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Abstract: The ability of weeds to evolve is key to their success, and the relationship between weeds
and humans is marked by co-evolution going back to the agricultural revolution, with weeds evolving
to counter human management actions. In recent years, climate change has emerged as yet another
selection pressure imposed on weeds by humans, and weeds are likewise very capable of adapting to
this latest stress of human origin. This review summarizes 10 ways this adaptation occurs: (1) general-
purpose genotypes, (2) life history strategies, (3) ability to evolve rapidly, (4) epigenetic capacity,
(5) hybridization, (6) herbicide resistance, (7) herbicide tolerance, (8) cropping systems vulnerability,
(9) co-evolution of weeds with human management, and (10) the ability of weeds to ride the climate
storm humans have generated. As pioneer species ecologically, these 10 ways enable weeds to adapt
to the numerous impacts of climate change, including warming temperatures, elevated CO2, frequent
droughts and extreme weather events. We conclude that although these 10 ways present formidable
challenges for weed management, the novelty arising from weed evolution could be used creatively
to prospect for genetic material to be used in crop improvement, and to develop a more holistic
means of managing agroecosystems.

Keywords: natural selection; weed evolution; climate change; life history strategies; epigenetics;
hybridization; herbicide resistance; crop breeding

1. Introduction

Humans and weeds share a long co-evolutionary history. The earliest agrarian weeds
emerged as agriculture itself emerged in human history, and many of these species have
followed us wherever we have settled and grown crops, with Old World weeds following
western colonists to the New World. Now as the major crops have gone global, these same
weeds are following grain crops throughout the globe. However, although they may be
the same weeds as taxonomically identifiable species (for the most part), weeds are highly
variable across their range. Weeds adapt to every situation, and this adaptation throughout
the globe is now being spurred on by a global influence generated by humanity—climate
change. In the 20th century, weed management made huge advancements, in large part due
to the invention of synthetic herbicides. Yet even these powerful tools are being blunted
by weed adaptations that are favored by changing climates in many instances. Even aside
from climate change, evolution of herbicide resistance has often proved to be the undoing
of our weed management systems and their overdependence on chemical control tools.

What is it about weeds that makes them so successful, even in the face of climate
change? Charles Darwin provides some powerful clues in the following statement:

We shall best understand the probably course of natural selection by takin the case
of a country undergoing some physical change, for instance, of climate. The proportional
numbers of its inhabitants would almost immediately undergo a change, and some species
might become extinct. We may conclude, from what we have seen of the intimate and
complex manner in which the inhabitants of each country are bound together, that any
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change in the numerical proportions of some of the inhabitants, independently of the
change of climate itself, would most seriously affect many of the others. If the country were
open on its borders, new forms would certainly immigrate, and this also would seriously
disturb the relations of some of the former inhabitants. [1]

Weeds tend to be pioneer species, dispersing far and wide utilizing a variety of mech-
anisms. Thus, they are rarely in Darwin’s category of becoming extinct, although there
are some weed species incapable of adapting to recent agricultural changes, especially
in Europe [2,3]. Weeds have a genetic makeup they have inherited from the kinds of
natural environments they inhabit (i.e., highly disturbed environments) or from long
associations with agroecosystems and other anthropogenically-modified environments.
Indeed, as we move further into the Anthropocene, few environments are without ex-
tensive anthropogenic influences, and this in itself is pushing us towards a “planet of
weeds” [4]. The open borders Darwin speaks of are everywhere, as many weed species
enjoy pathways of introduction that allow them to move about much of the globe freely.
Certain weed species, such as common ragweed (Ambrosia artemisiifolia L.), knotweeds
(Reynoutria spp.) or Chenopodium spp. have such broad climatic niches that they occur
through the entire band of temperate zones [5–7]. Similarly, there are tropical weeds such
as lantana (Lantana camara L.), mile-a-minute (Mikania micrantha Kunth) or parthenium
weed (Parthenium hysterophorus L.) that are gradually encircling the globe in tropical re-
gions [8–10]. This homogenization of the world’s weed flora is aided by homogenizing
effects of climate change.

