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Abstract

In this paper, we first propose a fast and effective region-based depth map upsampling method,
and then propose a joint upsampling and location map-free reversible data hiding method,
simpled called the JUR method. In the proposed upsampling method, all the missing depth
pixels are partitioned into three disjoint regions: the homogeneous, semi-homogeneous, and non-
homogeneous regions. Then, we propose the depth copying, mean value, and bicubic interpolation
approaches to reconstruct the three kinds of missing depth pixels quickly, respectively. In the
proposed JUR method, without any location map overhead, using the neighboring ground truth
depth pixels of each missing depth pixel, achieving substantial quality, and embedding capacity
merits. The comprehensive experiments have been carried out to not only justify the
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execution-time and quality merits of the upsampled depth maps by our upsampling method
relative to the state-of-the-art methods, but also justify the embedding capacity and quality
merits of our JUR method when compared with the state-of-the-art methods.

Keywords: Bicubic interpolation; color plus depth video coding; depth map upsampling; depth
no-synthesis-error; quality; reversible data hiding.

1 Introduction

The color plus depth video coding (CDVC) model [1] has been widely used in the 3D video consumer
electronics market. To reduce the bitrate requirement in CDVC, one color image is bundled with
a synchronized smaller depth map. For example, the color image and one-quarter sized depth
map of Kinect 1 are of sizes 640×480 and 320×240, respectively. The smaller depth map is often
viewed as a low-resolution depth map. Afterwards, the low-resolution depth map is upsampled, i.e.
reconstructed, to the same size as the color image. For convenience, the color image is called the
left color image. Nowadays, it is still a challenging problem to design a fast and effective depth
map upsampling method. Based on the upsampled depth map, the warping process [2] is applied to
map the left color image to a right warped virtual-view. One motivation of this paper is to design
a fast and effective depth map upsampling method for solving this challenging problem. The other
motivation of this paper is hightlighted in the next paragraph.

At the client side, after upsampling the depth map, because we dont need to consider the compression
attack on the upsampled depth map. Therefore, the other motivation of this paper is to deploy
the reversible data hiding (RDH) capability into the upsampled depth map. According to the
definition of RDH [3], after embedding the hidden data into the upsampled depth map, not only
the original upsampled depth map can be recovered completely, but the embedded hidden data
also can be extracted correctly. Without needing the location map to indicate where the hidden
data are saved in the marked depth map, it is a challenging problem to design an effective RDH
method for upsampled depth maps such that the marked upsampled depth map has good quality
and high embedding capacity. In this paper, we attempt to design a novel and effective joint depth
map upsampling and location map-free RDH method, called the JUR method, for solving this
challenging problem.

1.1 Related works

In this subsection, the related works for depth map upsampling and RDH for upsampled depth
maps are introduced.

1.1.1 Related works for depth map upsampling

Based on the spatial filter kernel idea [4], Kopf et al. [5] presented a joint bilateral filtering method
for upsampling depth maps. Later, Kim et al. [6] proposed the joint trilateral filtering method
considering the color value difference. To improve the method in [7], Jung [8] proposed a block
truncation coding-based method [9]. Yang et al. [10] proposed a sparse representation approach;
however, their method is rather time-consuming. Ham et al. [11] proposed the majorization-
minimization (MM) method by considering the structure relation between the guided color image
and the depth map. Based on the Middlebury dataset [12], the MM method outperforms the guided-
filtering (GF) [13] and the method in [14]. Based on the color image and the tentative estimated
depth map as the guidance, Li et al. [15] proposed a hierarchical optimization framework by
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progressively performing a cascaded and guided global interpolation (CGI). Based on the ToFMark
test dataset, the CGI method outperforms the methods in [5], [13], [14]. Considering the correlation
between the objects in the color image and the depth map via joint segmentation, Miguel et al.
[16] proposed a robust upsampling and noise removal method for depth maps. Choi et al. [17]
first segmented the depth map into regions of smooth surfaces, and then these regions are used to
segment the color image to continuous regions and discontinuous regions. Corresponding to the
discontinuous color regions, the depth upsampling is done by the depth-histogram-based method;
otherwise, it is done by interpolating from the low-resolution depth map.

Xie et al. [18] proposed an edge-guided upsampling (EGU) method. Their EGU method first
integrated the Markov random field technique and the training-based patch synthesis technique to
generate a temporary upsampled depth map. Then, with the help of the modified version of the joint
bilateral filtering, EGU can effectively remedy the jagged artifact and has better quality and edge-
preserving effect. Based on the Middlebury dataset, EGU has shown better quality when compared
with the related methods [7], [19], [20]. Because of involving the Markov random field and training-
based patch synthesis techniques, EGU is time-consuming. Konno et al. [21] proposed a self-guided
residual interpolation (SRI) method. The techniques used in SRI include the displacement field-
guided filtering technique [22], the GF technique [13], and the bicubic interpolation (BIC). Based on
the Middlebury dataset, SRI has better quality relative to the methods in [10], [13], [14], [22], [23].
Chang et al. [24] compared and analyzed the advantages and disadvantages among the five depth
map upsampling methods, namely the bilinear, joint bilateral [5], noise-aware filter [25], guided
image filter [13], discontinuity adaptive [26] depth upsampling methods. Furthermore, they applied
depth refinement processes to achieve the quality improvement of the upsampled depth map.

Recently, under the deep learning supporting environment, Hui et al. [27] proposed a multi-scale
guided convolutional end-to-end network (MSG-Net) for depth map upsampling. In MSG-Net,
a convolutional neural networks-based (CNN-based) multi-scale fusion strategy was presented to
complement the low-resolution depth features with the high-resolution luma features. Unlike
some super-resolution networks that require pre-upsampling of input image by BIC in advance,
MSG-net learns upsampling kernels inside the CNN. Based on the Middlebury dataset, the MSG-
Net outperforms several traditional upsampling methods and Dong et al.’s super-resolution CNN
(FSRCNN) method [28]. Kim et al. [29] learned sparse and spatially-variant kernels for determining
the weighted averaging process to transfer structural details to low-resolution depth maps. Then,
they propose a fast deformable kernel network to output sparse sets of neighbors and the correspon-
ding weights adaptively for each pixel, leading to depth map upsampling. Based on the normalized
convolution operation, Guo and Liu [30] proposed a guided convolutional layer to recover a dense
depth map using a sparse and irregular depth map with a depth edge map as guidance. Further,
they proposed a convolution network by combining different related methods, achieving better
performance.

