) = Pz [elcritaTn2 b] + ™ + e (lpomy)? e (3.19)
2b
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c2(A2—np)? c16,(A2—ny)3 acy(Az—ny)? ac;(Az—nyp)?
[421 2 c1(A3-nz)—b ' b(ci(Az—nz)—b) 2b ](T t)
c1c2(A3-n3)34+ac,(A1,—ny)? [e(Cl(ﬂz—nz)—b)(T—t) _ 1]
(c1(A2—-n32)-b)?

2
N(t) = 1_ 1) lemn)” 3.20
© a (b )01(/12—“2)—17 (eb(t—T) -1) ( )
b _c1(Ap—np)?
2b
mp 1 —
+ 22 (G [0 = 9 — 2(¢ + 1))e?0 0 — (9 = 9, — 2(T + 1))]
(1) = (320=) g o0 (3.21)
90—
() = 2212 [ @m0 _ ] (3.22)
c1(A2—nz)-b
. P¢1Eﬁﬂiﬁﬂﬁkr_o+2ﬁ£&£&¥k@ﬁrm%Mﬂn_ﬂ
N() = . c1(A2—nz)-b (c1(Az—nz)-b) (3.23)
m 1 _
+%(;%:JK6—%—2@+1DWWF”—w—ﬁo—ﬂT+Dﬂ
a@amn)® (e, (A-np)-b)(T-1) _ 1y | c1lamnz)?
c1(A—nz)-b [e T b] + 2b
1_ c1(A2—n5)?
" + (b )Cl(lz_nz)—b eb(t—T)
_ c1(A—ny)?
2b
c3(A3—n,)? c16(Ap—n5)3 ac;(A;—ny)? ac;(A;-ny)?
1 [ 17 2 ci(hg=nz)=b ' b(cy(A—nz)—b) 2b ] T-9
B c162(A2—n5)3+ac; (A, —n,)? (c1(A,=nx)=b)(T—t) _
U, x,7) = T @ [efefemns ! (3.24)
" + (l_ 1) c1(A2—ny)?
al\b c1(A2—n3)-b (eb(t—T) _ 1)
b _ c1(A2—ny)?
2b
(at)emro 2 ) [0 20 s e
90T $o \I=I,-T —(19 — 9 —2(T + 1))
c12-12)% 1 (¢ (Ay=ng)=b)(T—t) _
[Cl(ﬂz—nz)—b [e e 1]
1
- c1(a+cz(A2-nz)) _
B + [2(p1 + ¢1(A2—n3)-b ](T t)
V(t, X, 7') = " ca1(a+cz(A-ny)) [8(01(12—112)—17)(7"—'?) _ 1] (3.25)
(c1(A2-n3)-b)?
(9 — 99 — 2(t + 1))e®oT-0
x (L) eror-0 (L) [ 0
9—00-T 9o \9=0p=T (=9, —2(T+1))
From (3.15), we have
9—0p—t _ 9—9p—t _
U, = (ﬁ) e®oT=0 = U, =07V, = (Fg—r) e®T-0 )y =,
1 1002 T (ey(pmn)-n)T-0) _ 1] (3.26)

"7 Bci(Az-np)-b
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Substituting (3.26) into (3.10) and (3.11), we have