Ziska et al. [11] identified some key knowledge gaps critical to understanding the
nexus of climate change and weed biology. Namely, how climate change will influence
herbicide resistance, weed natural enemies, weed distribution and demography and epige-
netics, and other aspects of weed phenotypic plasticity. As weed scientists and ecologists
attempt to understand, conduct experiments and model these aspects, it is important to
frame the discussion in terms of some key elements that need to be considered as the storm
front of climate change approaches.

In this review, we cover ten ways that the constant evolution of weeds makes them a
moving target, extremely difficult to control or manage, especially amidst the dynamic of a
changing climate. The ten ways we discuss can be broadly divided into to two categories:
(1) ways that are intrinsic to the nature of weeds and their evolutionary history in broad
terms, and (2) ways as a function of their interactions with humans. Under the first
category, we discuss general-purpose genotypes, life history strategies, ability to evolve
rapidly, epigenetic capacity, and hybridization. Within the second category, we discuss
herbicide resistance, herbicide tolerance, cropping systems vulnerability, co-evolution of
weeds with human management, and the ability of weeds to ride the climate storm humans
have generated.

2. The Ten Ways
2.1. General-Purpose Genotype

Baker [12,13] coined the term general-purpose genotype to describe the extreme phe-
notypic plasticity exhibited by many weed species. A meta-analysis comparing invasive
and non-invasive species across 75 pairs demonstrated overwhelmingly that the invasive
species exhibited greater phenotypic plasticity [14]. Although this characteristic of weeds
does not hold up for all weed species and should not be taken as a general rule [15], it
is clearly a key factor in the success of weeds in defying human management methods,
enabling them to flourish in a broad spectrum of environments, often unexpectedly. Dar-
mency [16] emphasizes two main possibilities weeds may respond to selection pressure of
recent changes in farming practices: (1) adaptation by general-purpose genotype developed
over centuries or (2) ongoing evolutionary adaptations. In either case, weed species have
an advantage relative to crop species in terms of response to changing conditions, because
of their higher diversity phenotypically and/or genetically.
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The underlying explanation for this extreme plasticity of many weed species is their
nature as pioneer species, adapted to high levels of disturbance by having an array of
phenotypes that may be expressed in a given environment. The results of the meta-analysis
of 75 species pairs [14] suggests that the fitness advantage gained through plasticity enables
invasive species to make better use of resources, as they tended to be able to respond
better to increases in resource availability. Specific responses were seen in various plant
growth parameters such as shoot or root biomass, photosynthesis or nutrient uptake [14].
Factors related to climate change such as increased temperature, increase atmospheric
CO2, or altered moisture regimes would be expected to prompt similar highly plastic
responses in invasive weeds. Non-invasive plants adapted to more stable environmental
conditions would by contrast would not be expected to adjust as rapidly to drastic changes
in growing conditions.

Alternanthera philoxeroides (Mart.) Griseb. (alligator weed) is capable of growing in
both terrestrial and aquatic environments, where it exhibits very different morphology [17].
In testing different populations of A. philoxeroides growing in China, Geng et al. [17] found
that even the very different morphologies exhibited by terrestrial vs. aquatic forms were
due to phenotypic plasticity, not genetic differences. Lythrum salicaria L. (purple loosestrife)
is another invasive plant that must alter its morphology to adapt to various wetland
habitats, and does largely via phenotypic plasticity [18]. When grown in four different
soil moisture treatments, 12 genotypes of L. salicaria exhibited variation in root and shoot
biomass, shoot and inflorescence length, total seed weight, floral mass and morphometric
variables, with all of these responses primarily attributable to phenotypic, not genotypic
variation [18]. Ammannia spp., weeds of rice paddies also exhibit a plastic response in an
aquatic environment, with growth traits responding phenotypically to competition with
rice [19]. With increased frequency of flooding predicted under climate change [20], plastic
responses of invasive plants like A. philoxeroides, L. salicaria and Ammannia spp. could
present challenges for management.

