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Abstract

This paper deals with the concept of adaptive scheme and with an application to the Oneway
ANOVA model under uncorrelated errors. Oneway ANOVA model is sensitive to nonnormality
as well as variance heterogeneity. To overcome these problems, an adaptive scheme is proposed.
The adaptive test is a two step procedure. The given data is first examined and classified based
on measures of skewness and tailweight. Secondly, a selector statistic is used for selecting a
test to be conducted. A 10,000 simulations were conducted to compare the performance of the
two models from different continuous distributions. Analysis of real data sets on equal and
unequal sample sizes were performed to evaluate the efficiency of the two models. The findings
showed that our adaptive scheme outperformed the parametric F -test in symmetric or skewed
distributions with varying tailweights except for symmetric and medium-tailed distributions.

Keywords: Uncorrelated errors; adaptive test; selector statistic; skewness; tailweight; simulation;
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1 Introduction

In this paper, we propose an adaptive scheme for Oneway ANOVAModels under uncorrelated errors.
In practtice, often the underlying distribution of a statistical model is not known so a procedure
which will maximise power and efficiency should be selected. For example, if the distribution of
errors is known to be normal in a linear model then inference based on least squares which maximises
power and efficiency should be chosen. On the other hand, when the assumption of normality of
the error distribution is violated as a result of outliers, then a more robust methods can be used to
analyse the problem. The rank-based method is robust to outliers and has high efficiency and power
for both normal and non-normal distributions, see [1] for details. Robustness signifies insensitivity
to small deviations from the assumptions of normality [2].

ANOVA model which could be reduced to Gauss Markov model relies mostly on normality, homo-
geneity of variance and large sample size for it to be modelled. ANOVA models are very sensitive
to nonnormality and departures from normality may originate from either skewness or outliers.
Furthermore, ANOVA model which are mostly used in clinical trials may have very low enrolment
at centres and hence a small sample size. This will inhibit the efficiency of the statistical procedure
used.

One particular problem in which normality assumptions become inappropriate is small sample size.
In most statistical modelling or techniques, sample size must be large enough for such procedure to
be statistically admissible or valid. For small samples, some nonparametric methods have been
developed. The advocacy of distribution-free (nonparametric) tests for differences in location
problems between samples has been emphasized over the past seven decades [3] .

In this paper, the nine winsorised scores proposed by [4] are considered in the adaptive test of [5].
The adaptive two-sample location problem is extended to the Gauss Markov model (GMM). The
Oneway Analysis of Variance (ANOVA) model which is a special case of GMM and the adaptive
test are the focus of this paper.

An adaptive test for equality of means in a Oneway layout is described by [6] though he used
weighted method. A robust procedure to fit Oneway ANOVA model under adaption on the observed
samples was extensively done by [7]. The adaptation in this present study is based on residuals
after an initial fit on the observed sample.

1.1 Literature review

In this subsection, the Oneway Analysis of Variance (ANOVA) model which is a special case of
Gauss Markov model was briefly reviewed.

1.1.1 Gauss Markov model (GMM)

The Gauss Markov model is given by
Y = Xβ + ϵ (1.1)

where Y is an n× 1 vector of observed responses, X is an n× p (design) matrix of fixed constants,
β is a p× 1 vector of fixed but unknown parameters, and ϵ is an n× 1 vector of unobserved random
errors. Both Y and ϵ are random vectors. It is assumed that E(ϵ) = 0 and Cov(ϵ) = σ2I where σ2

is some unknown parameter and ϵ ∼ N(0, σ2I), see [8] and [9].

1.1.2 Oneway analysis of Variance (ANOVA) model

Consider an experiment that is performed to compare k > 3 treatments. For the ith treatment
level, suppose that ni experimental units are selected at random and assigned to the ith treatment.
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The Oneway ANOVA model is given by

Yij = µ+ αi + ϵij ,

{
i = 1, 2, 3, · · · , k
j = 1, 2, 3, · · · , ni

(1.2)

where the Yij is the (ij)th observation, µ is a parameter common to all treatments called the overall
mean, αi is the ith treatment effect and random errors ϵij are uncorrelated random variables with
zero mean and common variance σ2 > 0. If the α treatment effects α1, α2, α3, · · · , αk are best
regarded as fixed constants, then model (1.2) is a special case of model (1.1).
Thus,

Yn×1 =


Y11

Y12

Y13

...
Yknk

 , Xn×p =


1n1 1n1 0n1 0n1 · · · 0n1

1n2 0n2 1n2 0n2 · · · 0n2

1n3 0n3 0n3 1n3
· · · 0n3

...
...