Among the eight comparative methods denoted by the set symbol “UP”, BIC [31] and GF [13]
are implemented in C++; the other six related upsampling methods, MM [11], EGU [18], SRI
[21], FSRCNN [28], MSG-Net [27], and CGI [15], are available codes. Among these comparative
methods, MM, EGU, SRI, MSG-Net, and CGI are state-of-the-art depth map upsampling methods.

1.1.2 Related works for reversible data hiding for depth maps

Chung et al. [32] presented a depth no-synthesis-error (D-NOSE) [33] based RDH method on
upsampled depth maps directly, denoted by the D-RDH method, such that not only the original
upsampled depth map can be recovered completely, but the embedded hidden data also can be
extracted correctly. In detail, if the prediction error is equal to zero, D-RDH can embed the hidden
data h with bit-length ⌊log(upp(d) − p + 1)⌋ into the current depth pixel. Here d denotes the
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(a) (b) (c)

Fig. 1. Three possible 5×5 depth block types of each missing depth pixel DHR(m,n).
(a) Type A when m is even and n is odd. (b) Type B when m is odd and n is even.

(c) Type C when m is odd and n is odd

depth pixel-value and upp(d) denotes the upper bound of d in the D-NOSE allowable interval
[low(d), upp(d)]; the detailed definition of this interval is referred to the second paragraph of
Subsection 2.2. When the prediction error is equal to -1, D-RDH can embed ⌊log(p−low(d)+1)⌋−1
bits; otherwise, D-RDH does nothing. As mentioned above, in the D-RDH method [32] some
locations of the upsampled depth map can be embedded by hidden data, but the other locations
are prohibited from embedding hidden data. Therefore, a location map is used to record all locations
where the hidden data are embedded into the upsampled depth map directly, and then an arithmetic
codec [34] is applied to compress the location map for reducing the extra memory requirement; it
depletes the embedding capacity.

Recently, Shi et al. [35] presented a modified D-RDH (MD-RDH) method to embed much more
hidden data for the case when the absolute prediction error is equal to zero. For this case, MD-RDH
can embed the hidden data h with bit-length ⌊log(upp(d)low(d) + 1)⌋ into the depth pixel. Like
D-RDH, MD-RDH also needs a location map to record all locations where the hidden data are
embedded into the upsampled depth map directly, and it also compresses their location maps by
the lossless arithmetic codec [34] to reduce the extra memory requirement.

Due to the D-NODE model used in D-RDH and MD-RDH, the test depth maps are collected from
the Mobile3DTV dataset since this dataset provides the required parameters information needed
by the D-NOSE model. Note that the Middlebury dataset does not provide the related parameters
for the D-NOSE model. Because our proposed depth map upsampling method also takes the D-
NODE model into account, the same test depth maps in Mobile3DTV are still used to compare the
performance among the concerned methods.

1.2 Motivations

The common weakness existing in the above-mentioned related works for depth map upsampling
is the lack of taking the region classification of missing depth pixels into account. Accordingly, it
motivated us to propose a fast method to partition all the missing depth pixels into disjoint regions,
and then design a special approach to reconstruct these missing depth pixels in the same region
class quickly, also achieving good quality of the upsampled depth maps.

The common weakness existing in the related works on RDH for upsampled depth maps is the
location map overhead and the prediction error constraint, depleting the embedding capacity and
quality of the marked depth maps. Accordingly, it motivated us to propose an effective joint depth
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map upsampling and RDH method, called the JUR method, achieving higher quality and embedding
capacity of the marked depth maps.

1.3 Contributions

According to the above two motivations, in this paper, we first propose a fast and effective region-
based depth map upsampling method, and then propose a joint upsampling and location map-
free RDH method, called JUR. Initially, we move each true depth pixel at location (i, j) in the
low-resolution depth map DLR to the location (2i, 2j) in the initial high-resolution depth map
DHR. Here, the true depth pixel at the location (2i, 2j) is viewed as a ground truth depth pixel.
Throughout this paper, ”true depth pixel” and ”ground truth depth pixel” denote the same thing.
Therefore, 75% of the depth pixels in DHR are the missing depth pixels to be reconstructed. The
three contributions of this paper are clarified in the following aspects.

In the first contribution, a fast and effective region-based depth upsampling method is proposed.
First, a novel approach is proposed to partition all the missing depth pixels into three regions,
namely the homogeneous region which is geometrically flat, the semi-homogeneous region which is
flat from the D-NOSE sense, and the non-homogeneous region which is geometrically non-flat. Then,
in the proposed region-based depth map upsampling method, we apply the depth copying (DC)
approach, the mean value (MV) approach, and the BIC technique to reconstruct the homogeneous,
the semi-homogeneous, and the non-homogeneous missing depth pixels, respectively, achieving clear
quality, execution-time, and perceptual effect improvement.

In the second contribution, instead of embedding hidden data into the upsampled depth map directly
by the previous D-RDH [32] and MD-RDH [35] methods, for each missing depth pixel, according to
its region class and its neighboring ground truth depth pixels, we propose a new joint upsampling
and the location map-free RDH method, called the JUR method, achieving substantial quality,
maximal embedding capacity, and embedding capacity merits relative to the sixteen comparative
combinations in UP × {D −RDH,MD −RDH}.

In the third contribution, based on the Mobile3DTV dataset, the comprehensive experimental
results demonstrated the good quality, fastest execution-time, good perceptual effect, and non-deep
learning supporting environment merits of our depth map upsampling method relative to the eight
comparative methods. Relative to the eight comparative depth upsampling methods, except the
MSG-Net method, our method has clear PSNR and SSIM merits of the upsampled depth maps.
In particular, our depth map upsampling method only needs 0.052, 0.069, and 0.074 seconds to
obtain 2x, 4x, and 8x upsampled depth maps, respectively, which is much faster than the eight
comparative methods. In addition, the experimental results also justified the quality-embedding
capacity tradeoff merit of our JUR method relative to the sixteen comparative combinations in UP
× {D−RDH,MD−RDH}. The maximal embedding capacity gain of our JUR method is at least
0.646 bpp (bit per pixel) when compared with the sixteen comparative combinations. When the
embedding capacity is selected to be 0.1 bpp, 0.3 bpp, 0.5 bpp, and 0.7 bpp, as the base, the PSNR
gains of marked upsampled depth maps by our JUR method are at least 5 dB, 5 dB, 4 dB, and 4
dB, respectively, relative to the sixteen comparative combinations.