Agroecosystems produce ideal environments for weeds with plastic phenotypes to
flourish because of the relatively high levels of disturbance created by agronomic practices.
Even weed control measures applied in such systems represent disturbances that certain
weeds may be able to take advantage of, especially if they are not the specific target.
Furthermore, there is the case of herbicide resistance, whereby resistant genotypes can
form large patches in fields, thanks in part to the absence of competition from other weed
species or genotypes that are susceptible (see further discussion of herbicide resistance in
Section 2.6). By contrast to weeds, crop plants are often more hard-wired genetically, with
crops generally bred for uniformity to facilitate consistent yields [21,22]. Crop breeders
also need to produce crop varieties that are attuned to environmental conditions, but it
is fairly inevitable that plastic weeds are better able to adjust to climate extremes. Thus,
in years of drought, or other types of extremes such as flooding or storm events, weed
problems may become worse, thanks in part to weed phenotypic plasticity.

In Section 2.3, we discuss evolutionary responses, which is a different kind of response
to climate change involving selection of genotypes favoring the new climate. However,
there is considerable overlap between the two response types. In fact, Franks et al. [23]
found that among 38 studies of plant responses to climate change, 26 studies recorded
the occurrence of both plastic and evolutionary changes. Thus, the two categories are
not mutually exclusive, and indeed plasticity itself can be a considered an evolved trait,
providing the flexibility that many weeds notoriously exhibit.

2.2. Life History Strategies

Weeds exhibit a broad variety of life history strategies, so as management systems
change, weeds that formerly were not a serious issue in a given cropping system may
emerge as a new issue. For example, reduced tillage systems promote weeds with dif-
ferent life history strategies than seen under conventional tillage, notably weeds with
more perennial life histories, further along in the ecological succession trajectory [24–26].
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Similarly, climate change is set to prompt the emergence of new weed issues, through the
creation of new niches for weed species or genotypes with life histories better suited for
the changing conditions.

A key life history attribute of weeds as pioneer species is dispersal ability, and this
dispersal ability may be strongly connected to plant size. Large increases in size can occur
due to enhanced atmospheric carbon dioxide, such as the 70% enhanced growth under
719 µmol mol−1 CO2 recorded for Cirsium arvense (L.) Scop. (Canada thistle) [27]. The
719 µmol mol−1 CO2 was roughly twice the ambient level at the time in the early 21st
century, a level that could well be reached before the end of the century. Ziska et al. [28]
suggested that climate change could lead to dramatic increases in dispersal of C. arvense
and other similar wind-dispersed species with a significant growth response to increases in
CO2. Both increased height and size could increase dispersal, with larger plants producing
more seeds, and seeds dispersing further from taller plants due to aerodynamic factors.

Successful life history strategies for agronomic weeds generally involve synchrony
between weed life histories and various aspects of crop life histories and management [29].
For example, successful weed life history strategies may include producing seeds either
pre- or post-crop harvest to avoid destruction with harvest, or if weed seed production
is synchronized with crop harvest, mimicry of crop seeds may aid in seed dissemination
via crop seed contamination. Climate change may disrupt timing patterns for weed and
crop phenology, potentially selecting for altered weed life histories, likely comprising
polygenic selection [29]. For example, forbs and grasses showed divergent flowering time
responses to elevated CO2 and N addition in a grassland ecosystem [30]. Franks et al. [31]
demonstrated that within a few generations, from 1997 to 2004 populations of field mustard,
Brassica napa L. were able to evolve much earlier flowering times. Flowering time was
as much as 8.6 days earlier, in response to a five-year drought from 2000–2004 [31]. Post-
drought B. napa plants also showed other newly evolved life history characteristics, such as
duration of flowering, total number of flowers, number of leaf nodes, and stem diameter,
all of which related to the need for accelerated flowering under drought conditions [32].

In addition to dispersal ability and flowering timing, there are many other life history
traits that make weeds successful, many of which are discussed in the following section in
the context of rapid evolution.