...
...

. . .
...

1nk 0nk 0nk 0nk · · · 1nk

 , βp×1 =


µ
α1

α2

...
αk

 , ϵn×1 =


ϵ11
ϵ12
ϵ13
...

ϵknk


where p = k + 1, 1ni is an ni × 1 vector of ones and 0n is an ni × 1 vector of zeros, E(ϵ) = 0,
Cov(ϵ) = σ2I and

n =

k∑
i=1

ni

see [9].

In Oneway ANOVA model, the test of hypothesis of interest is

H0 : µ1 = µ2 = · · · = µk

H1 : µr ̸= µs

for at least one pair (r, s), r ̸= s.

Our motivation for the study is to find robust adaptive procedures for parametric tests which are
most often used by statisticians and researchers but which are inefficient for nonnormal distributions.
In addition, the asymptotic properties of statistical estimates and tests solely rely on the Central
Limit Theorem (CLT), however, sample sizes are often not large as in clinical trials.

Real data sets are used to perform a test of hypothesis for Oneway ANOVAmodels with uncorrelated
errors and our proposed scheme in order to ascertain the efficiecies of the two models.

The Introduction of the paper in Section 1 presents the background, the problem and proposed
solution,and a brief literature review. The rest of the paper is organised as follows: Section 2 is
focused on materials and methods used for the development of the adaptive test. The third section
presents the results and discussion of simulation and numerical examples. Section 4 presents the
conclusions of the paper highlighting the major findings.

2 Materials and Methods

In this section, the methods and theorem for the development of the adaptive procedures are
discussed.
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2.1 Rank Test

The rank test considered in this paper is of the form

Tφ =

n∑
i=1

φ

[
R(Zi)

n+ 1

]
I(Zi = Yi) (2.1)

where Yi and Zi are the combined ordered residuals respectively, aφ(i)

= φ

(
i

n+ 1

)
, aφ(1), aφ(2), · · · , aφ(n) are scores and φ satisfies the following conditions

• φ nondecreasing function and square-integrable on (0, 1)

• φ is differentiable on (0, 1)

Thus, ∫ 1

0

φ(u)du = 0

and ∫ 1

0

φ2(u)du = 1,

see [10].

2.2 Adaptive test

[11] and [12] distinguished between two different concepts of adaptive procedures; nonrestrictive
and restrictive ones. The restrictive procedures are applied in this paper. The Adaptive test of [13]
is a two-step procedure. The data is first examined and classified based on measures of skewness
and tailweight from a class of continuous distributions. After that a selector statistic is then used
for selecting a score for a test to be conducted. This two-staged adaptive procedure maintains the
level of significance α for all continuous distribution functions. See [14] for the main theorem behind
adaptation.

In this paper, we adapt on residuals, so the combined ordered residuals from an initial fit is used. The
measures of skewness and tailweight of the residuals are obtained by using Q∗

1 and Q∗
2 respectively.

2.3 Selector statistic

The selector statistic S = (Q∗
1, Q

∗
2), aids in selecting a score function, where Q∗

1 and Q∗
2 are the

respective measures of skewness and tailweight are defined respectively by

Q∗
1 =

(m(0.95, 0)−m(0.25, 0.25))

((m(0.25, 0.25)−m(0, 0.95))
(2.2)

Q∗
2 =

((m(0.95, 0)−m(0, 0.95))

((m(0.5, 0)−m(0, 0.5))
(2.3)

where m(α1, α2) =
1
h

∑n−t2
i=t1+1 Z(i) and

Z′
is are ordered residuals from an initial fit

t1 = [nα1]
t2 = [nα2]
[x] denotes the smallest integer greater than x
h = n− t1 − t2.