The rest of this paper is organized as follows. In Section II, we propose a new and fast method to
partition all missing depth pixels into three disjoint regions. In Section III, our fast and effective
region-based map upsampling method is presented. In Section IV, our joint depth map upsampling
and location map-free RDH method, JUR, is presented. In Section V, the thorough experiments
are carried out to demonstrate the quality merit of our depth map upsampling method and the
embedding capacity as well as the quality merits of our JUR method. In Section VI, some concluding
remarks are addressed.
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2 Partition All Missing Depth Pixels into Three Disjoint
Regions

Before presenting the proposed region-based depth map upsampling method, which will be described
in the next section, we first classify the missing depth pixels in the initial high-resolution depth
map to three regions, such as the flat, i.e. homogeneous, region, semi-flat, i.e. semi- homogeneous,
region, and non-flat, i.e. non-homogeneous, region. The motivation of this region classification is
that for each region with special geometrical property, we can apply special approach to effectively
reconstruct the missing depth pixels in that region, achieving low computational cost, image quality,
and embedding capacity merits.

Following the above-mentioned motivation, we propose a fast linear-time, i.e. O(WH)-time, method
to partition all missing depth pixels of the initial high-resolution depth map DHR into three disjoint
regions: the homogeneous region, the semi-homogeneous region, and the non-homogeneous region.
Here, the size of DHR is assumed to be W×H. The reader is suggested to refer to [36] for the
definition of Big-O complexity.

2.1 Fast identify the Homogeneous missing depth Pixels

For each missing depth pixel DHR(m,n), we put a 5×5 window W centered at the location (m,n)
to cover its neighboring true depth pixels in order to determine the region class of DHR(m,n).

2.1.1 Definition of homogeneous missing depth pixel

There are three possible block types, as shown in Fig. 1, where the true depth pixels covered by
W are marked in red. Let k and l denote non-negative integers. The block type of DHR(m,n) is
determined by

Type =


type A when m = 2k and n = 2l + 1

type B when m = 2k + 1 and n = 2l

type C when m = 2k + 1 and n = 2l + 1

(2.1)

Definition 1. For one missing depth pixel DHR(m,n), when all the true depth pixel values covered
by the 5×5 window W centered at the location (m,n) are the same, DHR(m,n) is in a flat region
and is identified as a homogeneous missing depth pixel.

As shown in Fig. 1(c), for type C block, by Definition 1, DHR(m,n) is identified as a homogeneous
missing depth pixel because of DHR(m1, n1) = DHR(m1, n + 1) = DHR(m + 1, n1) = DHR(m +
1, n+ 1). Considering Figs. 1(a)-(c), in the worst case, it takes 4.3 (= (5 + 5 + 3)/3) comparisons
to check whether Condition 1 is held or not.

2.1.2 Speed up the checking of Condition 1

We propose an early jumping technique and a look-ahead pruning technique to speed up the checking
of Condition 1.

2.1) Early jumping technique: Based on the column-major and right-to-left scanning order, by the
early jumping technique, if the first two neighboring true depth pixels are not equal, Condition 1
is false for DHR(m,n) and we stop the subsequent checking step; otherwise, we continue with the
next checking step. For the example in Fig. 1(a), because the number of possible checking steps
is 1, 2, 3, 4, or 5, the average number of checking steps for block type A is 3 (= (1 + 2 + 3 + 4
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+ 5)/5). By the same argument, the average number of checking steps for block type B is 3 (=
(1 + 2 + 3 + 4 + 5)/5); the average number of checking steps for block type C is 2 (= (1 + 2 +
3)/3). Consequently, based on the early jumping technique, on average, it takes only 2.7 (= (3 +
3 + 2)/3) comparisons to determine whether Condition 1 is held for one missing depth pixel.

2.2) Look-ahead pruning technique: Furthermore, we adopt a look-ahead pruning technique to
determine whether we should discard the checking of Condition 1 for the subsequent missing depth
pixel(s). For the example in Fig. 1(a), if the first two neighboring true depth pixels, DHR(m −
2, n+1) and DHR(m,n+1), are not equal, not only do we stop the remaining checking of Condition
1 for the missing depth pixel DHR(m,n), but we also discard the checking of condition 1 for the
next missing depth pixel DHR(m,n + 2). In the same way, for the example in Fig. 1(b), if the
first two neighboring true depth pixels, DHR(m− 1, n+ 2) and DHR(m+ 1, n+ 2), are not equal,
we can discard the checking of Condition 1 for the next four missing depth pixels, DHR(m,n+ 1),
DHR(m,n + 2), DHR(m,n + 3) and DHR(m,n + 4). For the example in Fig. 1(c), if the first
two neighboring true depth pixels, DHR(m − 1, n + 1) and DHR(m + 1, n + 1), are not equal, we
can discard the checking of condition 1 for the next three missing depth pixels, DHR(m,n + 1),
DHR(m,n + 2), and DHR(m,n + 3). Besides the first two neighboring true depth pixels disussed
above, the other two consecutive neighboring true depth pixels can be treated in the same way to
speed up the checking of Condition 1.

Based on the Mobile3DTV dataset, the average ratio of the number of the homogeneous missing
depth pixels over that of all missing depth pixels in DHR is 73%. As for this case, we apply the
proposed simple depth copying (DC) approach to construct each identified homogeneous missing
depth pixel quickly, which will be formally described in Subsection III.A. Due to only considering
the neighboring true depth pixels of DHR(m,n) to identify the pixel class of DHR(m,n), we thus
adopt the smallest window, i.e. the 5×5 window. On the contrary, a larger window decreases the
ratio of the homogeneous missing depth pixels, leading to no quality improvement.

Table 1. D-NOSE allowable intervals for balloons video sequence

Depth value d as index 0 1 ... 98 99 100 101 ... 254 255

low(d) 0 0 ... 91 91 91 101 ... 250 250

upp(d) 5 3 ... 100 100 100 111 ... 255 255

Mean of D-NOSE interval 3 3 ... 96 96 96 106 ... 253 253

2.2 Fast identify the Semi-homogeneous missing depth Pixels

Because “whether the missing depth pixel DHR(m,n) is semi-homogeneous or not” is dependent
on the D-NOSE condition of the neighboring true depth pixels of DHR(m,n), we first introduce
the preliminary of the D-NOSE model.