2.3. Rapid Evolution

The general-purpose genotype providing weeds flexibility under changing climate
conditions and shifts to prominence of particular life histories both involve pre-adaptation.
As discussed previously, such phenotypic variability is intrinsic to weed species evolved
in highly disturbed environments for millennia. However, neither of these attributes—
plasticity or life history variation—require evolutionary adaptability. Weeds which are
capable of evolving in relatively short timeframes [15,33–35], provide another means of
making weed management a challenge under climate change [11,34,36]. Furthermore,
because it is clear from abundant evidence that weeds are capable of evolving herbicide
resistance rapidly, there is no reason to assume this capability to evolve rapidly does not
also apply to weedy traits [37].

As invasive plants invade new habitats with different climatic and other abiotic
conditions, primarily due to human agency, it is interesting to observe how well they adapt
to local conditions. A meta-analysis of 134 plant species in 54 plant families comparing
native to invasive species found that the invasive plants were just as capable of adapting to
local conditions as their native relatives [38]. This adaptive capability was seen as a strong
indication of the ability of the invasive plants to evolve rapidly to novel conditions [38].

Climate change results in changing environmental conditions, thus creating selection
pressure on all species, including weeds, which may result in evolutionary change. Because
weeds are pioneer species, they have many life history traits that can be selected for under
climate change [36], including the traits that Baker [13] determined as constituting the ideal
weed characteristics. Baker’s [13] 10 ideal weed characteristics can be summarized under
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6 categories (Table 1): (1) germination, (2) growth, (3), competitive ability, (4) breeding
system, (5) seed production, and (6) dispersal traits. Below we discuss each of the rapid
evolution possible under climate change for these 6 categories of traits.

Table 1. Categories of traits within Baker’s ideal weed characteristics [13] arranged by stages in the weed life cycle.

Trait Category Ideal Weed Characteristic (Number from Baker [13])

Germination
Germination requirements fulfilled in many environments (1)

Discontinuous germination and great longevity of seed (2)

Growth Rapid growth through vegetative phase to flowering (3)

Competitive The ability to compete interspecifically by special means, ability, e.g., rosette, choking growth,
allelochemicals (10)

Breeding system
Self-compatible but not completely autogamous or apomictic (5)

If cross-pollinated, unspecialized visitors or wind-utilized (6)

Seed production

Continuous seed production for as long as growing conditions permit (4)

Very high seed output in favourable environmental circumstances (7)

Produces some seed under a wide range of environmental conditions, is tolerant and plastic (8)

Dispersal Adaptations for short- and long-distance dispersal (9)

2.3.1. Germination

Germination characteristics are likely to be under relatively high selection pressure,
as the relative success or failure of weeds to recruit from seed and passage through the
critical seedling stage comprise a crucial gateway to evolutionary fitness [39,40]. This
gateway partly interacts between environmental factors and seed dormancy mechanisms.
Gu et al. [41] showed that a simple multigenic system for dormancy genes in weedy rice
(Oryza sativa L.) was responsible for the dormancy levels exhibited by the weed, varying
with ripening under different seasons or temperatures. Weedy rice likely originated
from domestic rice in a variety of different ways, such as adaptation of wild O. sativa to
agricultural habitats or de-domestication of cultivated rice [42]. The fact that weedy rice
may exhibit dormancy ranging to several years in length when domestic rice varieties
exhibit little or no dormancy shows how readily novel seed germination characteristics can
arise. There are also several other seed germination traits that distinguish weedy rice from
cultivated rice including seed shattering and greater cold tolerance allowing weedy rice
to produce seeds under colder temperatures and emerge from greater burial depths than
cultivated rice [42–44].

2.3.2. Growth

Baker’s (1974) third ideal characteristic of rapid growth in the vegetative phase is a
trait that has evolved to an extreme extent in certain weeds. For example, Mikania micrantha
Kunth, appropriately named mile-a-minute, is a scrambling vine native to Central and
South America that has invaded large areas of Asia and the Pacific Islands, in large part
due to its rapid growth rate [9]. M. micrantha vines are capable of growing as fast as 20 cm
per day [45]. An analysis of the M. micrantha genome revealed that the rapid growth
was partly due to the capability of M. micrantha, as a C3 plant, to absorb CO2 at night
using a mechanism similar to plants with CAM, in combination with augmented stem
photosynthesis efficiency and nitrogen absorption [46].