The benchmarks proposed by [15] for the cut off values are used. These benchmarks depend on the
sample size n but as n → ∞, the measures converge to those proposed by [5].
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For Q∗
1,

Lower cut off = 0.36 +
0.68

n

Upper cut off = 2.73− 3.72

n

(2.4)

For Q∗
2,

if n < 25,

Lower cut-off = 2.17− 3.01

n

Upper cut-off = 2.63− 3.94

n

(2.5)

if n > 25,
then

Lower cut off = 2.24− 4.68

n

Upper cut off = 2.95− 9.37

n

(2.6)

The cut off points are used to select a rank test which is based on a rank score function corresponding
to an unknown distribution. In this paper, the nine Winsorised scores proposed by [4] were
considered the most appropriate set of rank scores for testing hypothesis are used. These are
classified into four generic scores.

φI(u)) =

{
s3, u > s1

s3 +
s3−s2

s1
(u− s1), otherwise

φII(u) =


− s3

s1
(u− s1), u < s1

− s4
s2−1

(u− 1) + s4, u > s2

0, otherwise

φIII(u) =

{
s2, u < s1

s3 +
s2−s3
s1−1

(u− 1), otherwise

φIV (u) =


s3, u < s1

s4, u > s2

s3 +
s4−s3
s2−s1

(u− s1), otherwise

where s1, s2, s3,s4 and s5 are parameters and

ai(j) = φi

(
j

n+ 1

)

2.4 Adaptive test and test statistics

Let Dk and φk be a region and score selected respectively as in Fig. 1, with k = 1, 2, ..., 9, then the
adaptive test, AD(S, φ), is

AD(S, φ) = Tφk , S ∈ Dk (2.7)

where

Tφk (∆) =

n2∑
i=1

aφk [R(yi −∆)] (2.8)
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is a test statistic based on the ranks and score φk associated with region Dk and hence distribution-
free. Under H0, the mean of Tφk(∆) is zero.

The nine regions which depend on the selector statistics S = (Q∗
1, Q

∗
2) are defined by:

D1 = LH = Q∗
1 < Q̂∗

1l, Q
∗
2 > Q̂∗

2u

D2 = SH = Q̂∗
1l < Q∗

1 < Q̂∗
1u, Q

∗
2 > Q̂∗

2u

D3 = RH = Q∗
1 > Q̂∗

1u, Q
∗
2 > Q̂∗

2u

D4 = LM = Q∗
1 < Q̂∗

1l, Q̂
∗
2l < Q∗

2 < Q̂∗
2u

D5 = SM = Q̂∗
1l < Q∗

1 < Q̂∗
1u, Q̂

∗
2l < Q∗

2 < Q̂∗
2u

D6 = RM = Q∗
1 > Q̂∗

1u, Q̂
∗
2l < Q∗

2 < Q̂∗
2u

D7 = LL = Q∗
1 < Q̂∗

1l, Q
∗
2 < Q̂∗

2l

D8 = SL = Q̂∗
1l < Q∗

1 < Q̂∗
1u, Q

∗
2 < Q̂∗

2l

D9 = RL = Q∗
1 > Q̂∗

1u, Q
∗
2 < Q̂∗

21

where Q̂∗
1l, Q̂

∗
1u, Q̂

∗
2l, Q̂

∗
2u are benchmarks from the ordered residuals, see [15].

Fig. 1. Plot of scores with n = 50

2.5 Proposed adaptive scheme

The procedure for the proposed adaptive scheme is as follows:

1 Let Y(1), Y(2) . . . , Y(N) be the combined ordered residuals of Y11, Y12, . . . , Y1n1 , Y21, Y22, . . . , Y2n2 ,
Yn1, Yn2, . . . , Ynnk from continuous distribution function f(t) with some amount of variations
denoted by ∆ among the residuals, that is f(t−∆).

2 The unknown dstribution of the residuals will be classified using both the selector statistic
S = (Q∗

1, Q
∗
2) and the cut-off values.

3 Once the distribution of these residuals is classified, a corresponding score of the unknown
distribution is selected.

4 After the selection of the score function, the test is then conducted.

Hypothesis Testing
We wish to test

H0 : ∆ = 0

H1 : ∆ ̸= 0

3 Results and Discussion

This secction presents the findings of the study of a 10,000 simulations and numerical examples.
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3.1 Simulation results

A 10,000 simulations were conducted for Normal (Norm), Contaminated Normal (CNorm), Logistic
(Logis), Laplace (Lap), Lognormal (LNorm), Exponential (Exp), Cauchy (Cau), Weibull (Wei),
Mixture (Mixt) and Pareto (Par) distributions.