Let Zl(m,n) denote the raw depth value at the location (m,n) and let Znear and Zfar denote the
nearest and farthest raw depth values in the depth map, respectively. The quantized depth value
of Zl(m,n) [37] is expressed by

D(m,n) = ⌊255× Znear

Zl(m,n)
× Zfar − Zl(m,n)

Zfar − Znear
+ 0.5⌋ (2.2)

where the floor function ⌊w⌋ denotes the largest integer smaller than or equal to w. The idea
behind the D-NOSE model is that one depth value D(m,n) can be perturbed to the other depth
value D′(m,n) such that this perturbation causes no warping error provided that D′(m,n) is in the
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D-NOSE allowable interval [low(D(m,n)), upp(D(m,n))] where

low(D(m,n)) =

⌈
d−1(

⌈(d(D(m,n))− λ)×N⌉ − 1

N
+ λ)

⌉

upp(D(m,n)) =

⌊
d−1(

⌈(d(D(m,n))− λ)×N⌉
N

+ λ)

⌋ (2.3)

with λ-rounding and the precision 1/N . In the term “ 1
N
⌈(d(D(m,n))−λ)×N⌉”, the ceiling function

⌈w⌉ denotes the smallest integer greater than or equal to w, λ denotes the λ-rounding horizontal
disparity of d(D(m,n)), and d−1 denotes the inverse function of d. Here, the horizontal disparity
function d(D(m,n)) is defined by

d(D(m,n)) =
f × lb

Q−1(D(m,n))
(2.4)

where f denotes the focal length of the real camera and lb denotes the baseline length between the
real camera and the virtual camera. The inverse function Q−1(D(m,n)) is defined by

Q−1(D(m,n)) = Zl(m,n)

=
1

D(m,n)
255

( 1
Znear

− 1
Zfar

) + 1
Zfar

(2.5)

Let us take one real example to explain how the D-NOSE model works. The example is taken from
the Balloons sequence with Zl(m,n) = 1149.02, λ = 0.5, N = 1, f = 2241.25607, lb = 5, Znear

= 448.251214, and Zfar = 11206.280350. By Eq. (2.2), the quantized depth pixel of Zl(m,n) is
D(m,n) = 93. By Eq. (2.4), the calculated horizontal disparity value is d(D(m,n)) = 9.75294.
Further, for D(m,n) = 93, by Eq. (2.3), the D-NOSE allowable interval is [low(93), upp(93)] = [91,
100].

The D-NOSE model suggests that the value of D(m,n) can be perturbed from 93 to any value
D′(m,n) ∈ [91, 100], causing no warping error. On the other hand, for D(m,n) and D′(m,n), the
warping function maps the left color image pixel I(m,n) to the same location (m,n0) in the right
virtual-view, where (n0 −n) denotes the horizontal disparity. After explaining the D-NOSE model,
the semi-homogeneous missing depth in the flat region from the D-NOSE sense is defined below.

Definition 2. For one missing depth pixel DHR(m,n), when all of its neighboring true depth pixel
values covered by the 5×5 window W have the same D-NOSE allowable interval, DHR(m,n) is in
a flat region from the D-NOSE sense and DHR(m,n) is identified as a semi-homogeneous missing
depth pixel.

In order to quickly identify whether one missing depth pixel is semi-homogeneous or not, Table 1 is
built up in advance to record the 256 D-NOSE allowable intervals for depth values over the integer
interval [0, 255], where “d” denotes the quantized depth value. For d = 93, by Table 1, its D-NOSE
allowable interval, [91, 100], can be accessed in O(1) time.

To further reduce the identification time, one extra row is added in Table 1 to record the mean of
each D-NOSE allowable interval. For example, suppose the depth block type of DHR(m,n) is type
C and the four neighboring true depth pixel values are DHR(m− 1, n− 1) = 93, DHR(m− 1, n+1)
= 98, DHR(m+ 1, n− 1) = 96, and DHR(m+ 1, n+ 1) = 100. From Table 1, all the mean values
of the four corresponding D-NOSE allowable intervals are 96, implying that DHR(m,n) is a semi-
homogeneous depth pixel. Based on the test depth maps, the average ratio of the number of the
semi-homogeneous missing depth pixels over that of all missing depth pixels in DHR is 12%.
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Using the early jumping technique and the look-ahead pruning technique described in Subsection
II.A, we also can speed up the checking of Definition 2. In detail, based on the early jumping
technique, for one missing depth pixel, on average, it takes only 2.7 (= (3 + 3 + 2)/3) D-NODE
value comparisons to check whether Condition 2 is held or not. Using the look-ahead pruning
technique, we may discard the checking of condition 2 for the subsequent missing depth pixel(s).

2.3 Identify the Non-homogeneous missing depth Pixels

Let Sm, Sh, and Sn denote the set of all missing, all homogeneous missing, all semi-homogeneous
missing, and all non-homogeneous missing depth pixels in DHR, respectively. We thus have Sn =
Sm\Sh\Ss where the operator “\” denotes difference operation in set theory. The non-homogeneous
missing depth pixel is defined below.

Definition 3. For one missing depth pixel DHR(m,n), when Conditions 1-2 are violated, it is
identified as a non-homogeneous missing depth pixel.

On the other hand, for one missing depth pixel, if Conditions 1-2 are false, it should be a non-
homogeneous missing depth pixel. Based on the test depth maps, the average ratio of |Sn| over
|Sm| is 15%.

3 The Proposed Region-Based Depth Map Upsampling
Method

We first depict the sketch of our region-based depth map upsampling method with one example. Fig.
2(a) illustrates one given low-resolution depth map example. After constructing all homogeneous
missing depth pixels by our depth copying (DC) approach, the reconstructed depth pixels are
depicted in the flat regions of Fig. 2(b). Further, after reconstructing all semi-homogeneous depth
pixels by our mean value (MV) approach, Fig. 2(c) illustrates the reconstructed depth pixels
appearing in the semi-flat regions. Using BIC, the reconstructed depth pixels appear in the non-flat
regions of Fig. 2(d). Fig. 2(e) illustrates the final upsampled depth map of Fig. 2(a) by our
DC+MV+BIC method.

In the next three subsections, our region-based depth map upsampling method is described in detail.