. _ A1+n302\ (9—-99-T 0o(t=T)
Hz =13 ( Bxas )(ﬂ—ﬂo—t)e ° (3.27)
) 2
 _ orngmmny) _ (e s e 1 ) DT 0 ) (3.28)
Hs = op PBxop :
lemma 3.1 The optimal Investment plans for the three assets are given as
Mt =1—py" —ug” X
R A1 + n30¢ <19 — 9y — T) P0(t=T)
ﬁZO'S 19 - 190 - t
oy 10,(9-9,—
t= Ny —mng) + | (=————)e® D || [1 + h(t
by GB[(Z mo) + ((19 ) [1+ k()]
Where
)2
(o) = M[e(claz—ng—bw—o ~1]
c1(A; —np) = b
(po =nzh o5 + Lny (e + ) +2nZ6 + 1 —
o= qr + ¢,
Lemma 3.2 The efficient frontier of the pension plan is given
€102-12)% 1 (c;(Aa=np)-b)(T—t) _
[Cl(ﬂz—nz)—b [e e 1]
c1(a+ca(A2-n7)) _
[2 1 c1(A3—ny)-b ](T t)
ca(atca(@2=n2)) 1 (c1(Ag—np)-b)(T—t) _
CrGomp? 1€ 1]
% Varexr[XH (1)]
(3-1)£2lz=ng?
2r| P /e1(@z2- nzz) bl(1-eb(t-T)y
) N (3.29)
Epxr[XH = .
xr +2[(p cz(lz -nz)? cl(a+02(Aczl(;lzz))nzc)lc;(lz ny)3 b&il(;);z nnzz))zb) acl(lzb ny)? ](T—t)
c(a+c(l ny))-cycp(Az—n3)3-acy (Ap-ny)?
428 24— 2(61(;22n22) b§2 1A2—N3 re(cl(zz ny)-b)(T—-t) _ 1]
(1_1) c1(Az2-np)?2
2a|\b “Jc1(A2-n2)=b| p(t-T)_
N RS T G
\ 2b
— 9. — (T-0)
x(ﬂ—ﬁo—t) po(T-t) 4 I ( 1 ) (9 =9 — 2(t + 1))e%o
9=00-T 9=90-T (-9, -2(T+1)
Proof. Recall that
Vary,, [X¥ ()] = Eqr[X* (1)*] = (Eear [X* (D]?
Vary, [X* (1] = 2 [V(t,x,7) = U, x,7)] (330)

Substituting (3.24) and (3.25) into (3.30), we have
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1 c1(Az—np)?
-——1)———
2 (b ) c1(A2—nz)-b

_ ,b(t-T)
_ c1(A-np)? (1 € )
2b
c2(A2—ny)? Cl(‘l‘*'cz(iz—nz))_flcz(lz—nzﬁ_ acy(A2-ny)? acy(A—ny)? _
. +2 [<p1+ 2 + ¢1(Az-nz)—b b(cl(lz—nz)—b)+ 2b ](T t)
Var, ., [X* (D] = 5

ci(a+c;(A2—np))—c1c,(A2-n3)3
+2 (c1(A2-nz)-b)?

(l _ 1) c1(2;-np)?
+2_‘1 b c1(A2-nz)-b

b _&a (A2-n,)?

—aci(A2-ny)?* [e(cl(/lz_nz)_b)(’[‘_t) _ 1]

(eb(E—T) _ 1)

2b

_ Vare  [X# (1))
- (1_1) c1(A2-ny)?
b "Jc1(A2-nz)-b (1-eb(t=T))

|+

2r

_c1(Az-np)?
2b
L c2(A2-np)2 ci(atca(Az—np))-c1c2(A2-n2)3  acy(A-np)? ,acl(az—nz)z]
+2[(p1 ' 2 ' ¢c1(Az—nz)—b b(c1(A2—nz)-b)" 2b =9
c1(at+cr(A2-np))—c1c2(Aa—n2)3-ac1(A2=12)% (¢, (Ay—ny)—b)(T—8) _
+2 (c1(A2-n2)-b)? lerraiieTe 1

(1_1)M
2a|\b c1(A2—-n2)-b (eb(t—T)_l)
b _c1(A2-np)?

\ 2b
Eper[X* (D] = V(t,x,7)
Substituting (3.25) into (3.33), we have

r [ c1(A2-n5)*

a 3 [e(51(/12—n2)—b)(T—t) — 1]]
c1(A—ny)-b

ci(a+c;(A,-n,)) _
[2(’01 + ¢1(A—nz)-b ](T t)

c1(a+c;(A,-ny))
(c1(A2—n3z)-b)?