3.1.1 Classification Table

Table 1 displays the classification of performance of S = (Q∗
1, Q

∗
2) for sample size n1 = n2 = n3 =

100 for each of the distributions.

Table 1. Skewness and Tailweight classification of adaptive test

Sel Stats Norm CNorm Logis Lap LNorm Exp Cau Wei Mixt Par
LH 0 0 0 0 0 0 1702 0 1507 0
LL 0 0 0 0 0 0 0 0 0 0
LM 0 0 0 0 0 0 0 0 0 0
RH 0 0 0 0 9939 2958 1508 2939 1409 10000
RL 0 0 0 0 0 0 0 0 0 0
RM 0 0 0 0 61 7042 0 7058 0 0
SH 5 9 2548 9898 0 0 6790 0 7083 0
SL 1 1 0 0 0 0 0 0 0 0
SM 9994 9990 7452 102 0 0 0 3 1 0

Source: Simulation study

The Normal, Contaminated Normal, Logistic, Laplace, Cauchy and Mixture of distributions were
all symmetric but have different tailweights. The Lognormal and Pareto distributions were classified
as right-skewed and heavy-tailed. The Exponential and Weibull distributions were also identified
as right- skewed and medium-tailed distributions.

The normal and contaminated normal distributions were correctly classified to be symmetric and
medium-tailed by 99.94% and 99.90% respectively. The Laplace distribution is correctly classified
as a symmetric and heavy-tailed by 98.98% and Lognormal distribution as a right-skewed and
heavy-tailed by 99.39%. The Pareto distribution on the other hand was 100% classified as a right-
skewed and heavy-tailed distribution.

A simulation was conducted to compare the parametric F -test and the adaptive test. For the
parametric, F test statistic (Value) and the residual standard error (σ) were obtained. In the case
of the adaptive test, the underlying error distribution (score), test statistic (value), scale parameters
for the sample and residual (τs) and (τr) respectively were obtained. The comparison is presented
on Tables 2, 3, 4, 5 and 6.

3.1.2 Normal distribution

Using the normal distribution with the location parameter µ = 0 and scale parameter σ = 1, under
H0, 10,000 simulations were run for the various sample sizes.
Table 2 displays the simulation results for the Normal distribution. The selector statistic for the
adaptive test identified the normal distribution as a symmetric and medium-tailed distribution.
The parametric F -test performed better than the adaptive test at all the sample sizes considered.
However, at 5% or 1% significance level, the two models failed to reject the null hypothesis of no
difference in level means.
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Table 2. Normal distribution

Sample Size F-Test Adaptive Test

(n1, n2, n3) Value σ Score Value τs τr
(5, 5, 5) 1.1716 0.9831 SH 2.2919 1.0601 1.0266

(10, 10, 10) 1.0788 0.9901 SM 2.1401 1.0297 1.0201
(15, 15, 15) 1.0507 0.9935 SM 2.1022 1.0274 1.0231
(20, 20, 20) 1.0367 0.9943 SM 2.0485 1.0302 1.0288
(25, 25, 25) 1.0237 0.9957 SM 2.0286 1.0307 1.0304
(30, 30, 30) 1.0138 0.9974 SM 2.0024 1.0292 1.0294
(50, 50, 50) 1.0049 0.9981 SM 2.0023 1.0293 1.0294

(100, 100, 100) 1.0201 0.9993 SM 2.0269 1.0271 1.0271
Source: Simulation study

3.1.3 Laplace distribution

The results for 10,000 simulations carried out for Laplace distribution with the location parameter
µ = 0 and a scale parameter λ = 1 is displayed on Table 3.