3.1 Constructing homogeneous missing depth Pixels by the depth
copying (DC) approach

For one homogeneous missing depth pixel DHR(m,n) in Sh, by our DC approach, it is constructed
by

DHR(m,n) =


DHR(m,n− 1) for type A block

DHR(m− 1, n) for type B block

DHR(m− 1, n− 1) for type C block

(3.1)

It takes only one assigment operation in Eq. (3.1). Because the average ratio of |Sh| over |Sm| is
73%, the proposed simple DC approach achieves low computational cost and high reconstruction
accuracy merits.
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(d) (e)

(f) (g)

(h)

Fig. 2. The sketch of our region-based depth map upsampling method. (a) The given
low-resolution depth map. (b) The reconstructed homogeneous depth pixels, which

occupy 73% of all reconstructed pixels, by our DC copying approach. (c) The
reconstructed semi-homogeneous depth pixels, which occupy 12% of all

reconstructed pixels, by our MV approach. (d) The reconstructed non-homogeneous
depth pixels, which occupy 15% of all reconstructed pixels, by using BIC. (e) The

constructed high-resolution depth map by our “DC+MV+BIC” method
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3.2 Constructing semi-homogeneous missing depth Pixels by the
mean value (MV) approach

For one semi-homogeneous missing depth pixel DHR(m,n) in Ss, by our MV approach, it is
constructed by

DHR(m,n)

=


∑

k∈{−2,0,2},l∈{−1,1} D
HR(m+ k, n+ l)/6 for type A block∑

k∈{−1,1},l∈{−2,0,2} D
HR(m+ k, n+ l)/6 for type B block∑

k∈{−1,1},l∈{−1,1} D
HR(m+ k, n+ l)/4 for type C block

(3.2)

On average, it only takes 5.3 (= (6 + 6 + 4) / 3) arithmetic operations by Eq. (3.2) to reconstruct
the value of DHR(m,n). By our MV approach, the reconstructed depth value of DHR(m,n) in Ss

has the same D-NOSE allowable interval as that of any neighboring true depth pixel covered by the
5×5 window, causing no warping error.

3.3 Constructing non-homogeneous missing depth Pixels by a Bi-
cubic interpolation (BIC) related approach

In this subsection, we apply a bicubic interpolation (BIC) to reconstruct the non-homogeneous
missing depth pixels. In addition, we also investigate the BIC- and luma guided-based (BLG-
based) fusion approach to reconstruct the non-homogeneous missing depth pixels.

When using BIC to construct the non-homogeneous depth pixel DHR(m,n), we perform the 9×9
BIC on the true depth pixels covered by a 9×9 window W centered at the location (m,n) to
construct the value of DHR(m,n), denoted by DHR

BIC(m,n).

We now investigate an alternate BIC- and LG-based (BLG-based) fusion approach to reconstruct
the non-homogeneous missing depth pixels of DHR(m,n). Suppose the block type of DHR(m,n) is
type C, as shown in Fig. 1(c). The four neighboring true depth pixel values, DHR(m − 1, n − 1),
DHR(m−1, n+1), DHR(m+1, n−1), and DHR(m+1, n+1), and the four corresponding co-located
luma pixel values, L(m− 1, n− 1), L(m− 1, n+1), L(m+1, n− 1), and L(m+1, n+1), constitute
the following four linear relations:


L(m− 1, n− 1) 1
L(m− 1, n+ 1) 1
L(m+ 1, n− 1) 1
L(m+ 1, n+ 1) 1

[
a
b

]
=


DHR(m− 1, n− 1)
DHR(m− 1, n+ 1)
DHR(m+ 1, n− 1)
DHR(m+ 1, n+ 1)

 (3.3)

where in Eq. (3.3), we have only two parameters, a and b, to be solved, but there are four equations.
Eq. (3.3) is also called an over-determined system.

To solve the over-determined system, we apply the linear least squares fitting technique to find the
best fitting straight line in terms of the slope “a” and the intercept “b” through the four known
points, (DHR(m−1, n−1), L(m−1, n−1)), (DHR(m−1, n+1), L(m−1, n+1)), (DHR(m+1, n−1),
L(m+ 1, n− 1)), and (DHR(m+ 1, n+ 1), L(m+ 1, n+ 1)). By the widely used normal equation
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formula [38], the parameter-pair (a, b) is solved by

[
a
b

]
=



L(m− 1, n− 1) 1
L(m− 1, n+ 1) 1
L(m+ 1, n− 1) 1
L(m+ 1, n+ 1) 1


T 

L(m− 1, n− 1) 1
L(m− 1, n+ 1) 1
L(m+ 1, n− 1) 1
L(m+ 1, n+ 1) 1




−1


L(m− 1, n− 1) 1
L(m− 1, n+ 1) 1
L(m+ 1, n− 1) 1
L(m+ 1, n+ 1) 1


T 

DHR(m− 1, n− 1)
DHR(m− 1, n+ 1)
DHR(m+ 1, n− 1)
DHR(m+ 1, n+ 1)


(3.4)

By Eq. (3.4), the estimated value of DHR(m,n) is given by

DHR
LG (m,n) = a× L(m,n) + b (3.5)

Further, we fuse the two estimated values, DHR
BIC(m,n) and DHR

LG (m,n) by computing

DHR
BLG(m,n) = W1(m,n)×DHR

BIC(m,n)

+W2(m,n)×DHR
LG (m,n)

(3.6)

where the two weights W1(m,n) and W2(m,n) can be determined by the error-prediction based
technique, as described in what follows. Before constructing the error maps of DHR

BIC(m,n) and
DHR

LG , we first perform the 4×4 BIC on DHR
BIC(m,n) and DHR

LG to obtain the two downsampled
results DLR

BIC(m,n) and DLR
LG, respectively. Then, the two error maps are calculated by

err(DLR
BIC) = DLR −DLR

BIC

err(DLR
LG) = DLR −DLR

LG

(3.7)

Performing the 9×9 BIC on err(DLR
BIC) and err(DLR

LG), the error maps ofDHR
BIC andDHR

LG , err(DHR
BIC)

and err(DHR
LG ) are obtained. The two weights W1(m,n) and W2(m,n) in Eq. (3.6) are calculated

by

W1(m,n) =
(e−err(DHR

BIC(m,n)))−1

(e−err(DHR
BIC

(m,n)))−1 + (e−err(DHR
LG

(m,n)))−1

W2(m,n) =
(e−err(DHR

LG (m,n)))−1

(e−err(DHR
BIC

(m,n)))−1 + (e−err(DHR
LG

(m,n)))−1

(3.8)

Then, by Eq. (3.6), the fused result of DHR(m,n) can be obtained. According to our experimental
results, for upsampling one depth map, on average, the PSNR gain of the DC+MV+BLG variant
over our DC+MV+BIC method is about 0.02 dB, but the execution-time cost of DC+MV+BLG is
more than two times of our DC+MV+BIC method. Therefore, in the experiment section, we only
compare our DC+MV+BIC method with the other comparative methods.