In their assessment of the M. micrantha genome, Liu et al. [46] examined its genetic
history compared to other Asteraceae. In addition to bearing the marks of numerous
gene duplication events in common with its relatives, there were many recent segmental
duplication events evident in the M. micrantha genome. The way Liu et al. [46] phrased
it, “the M. micrantha genome experienced a recent explosion of lineage-specific segmen-
tal duplications.” Photosynthesis was clearly a key evolutionary driver of these events,
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with M. micrantha featuring more genes related to photosynthesis than any other aster
species [46]. “Recent” was defined as within the last million years, but still the mechanism
of duplication events is clearly a significant one in this species and other weeds capable
of rapid growth rates. Because such increased growth rates may be connected to changes
in photosynthetic genes, changes in CO2 concentrations and climatic conditions could
stimulate evolutionary change in weed photosynthetic efficiency. Plants already possessing
highly efficient photosynthesis like M. micrantha could take advantage of such conditions
to expand their ranges and biotypes adapted to particular areas could emerge. An example
of this kind of change is Bromus madritensis L. (foxtail brome), which evolved a change
in stomatal conductance in just 7 years, allowing this invasive grass to take advantage of
enriched levels of CO2 [47].

2.3.3. Competitive Ability

One advantage of high growth rate is accompanying competitive ability, but there are
many other competitive mechanisms that could also undergo rapid evolution in weeds [32].
One valuable approach to studying changes in competitive ability is the “resurrection
approach,” whereby weed seeds from an earlier period are planted alongside modern
seeds. Franks et al. [48] showed that 2014 accessions of Avena fatua L. (wild oat) were
more competitive than accessions derived from the 1960s, in response to a 25% increase
in CO2. Ziska [49] compared competitive parameters such as leaf area and above-ground
biomass between the A. fatua populations and cultivated oats (A. sativa L.). Over the same
timespan (mid-20th century to 2014), A. fatua had been selected for higher competitive
parameters with the enhanced CO2 levels, whereas A. sativa domestic lines showed a more
muted response [49]. This disparity makes sense because crops are not generally bred
for competitive ability as yield is the primary priority, especially if weed-free growing
conditions are assumed by plant breeders.

Although it was theorized that reduction in allocation to plant defense in invaded
ranges has facilitated enhanced competitive ability [50], a meta-analysis demonstrated that
this was not always the case [51]. However, the meta-analysis did show rapid evolution of
invasive plants occurred following their introductions, with some invasive plants showing
higher competitive ability assessed via vegetative growth and reproductive effort. Some
invasive plants maintained high levels of defense against herbivores in the introduced
range [51]. Another more recent meta-analysis supported a Shifting-Defense hypothe-
sis, whereby the most common scenario was alien invasive plants being released from
specialist herbivores but still having to deal with generalist herbivores in their newly
invaded ranges [52].

2.3.4. Breeding System

A large proportion of weeds are autogamous or primarily selfing, but occasional
outcrossing still allows for evolutionary adaptation [15,53]. Uniparental reproduction
allows pioneer species to colonize and multiply in new areas with relatively few conspecific
individuals present [53]. Breeding systems predicted to have higher colonization ability
include hermaphrodites with male and female organs on the same flower and monoecious
plants with organs on separate flowers on the same plant [53]. Although breeding system
does exhibit some taxonomic bias, breeding systems themselves are subject to evolution
and many closely related plant taxa exhibit a variety of breeding systems [53,54]. Thus,
environmental changes may provide selection pressures potentially leading to altered
breeding types. Plants that exhibit clonal growth in particular may be prone to form
asexual populations in invaded regions, such as the widespread introduction of male-sterile
Reynoutria japonica Sieb. & Zucc. (Japanese knotweed) in Europe and North America [55].