Table 3. Laplace distribution

Sample Size F-Test Adaptive Test

(n1, n2, n3) Value σ Score Value τs τr
(5, 5, 5) 1.1641 1.3535 SH 2.3008 1.2634 1.2377

(10, 10, 10) 1.0680 1.3856 SH 2.1494 1.1955 1.1915
(15, 15, 15) 1.0593 1.3958 SH 2.1568 1.1501 1.1496
(20, 20, 20) 1.0445 1.3988 SH 2.1604 1.1276 1.1270
(25, 25, 25) 1.0177 1.4048 SH 2.0619 1.1308 1.1305
(30, 30, 30) 1.0383 1.4050 SH 2.0784 1.1300 1.1301
(50, 50, 50) 1.0250 1.4063 SH 2.0568 1.1121 1.1120

(100, 100, 100) 1.0112 1.4112 SH 2.0220 1.0956 1.0955
Source: Simulation study

The selector statistic for the adaptive test classified the Laplace distribution as a symmetric and
heavy-tailed distribution. The adaptive test outperformed the F -test as the variance returned for
the adaptive test is smaller than the F -test. At 5% or 1% level of significance, the two tests failed
to reject the null hypothesis.

3.1.4 Cauchy distribution

The Cauchy distribution with the location parameter µ = 0 and a scale parameter γ = 1 is simulated
10,000 under H0. The results of the simulation is shown on Table 4.

The Cauchy distribution is identified by the selector statistic as a symmetric and heavy-tailed
distribution. The adaptive test outperformed the traditional F -test as the variance returned by the
adaptive test is smaller than the F -test. Both tests however, failed to reject the null hypothesis of
no difference in level means at 5% or 1% significance level.

3.1.5 Weibull distribution

Simulation Results for Weibull distribution with the shape parameter k > 0 and a scale parameter
λ = 1 is shown on Table 5.
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Table 4. Cauchy distribution

Sample Size F-Test Adaptive Test

(n1, n2, n3) Value σ Score Value τs τr
(5, 5, 5) 1.0899 26.2994 LH 2.0829 2.7886 2.7844

(10, 10, 10) 1.0320 39.1821 LH 2.2975 2.3935 2.4009
(15, 15, 15) 1.0158 44.0567 SH 2.1192 1.9799 1.9824
(20, 20, 20) 1.0171 64.7010 SH 2.0545 1.9060 1.9073
(25, 25, 25) 1.0109 61.5071 SH 2.0691 1.8858 1.8865
(30, 30, 30) 1.0104 76.9902 SH 2.0246 1.9384 1.9386
(50, 50, 50) 1.0076 64.0498 SH 2.0381 1.8584 1.8588

(100, 100, 100) 1.0076 110.0536 SH 2.0110 1.7335 1.7339
Source: Simulation Study

Table 5. Weibull distribution

Sample Size F-Test Adaptive Test

(n1, n2, n3) Value σ Score Value τs τr
(5, 5, 5) 1.1757 0.9423 RH 2.0644 0.7075 0.7002

(10, 10, 10) 1.0605 0.9705 RM 1.7301 0.6291 0.6486
(15, 5, 15) 1.0598 0.9788 RM 2.0527 0.5945 0.6121
(20, 20, 20) 1.0154 0.9834 RM 2.0755 0.5643 0.5665
(25, 25, 25) 1.0306 0.9840 RM 2.0731 0.5641 0.5689
(30, 30, 30) 1.0252 0.9870 RM 1.9691 0.5590 0.5692
(50, 50, 50) 1.0183 0.9926 RM 2.0214 0.5530 0.5542

(100, 100, 100) 0.9953 0.9961 RM 1.9813 0.5252 0.5225
Source: Simulation study

The Weibull distribution was identified by the selector statistic as a right-skewed and medium-
tailed distribution. The adaptive test outperformed the F-test. It is worth noting that as the
sample size increases the residual standard error (σ) increases but the estimated scale parameters
(τs) and (τr) decrease. Notwithstanding, both tests failed to reject the null hypothesis at 5% or 1%
level of significance.

3.1.6 Mixture of distributions

A 10,000 simulations of mixture of distributions for three samples were generated from the Normal
N(0, 1), Laplace (µ = 0, λ = 1) and Cauchy (µ = 0, γ = 1) distributions respectively and is shown
on Table 6.