9000\ oty m (1) [(9 =90 =20t +1))e? T
X (19—19:—T) e®o(T-t) 4 P (g—ﬂo—T) [ —(19 —9,—2(T + 1))

Et,x,r [Xﬂ‘ (T)] = [e(Cl(ﬂz—nz)—b)(T—t) _ 1]

Substitute (3.32) in (3.34), we have:

¢ (A, — ny)?
(A —nx) = Db
c(a+c(A, —ny)
[2 vt c1(A; —my) = b ](T_t)
ala+c(—ny)
(c1(2; —np) — b)?

[etcttamna-n)r-0) _ 1]]

[e(cittemna-n)r-0) _ 1]

x Vart,x,r [XM* (T)]

1 c1(A2—n,)?
2 (b 1) c1(A2-nz)-b
u* _ c1(A2-n,)?
Epxr X (D] = 2b
+2 [(P + c2(A2—n5)? + c1(a+ca(A2—np))-c1c2(A2-n3)3 _ _ac(A2-np)?
1 2

(1 _ eb(t—T))

acy(A;-n,)?

42 c1(atea(a-n5))—¢16,(A2-n5)3~acs (A,-n5)?
(c1(Az—nz)-b)?
(l _ 1) c1(z-ny)?
+ 2a|\b ¢1(A2—nz)-b
b _ca1@-np)?
2b

[9(51(/12_nz)—b)(T—f) — 1]

(eb(t—T) — 1)

x (m) e®oT=6) 4 ﬂ(;) (9= 8 = 2(¢ + 1)) ™™
9—9,—T Qo \9— 0y —T —(9 -9, —2(T+1))

c1(Az—nz)-b b(c;(A—nz)—b) 2b ] T-t

(3.31)

(3.32)

(3.33)

(3.34)

10
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4 Theoretical Analysis

In this section, we present some lemmas to demonstrate the impact of some parameters on the optimal
investment plan.

Lemma 4.1 Suppose z > 0,8 >0,¢,>0,t €[0,T],9>0,9,>0,n3 >0,l>0,0,>0, 4 >0 and
9—19y—t>9 -9, —T then

G}

uy* . 0
I < 0 (iii)

M %<0 i)

ua2” N
0z al >0 (i) or >0

2\ -9 —
Proof (i) Recall that u,* = ns + 1 (Al;z%) (Z:’;—O:) e®o(t=T)
s —vo—

652* _ (Al + n3asz> <19 — 9 — T)e%(t_T)
Z

B Bz20, 99—, —t
2 _ —
Since l(h;ﬂ) >0, (""—”) > 0 and e®otT) > (

3205 9—9p—t

Then

* 2 _ _
GJIP) - A+ nz0; <19 9o T>e<po(t—T) <0
03 Bz?0; 99—y —t
Hence k2 <0
0z

2\ (99—
(ii) Recall that p,* = n; + 1 (’11!;;;:5) (Z_’;—‘;_D e®o(t=T)

uy” _ A + nzo? <19 -9 — T)e%(t_T)
B B2zo, )\0 -8, -t

2 —9n—
Since l(%) >0, (522=0) > 0and eoD > 0
S ~UYo—

Then

- Po(t-T) «
B f2z0, 19—190—t)e

ouy" l</11 + n3asz> <19 —9,—T
Hence Ok’ <0
op

2 — 90—
(iii) Recall that y," = ny + z(’“;%) (&) o=
s ~—vVo—

) ¢ ®0(t=T)