A good example of a recent breeding system alteration spurred by invasion is the case
of Eichhornia paniculata (Spreng.) Solms (Brazilian water hyacinth), which has invaded
various parts of Central America and the Caribbean from its native Brazil [54]. Because
its Brazilian pollinators are absent in the invaded regions, sexually reproducing tristylous
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flowering morphs that promote outcrossing in the native environment are absent in favor of
selfing forms [56]. Barrett et al. [54] envisage that the prediction of increased flooding and
storm events under climate change provide conditions favoring breeding system changes
in other aquatic or semi-aquatic plants, and clearly other invasive plants with multiple
breeding system modes, particularly those involving clonality such as perennial grasses
might exhibit similar evolutionary tendencies. These evolutionary dynamics are difficult to
predict because the relative emphasis on reproduction and dispersal changes over different
phases of invasion [57].

2.3.5. Seed Production

Several ideal characteristics listed by Baker [13] involve seed production, and as
a fundamental aspect of fitness, fecundity is strongly correlated to evolution of many
of the other traits already discussed here, i.e., larger or more competitive plants tend
to produce more seeds. Many of the world’s worst weeds are characterized by high
levels of seed production, so if changing climates select for even higher seed production,
these species will become even more prolific and difficult to control. One such weed is
Parthenium hysterophorus L. (parthenium weed) which is of widespread concern throughout
Asia and Oceania, and shown to produce more seeds under changing climate conditions
in Australia featuring increased atmospheric CO2, and with increased temperatures to a
point [58]. Furthermore, droughts also caused increased allocation to reproduction, but less
seed filling and longevity. These details indicate some of the selection pressures that might
cause genetic changes over times; the two biotypes in this study did show differences in
seed production characteristics [58].

There are also numerous studies indicating how seed production is influenced by
environmental conditions, and how different species are impacted differently by climate
stresses. The weed Amaranthus palmeri S. Watson (Palmer amaranth) is known for high
levels of seed production, but this was reduced by 55% when moisture levels were at 75%
of field capacity [59]; by contrast, Echinochloa colona (L.) Link (jungle rice) seed produc-
tion maintained the same level at 50% of field capacity [60]. Thus, plants like E. colona
are well-suited to proliferate and continue evolving drought tolerance as drought fre-
quency increases as predicted under climate change. For example, the rangeland weed,
Centaurea solstialis L. (yellow starthistle) is predicted to expand its range in the western U.S.
because of increasing drought frequency [61–63]. Like most other plants, seed production
is related to plant size, and research has shown that C. solstialis is capable of evolving
greater size in invaded habitats [64].

2.3.6. Dispersal

High levels of fitness are associated with production of large numbers of seeds, but
particularly important for the fitness of an invasive species, is the ability to disperse effec-
tively. In fact, studies have shown increased dispersal ability has evolved in populations
of some invasive plant species at the edges of their ranges [65,66]. A coastal invasive
species in eastern Australia dispersed by winged seeds, Gladiolus gueinzii Kunze exhibited
greater dispersal ability along the edges of its range, as measured by wind loading ratio:
seed mass/wing area [66]. Interestingly, G. gueninzii also exhibited increasing capacity for
selfing along the invasion edges in Australia [67]—the adaptive tendency we discussed
in Section 2.3.4. Three traits associated with increased seed dispersal for M. micrantha,
plume loading, seed mass and pappus radius were found to be selected for in populations
undergoing range expansion [65].

Because climate change will often have the strongest impact at the edge of species
ranges, it is predicted that along the edge of ranges is precisely where selection pres-
sures due to climate change will be greatest, including selection favoring dispersal ability,
but much more empirical research on this prediction is needed [68]. Increased disper-
sal ability and accompanying dispersal under climate change threatens to be one of the
most dire consequences of the anticipated changes due to large-scale alterations in cli-
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mate. For example, a study of the predicted increase in Ambrosia artemisiifolia L. (common
ragweed) in Europe, estimated by 2050 ragweed pollen levels would be 4 times higher
than levels in 2015, in addition to the agronomic damage caused by the greatly expanded
distribution of A. artemissifolia [69]. Factors contributing to this predicted spread include
increased seed distribution due to climate change, land-use changes, and evolution of seed
dispersal ability.