4 The Proposed Joint Upsampling and Location Map-
free Reversible Data Hiding Method: JUR

From Definitions 1-3 for missing depth pixels, we observe that for each missing depth pixel, its
neighboring ground truth depth pixels, i.e. those true depth pixels around the missing depth pixel,
provides an opportunity to develop a joint depth map upsampling and location map-free RDH
method, called the JUR method. Note that the locations of these ground truth depth pixels are
prohibited from embedding hidden data; all the other missing depth pixels can be upsampled and
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embedded by hidden data simultaneously. As mentioned in the first paragraph of Subsection 1.3,
each ground truth depth pixel is located at the position (2i, 2j) and each marked depth pixel is
located at the other position, so we don’t need a location map to record where the hidden data are
embedded into the upsampled depth map. Besides inheriting the quality merit of our region-based
depth map upsampling method, in particular, JUR does not need any location map, achieving
higher embedding capacity of the marked depth maps.

4.1 Upsampling and embedding process

Following the definition of the D-NOSE allowable interval [low(d), upp(d)] in Eq. (2.3), to guarantee
no warping error in the right warped virtual-view, if we want to embed the hidden data h into the
upsampled depth pixel DHR(m,n), DHR(m,n) can be perturbed by

DHR(m,n) = low(DHR(m,n)) + h (4.1)

subject to the constraint: low(DHR(m,n)) + h 6 upp(DHR(m,n)), leading to no warping error.
On the contrary, if the constraint is violated, it leads to low(DHR(m,n)) + h > upp(DHR(m,n)),
producing the warping error. Accordingly, the maximal bit-string length of h is equal to

L(h) = ⌊log(upp(DHR(m,n))− low(DHR(m,n)) + 1)⌋ bits (4.2)

By Eq. (4.2), the hidden data h is thus taken from the first L(h) bits from the current hidden string
H, achieving the maximal data embedding for each reconstructed depth pixel DHR(m,n).

The proposed upsampling and embedding process in JUR is realized by the procedure “Procedure:
Upsampling and Embedding Process”.

For example, in Fig. 1(a), by Step 1, the current missing depth pixel DHR(m,n) is identified to
be in Ss. After performing our MV approach on DHR(m,n), the upsampled depth pixel value
of DHR(m,n) is 96 by Eq. (3.2). By Steps 2-3, the bit-length of h is equal to 3 (= L(96) =
⌊log(upp(96) − low(96) + 1)⌋ = ⌊log(100 − 91 + 1)⌋). We thus take the first three bits from H =
(01100011)2, and the hidden data to be embedded is equal to h = (011)2. Consequently, the value
of the marked depth pixel DHR(m,n) is set to 94 (= low(96) +h = 91+3). In addition, the hidden
binary string becomes H = (00011)2.

Procedure: Upsampling and Embedding Process

Input: Current missing depth pixel DHR(m,n) and the current hidden binary string H to
be embedded.

Output: Marked depth pixel DHR(m,n).
Step 1: For DHR(m,n), we perform our depth map upsampling method to obtain its
upsampled depth pixel, still denoted by DHR(m,n).
Step 2: By Table 1, the D-NOSE allowable interval of DHR(m,n), [low(DHR(m,n)),
upp(DHR(m,n))], is accessed.
Step 3: By Eq. (4.1), DHR(m,n) is perturbed to DHR(m,n) = low(DHR(m,n)) + h in
which the hidden data h with length L(h) (see Eq. (4.2)) is taken from the first L(h) bits of
H.
Step 4: We report DHR(m,n) as the marked depth pixel. In addition, we cutoff the first
L(h) bits from H.
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4.2 Extracting and recovering process

Basically, the extracting and recovering process in JUR is the reverse of theProcedure: upsampling
and embedding process. Although the upsampled depth pixels are modified due to data embedding,
the neighboring ground truth depth pixels of each marked depth pixel are always not modified and
retain their original values. Therefore, in the proposed extracting and recovering process, for each
marked depth pixel at location (m,n), based on its ground truth depth pixels covered by a 5×5
window centered at location (m,n), we repeat the depth upsampling process, as described in Section
3, to obtain the constructed value of DHR(m,n).

Furthermore, based on Table 1, we take the constructed depth value DHR(m,n) as the key to query
the values of low(DHR(m,n)) and upper(DHR(m,n)). By Eq. (4.2), the maximal bit-string length
of the hidden data h can be calculated, and then the hidden data h with bit-length L(h) can be
correctly extracted by subtracting the value low(DHR(m,n)) from the marked depth pixel value
DHR(m,n). Note that the upsampled depth pixel at location (m,n) can be recovered correctly by
performing the depth map upsampling on its neighboring ground truth depth pixels again, and this
is the reason why our JUR method can recover the original upsampled depth map, achieving the
RDH goal. The proposed extracting and recovering process for each marked depth pixel DHR(m,n)
is realized by the procedure “Procedure: Extracting and Recovering Process”.

Procedure: Extracting and Recovering Process

Input: Marked depth pixel DHR(m,n).
Output: Recovered upsampled depth pixel DHR(m,n) and the extracted hidden data h.
Step 1: According to the neighboring ground truth depth pixels of the marked depth pixel
DHR(m,n), by Definitions 1-3, we can identify the region class of the missing depth pixel at
the location (m,n) to be in Sh, Ss, or Sn. Then, based on the neighboring ground truth
depth pixels and the identified region class at the location (m,n), we apply the
corresponding depth pixel upsampling approach, DC, MV, or BIC, to reconstruct the depth
value at the location (m,n), outputting as the recovered upsampled depth pixel DHR(m,n).
Step 2: Using the value of the recovered upsampled depth pixel DHR(m,n) as a key, by
Table 1, The value of low(DHR(m,n)) can be accessed. By Eqs. (4.1)-(4.2), the extracted
hidden data h with bit-length L(h) is reported by subtracting the value low(DHR(m,n))
from the input marked depth pixel value DHR(m,n).