6#2* _ Al + 7130'52 (19 _190 - T
al Bza, 90— —t

2 9
Since (Aﬁnws) >0, (19 % T) > 0 and e®ot1 >
Bzos 9-9g—t

11
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Then

* 2
oy, _ </11 + n3as>(z9 -9 — T) 20D 5 0

6l ,BZO-S 19 - 190 - t

dust
Hence % >0

.  _ ﬂ.l+n30'52 V—=99-T @o(t-T)
(1V) Ho =13+ ! ( Bzos ) (ﬁ—ﬁo—t) ere

au,” M An302\ 9 —9,—-T
g: l< S s)( 0 )(n261/11+1)e‘”0(t‘n

"N\ pre, J\9—v, -t

Where @y = n34,05 + A,z (17 + ;) + 2nfod + 17—y,

2 —_— —_
Since l(m) >0, (&O_D > 0 and (nyc A4 + et >0

Bz?0s 99—,
Then
ouy,* M An302\ 9 —9,—-T
=1 < ) A 1)e®ot-T) >
or ( Bao, )\o—p,—¢) et + e
Hence Ok’ >0
or

Lemma 4.2 Suppose z > 0,6, >0, §>0,¢0,>0,t€[0,T],9>0,9 >0,n >0n,>0n;>010>
00s,>0,4;, >0and 9 — 9y —t >I9 — 9y — T then

G}

uy* ... 0
m < 0 (iii)

O %<0 G

H2" L\ Oug”
5 3l >O(1v)—ar >0

Proof Recall that

o 16 9—09,—-T
13" = é (ny —myng) + ﬁ_;(<—19 — 19(:) — t) e(pO(t_T)> [1+h(D)]
Where
)2
h(t) = M[e(claz—m—b)(r—o ~1]
(A —my) —b
@0 = N30 + Lny(cir + ¢) +2n36k +r—
gZ=cr + ¢
" . o 10, [ (9= _
(M) pg"=3- [(nz —ning) + E((Wo_f) etolt T’)] [1+ h(D)]
os* 16,0, <19 — 9, — T) ]
= — Pot-T) |1 + h(t
0z [aB,Bzz 9—19,—t ¢ [ (®)]
. loy6, 9—09—T Po(t=T)
Since Pl (—ﬂ_ﬁo_t) > 0,h(t) > 0and e?° >0

12
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Then
Opts* 16,6, <19 — 9y — T) ]
=_ =T 11 + h(t)] < 0
0z [aB,Bzz 9—09,—t ¢ [ ®]
Hence 22 < 0
0z

(ii) ps" = ;’—;[(nz —nyng) +l;4;<(‘§:’;+_f)e%<”>)] [1+ A(0)]

dus”* lo,.0, (9—9,—T
Us =_[ rUs ( 0 )e‘”O(t_T)] [1 + h(0)]
6[3 UBﬁZZ Y- 190 -t
. loy0y V—=99—T @o(t=T)
Since 2~ > 0, (—ﬁ—ﬁo—r) > 0,h(t) > 0and e®° >0
Then
6[13* lO‘r94 19 - 190 - T ]
=— Pot=T[1 + k()] < 0
B [aBﬁzz(ﬁ—ﬁo—t)e [1+h(®)]
Hence Ous” <0

B

. - 10, [ (9—90— _
(iii) pz" = :—B [(nz —mng) + ﬁ_:<(FZ—:) eolt T))] [1+h(®)]
6[13* _ I:O-r64 (19 - 190 - T

al  logBz\9—19,—t

)e%(f—T)] [1+ k(0]

Since :;—z,“z >0, (%‘;__:) > 0,h(t) > 0 and e?ot=D > 0
Then

5= g g el ehor o
Hence 24 > o

al

(i) 5" = 2 [(n2 —myng) + %((’H—"‘T) e“’O(t_T)>] [1 + h(0)]