Table 6. Mixture of distributions

Sample Size F-Test Adaptive Test

(n1, n2, n3) Value σ Score Value τs τr
(5, 5, 5) 1.1740 10.6971 SH 2.6740 1.6893 1.7001

(10, 10, 10) 1.0934 10.0139 LH 2.6780 1.6295 1.6261
(15, 15, 15) 1.0369 88.1010 SH 2.6322 1.5095 1.5088
(20, 20, 20) 1.0345 14.2196 SH 2.6094 1.4928 1.4922
(25, 25, 25) 1.0229 14.5802 SH 2.6327 1.5079 1.5082
(30, 30, 30) 1.0280 16.3163 SH 2.5979 1.5414 1.5415
(50, 50, 50) 1.0151 32.4284 SH 2.7024 1.5213 1.5211

(100, 100, 100) 0.9995 39.4103 SH 3.0333 1.4866 1.4865
Source: Simulation study
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The mixture of distributions was classified by the selector statistic as a symmetric and heavy-tailed
distribution. The variance returned suggest that the adaptive test outperformed the F -test at all
levels of the sample sizes. However, the two tests failed to reject the null hypothesis of no difference
in level means at 5% or 1% significance level.

3.2 Numerical examples

3.2.1 Example for equal sample size

Three different pain relief drugs were administered on 27 patients suffering from migraine headache.
Table 7 shows time in minutes of relief from the migraine headache. This is an extract from [16].

Table 7. Time of relief for migraine headache sufferers

Drug A 4 5 4 3 2 4 3 4 4
Drug B 6 8 4 5 4 6 5 8 6
Drug C 6 7 6 6 7 5 6 5 5

From Fig. 2, the assumption of normality to the data on Table 7 is not appropriate. An outlier in
Drug B is obvious. The result of the analysis is displayed on Table 8.

A B C

2
3

4
5

6
7

8

Fig. 2. Time of relief for migraine headache sufferers

Table 8. Time of relief for migraine headache sufferers

Sample Size F-Test Adaptive Test

(n1, n2, n3) Value p-value σ Score Value p-value τ

(9, 9, 9) 11.91 0.0003 1.089 SH 13.6881 0.0001 0.8788
Source: Table 7

The selector statistic classified the underlying error distribution of the data as a symmetric and
heavy-tailed distribution. The adaptive test reported the least variance, that is, the adaptive test
is more efficient than the F -test. However, both models rejected the null hypothesis, H0 at 5% or
1% significance level. Thus, there are differences in mean time for the pain relief. The asymptotic
relative efficiency (ARE) of the adaptive test over the F -test is about 65.1%.
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3.2.2 Example for unequal sample sizes

Four catalyts that may affect the concentration of one component in a three-component liquid
mixture are being investigated. The data as shown on Table 9 is extracted from [17].

Table 9. Catalyst

1 2 3 4

58.2 56.3 50.1 52.9
65.2 54.5 54.2 49.9
58.4 57.0 55.4 50.0
55.8 55.3 51.7
54.9

The results of the analysis is presented on Table 10.

Table 10. Catalyst

Sample Size F-Test Adaptive Test

(n1, n2, n3, n4) Value p-value σ Score Value p-value τ

(5, 4, 3, 4) 5.8778 0.0104 2.7472 SL 7.9989 0.0056 1.9989
Source: Table 9

The selector statistic classified the underlying error distribution of the data as a symmetric and
light-tailed distribution. The adaptive test performed better than the F - test because the variance
returned (σ = 2.7472) is greater than the scale parameter (τ = 1.9989). At 5% or 1% significance
level, both tests rejected the null hypothesis. As a consequence, the four catalysts do not have
the same mean effect on the concentration of the three-component liquid mixture. The asymptotic
relative efficiency of the adaptive test over the F -test is about 52.95%.

4 Conclusions

In this paper, the Oneway Analysis of Variance (ANOVA) model was compared with the adaptive
test. We used the two dimensional selector statistic S = (Q∗

1, Q
∗
2), where Q∗

1 and Q∗
2 are respective

measures of skewness and tailweight of the unknown distribution function. The usage of the
nine winsorised scores accommodated a wide range of distributions which are either symmetric
or asymmetric with varying tailweights as shown on Table 1.

The performance of these tests at small sample sizes was of much interest in this study because most
sensitive areas of the application of ANOVA models such as cinical trials often has low enrolment.
The adaptive test was more efficient than the traditional ANOVA F -test at very small sample sizes,
in the presence of outliers and nonnormal distributions. As a consequence, the adaptive test should
be taken note of in statistical modelling.
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