Returning to the data hiding example introduced in the last paragraph of Subsection 4.1, we konw
that the value of the marked depth pixel DHR(m,n) is 94. We now take it as the input to explain
why the proposed extracting and recovering procedure can extract the hidden data h correctly and
recover the originally upsampled depth pixel completely. After performing Step 1 of the above
procedure extracting and recovering procedure on the location (m,n), the recovered upsampled
depth pixel value at location (m,n) is 96. In Step 2, by Table 1, we have low(96) = 91; by Eq.
(4.2), the value of the bit-length L(96) is equal to 3. From Eq. (4.1), we know that the hiding data
h is equal to 3 (=94-91). Furthermore, the value of L(96) (= 3) indicates that the hidden data h is
of 3-bit length. Because the value of h is 3 and the bit-length of h is 3, the hidden data h can be
correctly extracted as (011)2. Consequently, the hidden data h and the originally upsampled depth
pixel can be correctly extracted and recovered, respectively.
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Table 2. PSNR, SSIM and execution-time comparison among the concerned depth
map upsampling methods

PSNR SSIM Execution-time (seconds)

2x 4x 8x 2x 4x 8x 2x 4x 8x

BIC [16] 46.36 40.73 36.55 0.9922 0.9791 0.9662 0.21 0.27 0.28

GF [13] 45.03 41.29 37.87 0.9873 0.9763 0.9662 0.097 0.119 0.123

MM [12] 45.8 40.65 36.43 0.9814 0.9679 0.9527 97.96 95.62 99.43

EGU [30] 47.25 42.84 38.1 0.9928 0.9837 0.964 1001.43 2453.69 4036.33

SRI [18] 47.51 41.33 37.06 0.9935 0.9811 0.9687 8.33 10.44 10.91

FSRCNN [5] (GPU) 37.13 34.45 - 0.9425 0.9342 - 71.9 19.07 -

MSG-Net [14] (GPU) 55.35 49.76 45.03 0.9979 0.9932 0.9848 0.37 0.54 0.62

CGI [20] 42.63 38.99 36.28 0.9796 0.9674 0.9562 0.81 0.99 1.05

DC+MV+BI 48.66 43.86 40.2 0.9943 0.9859 0.9755 0.052 0.069 0.074

(i) (j) (k)

(l) (m) (n) (o)

(p) (q) (r) (s)

Fig. 3. The visual effect comparison for the upsampled depth map “Balloons”. (a)
The ground-truth high-resolution depth map. (b) The magnified depth sub-map

cutoff from Fig. 3(a). (c) BIC [31]. (d) GF [13]. (e) MM [11]. (f) EGU [18]. (g) SRI
[21]. (h) FSRCNN [28]. (i) MSG-Net [27]. (j) CGI [15]. (k) Our method

5 Experimental Results

Following the same performance evaluation way used in the previous depth upsampling methods,
the first set of experiments is used to compare the PSNR, SSIM, and the visual effect of the
upsampled depth maps by the concerned methods. In addition, the actual time cost for each
concerned depth map upsampling method is reported, indicating the lowest computational cost
merit of our DC+MV+BIC method. The second set of experiments is used to justify the quality
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and embedding capacity merits of the marked depth maps by our JUR method. For fairness, we
also apply the comparative RDH methods, D-RDH and MD-RDH, to the upsampled depth maps
generated by some concerned depth map upsampling methods.

The execution codes of our DC+MV+BIC and JUR methods can be accessed from the website in
[39]. BIC [31] and GF [13] are implemented in Visual C++ 2017. The available codes for the six
concerned methods, MM [11], EGU [18], SRI [21], FSRCNN [28], MSG-Net [27], and CGI [15], are
implemented in Matlab R2013a. Under the deep learning supporting environment, MSG-Net and
FSRCNN are implemented on the platform: GeForce GTX 1080 Ti GPU with 24 GB of RAM based
on the Caffe framework. All the related experiments have been performed under the Windows 10
operating system.

5.1 Performance comparison among the concerned depth map up-
sampling methods

In this subsection, the three upsampling ratios, “2×”, “4×”, and “8×”, are considered in the
experiments. Here, “2×”, “4×”, and “8×” mean that the size of the upsampled depth map is four
times, 16 times, and 64 times, respectively, as large as the low-resolution depth map. Note that
there are only two upsampling ratios “2×” and “4×” considered in the available code of FSRCNN.
Differing from the GF and our DC+MV+BIC methods, the other concerned upsampling methods
perform the upsampling ratio “4×” and “8×” directly instead of completing the upsampling ratio
“2×” and “4×”, respectively, in advance. In our experiment, the dataset Mobile3DTV with 6 videos
are used and for each video, we take the first ten frames in the test.

5.1.1 PSNR and SSIM comparison

To evaluate the quality of the upsampled depth maps by the concerned methods, the PSNR and
SSIM metrics are used. SSIM is measured by the joint effects of the luminance, contrast, and
structure similarity preserving effect between the high-resolution ground-truth depth map and the
upsampled depth map. We suggest that the readers refer to [40] for the detailed definition of SSIM.
From Table 2, we observe that in terms of PSNR and SSIM, MSG-Net is in first place in red; our
DC+MV+BIC method is in second place in green. In terms of PSNR, EGU is in third place in
blue and SRI is in fourth place.

5.1.2 Visual effect comparison

Given the ground-truth high-resolution depth map shown in Fig. 3(a), the magnified depth sub-
map cut off from the ground-truth upsampled depth map in Fig. 3(a) is shown in Fig. 3(b). After
performing BIC, GF, MM, EGU, SRI, FSRCNN, MSG-Net, CGI, and our DC+MV+BIC method
on the downsampled depth map of Fig. 3(b), Figs. 3(c)-(k) demonstrate the eight upsampled depth
maps. As shown in the regions marked by red ellipses, MSG-Net and our method have the best
visual effect relative to Fig. 3(b). However, due to the training effect, the boundary part in Fig.
3(i) by MSG-Net is too sharp relative to Fig. 3(b). For detailed visual comparison by the concerned
methods, we suggest that readers refer to the website [41].

5.1.3 Execution time comparison

Because the two concerned CNN-based methods, FSRCNN and MSG, are realized by GPU in a
parallel way and the other seven concerned methods are realized by CPU in a sequential way,
it is unfair to represent their complexity in terms of big-O notation [36]. Accordingly, in terms
of the execution-time in seconds per map required by each concerned method, on average, our
DC+MV+BIC method only takes 0.0651 (= (0.0524 + 0.069 + 0.074)/3) seconds and is in first
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place; GF takes 0.113 seconds and is in second place. BIC takes 0.26 seconds and is in third place;
MSG-Net takes 0.51 seconds and is in fourth place; CGI and SRI are in fifth place and sixth place,
respectively.