4 Y-"9p—t
Assume that (n, —nynz) > 0 and

Qo = nzA 0 + Lny(cr + ¢3) +2n3c+r—
of=ar + ¢

ous” c 10,9 —9,—-T
53 = 1 —[(ny, —myn3) + = <—19 190 )e‘ﬂo(t—T)] [1+ k()]
T 20p(ar+ c)? Bz 0 =19, —t
1
10,(cir + ¢3)2 [ 9—9,—-T
U D) D (Gg—r)| 11 + heyereD
+ Bz0, (Aznzey + 1) R — [1+h(®)]e

o6 9=99-T Po(t=T) 3
Since py >0, (19—190—r) > 0,h(t) > 0 and e%° >0,(cr+ ¢c;)2>0

13
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Then
65: i 2 [(le nyng) + ;9;’ <%) e(po(t—T)] [1+ h(D)]
205(c,r + ¢y )z
+ %[(Aznzq + 1) <%)] [1+ h(t)]e?tD > 0
Hence 6”3 >0

Lemma 4.3 Suppose z >0,0,>0, 8 >0,¢0,>0,t€[0,T],9>0,9,>0,n, >0,n,>0,n; >0,1>
00s,>0,4;, >0and 9 — 9y —t >I9 — 9y — T then

O %<0 G "1 <0 (i) 222 > 0 (iv) 22 > o
o /11+n3crs 90T\ wn) o[ s (9= =T\ . o
o=t (n3+l< Bza, )(a—ao—t)eq’ ' 5 | mns) + 5 (ﬁ 9 )eq’ ‘

) " =1—p" —psg”

[1+h(®)]

oy _ 0#2 _0113 _ ouy” _I_alls*)
0z 0z 0z 0z 0z
But ”2 < 0 and 6”3 <0, therefore 242 a +ag3 < 0. Hence
ou,” ou,*  Ous™
Uz _ _( Uz " Us ) >0
03z 0z 0z
o L o' ows’ _ (o’ ous’
(i) - ap ap (aﬁ + 6[?)
auz duz” | duz”
ﬂ < 0, such that op +— B < 0. Therefore
ou* ouy*  ous*
Hq _ _( 12 i U3 ) >0
g o 9B
s Opgt _ dup”  dus™ _ (Oup” | duz”
(iif) - al a (al + al)
Since ”2 > 0 and 6”3 > 0, such that a”lz +a”3 > 0. Therefore
oy Ouy”  Ous”
= - 0
al ( al " al >
iy 2 0w’ o’ _ _ (omy"  ouy’
(111) - ar ar ( or ar )
Since —> 0 and ”3 > 0, such that 242 +agr3 > 0.
opy” ouy" | Ous”
= - <0
or ( or + or >
Therefore
oy
<0
or
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5 Discussion

Lemma 4.1 reveals that the optimal investment plan for stock decreases as the risk aversion coefficient
increases; this implies that if other component of the optimal investment plan are kept constant, the fund
manager will invest less fund in stock as risk aversion coefficient increases and this is a similar to lemma 4.2
which shows that investment in bond follows the same trend. Also, we observed from lemma 4.1 and 4.2 that
as the initial wealth decreases, the fraction on the pension wealth invested in stock and bond increases. Also
we observed that investment in stock and bond increases monotonically with respect to member’s salary and
risk free interest rate. From lemma 4.3, we observed that the optimal investment plan for the risk free asset
increases with increase in risk aversion coefficient and initial wealth and decreases with increase in salary
and interest rate.

In conclusion, we observed that since the risk free interest is stochastic, fund managers will prefer to invest
more in stock and bond when the risk free interest rate is high and invest less in risk free asset and vice
versa. This is contrary to the case where the risk free interest is not stochastic. This is simply because with
the stochastic nature of the risk free interest rate, members may not be able to predict when the interest rate
will decrease or increase.

6 Conclusion

Here we studied the optimal investment plan for a DC plan with refund of contributions, stochastic salary
and affine interest rate model. Investment in a risk free (cash) and two risky assets (stock and zero-coupon
bond) where the prices of the risky assets are modelled via geometric Brownian motions and the risk free
interest rate is of affine structure. We obtained explicit solutions of the optimal investment plan for the three
assets using mean variance utility function and presented theoretical analyses of the impact of some sensitive
parameters on the optimal investment plan.
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