5.2 Embedding capacity and quality merits of our JUR method

To compare the performance of the concerned RDH methods for the upsampled depth maps, first,
the maximal embedding capacity (ME-capacity), which is expressed as the maximal number of the
average hidden bits saved in one depth pixel, is reported. For fairness, we perform each comparative
RDH method on the upsampled depth maps generated by all the concerned upsampling methods.
Note that the location maps used in D-RDH and MD-RDH have been compressed by the arithmetic
codec.

Table 3. Maximal embedding capacity comparison among the concerned rdh
combinations

Combination ME-capacity (bpp)

BIC
D-RDH 0.798
MD-RDH 0.988

GF
D-RDH 0.698
MD-RDH 0.898

MM
D-RDH 0.696
MD-RDH 0.864

EGU
D-RDH 0.731
MD-RDH 0.933

SRI
D-RDH 0.718
MD-RDH 0.893

FSRCNN
D-RDH 0.581
MD-RDH 0.771

MSG-Net
D-RDH 0.717
MD-RDH 0.866

CGI
D-RDH 0.730
MD-RDH 0.900

BC+MV+BI
D-RDH 0.731
MD-RDH 0.882

JUR 1.634

Table 4. Maximal embedding capacity improvement and psnr decay for “JUR +
Histogram shifting”

JUR JUR + Histogram Shifting

ME-capacity (bpp) 1.63 1.88

PSNR 45.44 43.78

5.2.1 Maximal embedding capacity comparison

Based on the Mobile3DTV dataset, Table 3 tabulates the ME-capacity comparison of all the
concerned RDH combinations. Because of the location map-free merit in JUR, our JUR method
has the highest ME-capacity in boldface. MD-RDH is in second place and outperforms D-RDH. In
addition, based on the same test depth maps, we apply the histogram shifting-based RDH technique
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[3] on the marked depth maps generated by JUR to further enhance the ME-capacity of our JUR
method. For convenience, this enhancement way is called the “JUR + Histogram Shifting” method.
As shown in Table 4, the experimental data demonstrated that the ME-capacity gain of “JUR +
Histogram Shifting” over JUR is 0.25 (= 1.88 − 1.63) bpp and the PSNR loss is 1.66 (= 45.44 −
43.78) dB, leading to quality decay. Since the histogram shifting method is also a RDH method,
the marked depth map by performing our JUR method can be correctly recovered from the marked
map by performing the “JUR + Histogram Shifting” method; therefore, the problem of overriding
depth copying pixels will not happen. Since the histogram shifting method is also a RDH method,
the marked depth map by performing our JUR method can be correctly recovered from the marked
map by performing the “JUR + Histogram Shifting” method; therefore, the problem of overriding
depth copying pixels will not happen.

Table 5. PSNR comparison for different values of embedding capacity among the
concerned rdh combinations

Combination
E-capacity (bpp)

0.1 0.3 0.5 0.7

BIC
D-RDH 48.95 44.31 42.55 41.48
MD-RDH 48.86 44.44 42.87 42.67

GF
D-RDH 48.99 44.31 42.59 41.55
MD-RDH 48.85 44.43 42.89 42.68

MM
D-RDH 48.95 44.30 42.57 41.56
MD-RDH 49.76 45.33 43.55 42.73

EGU
D-RDH 48.97 44.31 42.58 41.54
MD-RDH 48.87 44.44 42.88 42.65

SRI
D-RDH 48.95 44.30 42.55 41.48

MD-RDH 49.62 45.23 43.46 42.68

FSRCNN
D-RDH 48.84 44.11 42.39 41.38
MD-RDH 49.84 45.34 43.58 42.97

MSG-Net
D-RDH 48.94 44.31 42.56 41.51
MD-RDH 48.88 44.49 42.92 42.74

CGI
D-RDH 48.99 44.27 42.61 41.67

MD-RDH 49.56 45.10 43.45 42.73

BC+MV+BIC
D-RDH 48.94 44.29 42.51 41.44
MD-RDH 48.77 44.35 42.79 42.60

JUR 55.60 50.77 48.56 47.04

5.2.2 PSNR comparison for different values of embedding capacity

Since the minimum of the ME-capacity values for all the concerned RDH combinations in Table 3
is about 0.7, we thus select the four embedding capacity (E-capacity), 0.1, 0.3, 0.5, and 0.7, as the
base to compare PSNR of all the concerned RDH combinations. From Table 5, we observe that for
each fixed E-capacity value, our JUR method has the highest PSNR value in boldface among all the
concerned RDH combinations; the MD-RDH method is in second place and always outperforms D-
RDH. Fig. 4 depicts the quality-E-capacity tradeoff comparison among ten considered combinations,
each depth map upsampling method associated with the MD-RDH method. From the highest curve
in Fig. 4, we observe that the proposed JUR method has the best quality-E-capacity tradeoff among
the considered combinations. From the middle fat curve, MM-MD-RDH, SRI-MD-RDH, FSRCNN-
MD-RDH, and CGI-MD-RDH have the similar quality-E-capacity tradeoff. From the lowest fat
curve, BIC-MD-RDH, GF-MD-RDH, EGU-MD-RDH, MSG-Net-MD-RDH, and BC+MV+BIC-
MD-RDH have the worst quality-E-capacity tradeoff. In summary, when setting the bpp values to
0.1, 0.1, 0.5, and 0.7, the PSNR improvement ratios of our JUR method are at least 11.6%, 12%,
11.4%, and 9.5%, respectively, relative to the nine comparative combinations.
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Fig. 4. The PSNR vs. E-capacity tradeoff comparison among the considered
combinations

6 Conclusion

We have presented our fast method to partition all missing depth pixels into three disjoint regions,
and then have presented our fast and effective region-based depth map upsampling method. Based
on the test depth maps in Mobile3DTV, among our region-based upsampling method and the
eight comparative methods, the comprehensive experimental results have demonstrated the quality,
execution-time, visual effect, and non-deep learning supporting environment merits of our method.
In addition, for the comparison among our joint upsampling and location map-free RDH method,
i.e. JUR, D-RDH, and MD-RDH, the experimental results have justified the maximal embedding
capacity and the PSNR (for different embedding capacity values) merits of our JUR method. One
future research work is to combine the low-resolution depth guided joint trilateral upsampling [42]
and our depth map upsampling method to handle upsampling and noise removal together.
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