2.4. Epigenetics

In addition to rapid evolution, many invasive plants have the ability to respond
quickly to abiotic environmental factors by altering their gene expression. In a constantly
changing environment, plants need to be flexible in order to survive stresses such as
fluctuating light, temperature, water, and salt levels. In order to be flexible, plants can
undergo epigenetic modification, which is the alteration of chromatin without modifying
the DNA sequence [70]. Chromatin refers to the DNA sequence along with histone proteins,
which allow the DNA to be folded into a more compact, higher order structure. This
structure can be influenced by stimuli like abiotic environmental factors, leading to changes
in gene expression, mainly transcription [71].

There are three major types of epigenetic modifications to plants: histone variants,
histone modifications, and DNA methylation. As mentioned, the DNA is compacted and
wrapped around the histone proteins; this structure determines the accessibility of the
DNA to transcription factors and thus can impact gene expression. One of the ways the
chromatin structure can change is by exchanging a histone for a histone variant, a similar
protein with differences in the amino acid sequence. The variants have different affinities
for DNA and binding proteins, leading to changes in the chromatin compaction. For
example, the linker (H1) histone variant H1.3 in Arabidopsis allows the plant to respond
better to combined light and water stress. A study by Rutowicz et al. [72] found that
plants with the H1.3 variant have higher alteration of gene expression, increased growth
rate, increased photosynthetic ability, and increased stomatal density compared to wild
type plants.

Similarly, histones can also be altered after translation, through chemical modifications
to amino acid residues such as methylation, acetylation, and phosphorylation. Acetylation
of histones reduces the charge between the histone and DNA, subsequently facilitating the
start of transcription; deacetylation has the opposite effect. In a study of Arabidopsis, it was
found that histone acetylation levels were increased within 2–5 h after exposure to drought
stress, leading to a corresponding increase in transcription of several drought-responsive
genes [73]. Amidst a changing climate, the ability to rapidly respond to environmental
stresses such as drought are essential for invasive plants to maintain a competitive edge
over native species.

DNA methylation is the most common type of epigenetic modification, occurring
when the cytosine position 5 is converted to 5-methylcytosine; this adaptation is related to
coping with severe environmental stresses by affecting gene expression. DNA methylation
has been associated with a number of different environmental stresses, including high
temperatures [74], cold temperatures [75], salinity [76], drought [77], and heavy metals [78].
The ability to adapt in this manner to environmental stresses is especially important for
clonal invaders. Like DNA mutations, epigenetic mutations can increase the range of varia-
tion for natural selection to act on, thereby increasing adaptation of individuals. For clonal
species that do not reproduce sexually, epigenetic mutations are a way for phenotypic vari-
ation to arise. This is imperative for invading new, heterogeneous ecosystems. For instance,
a study of the clonal invader Alternanthera philoxeroides (alligator weed) found that under
salinity stress, epigenetic diversity within a population was significantly increased [79].
Similar results were found when studying Reynoutria japonica (Japanese knotweed) another
clonal invader [80]. Another study of alligator weed found that when comparing popula-
tions in different environments, the epigenetic modifications were significantly different,
despite sharing a nearly identical DNA sequence [81]. In clonal populations, where genetic
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diversity is low, this mechanism can rapidly increase adaptive potential to novel environ-
ments without waiting generations for natural selection to act, increasing invasive success.
However, it is important to note that most stress-related epigenetic modifications to chro-
matin only last until the stress exposure ends, although emerging evidence suggests that
some modifications can be passed down to progeny through a “memory” of the stressed
state [82]. Epigenetic modification is an effective, though intermediate, method of rapid
evolution for invasive species, especially in novel environments. With the implications
brought by climate change, adaptations to changing environmental conditions will be even
more important for invasive species to thrive. Populations will likely experience novel
climates without expanding their geographic range, including hotter, drier summers and
warmer, wetter winters, as well as more frequent and severe storms.

2.5. Hybridization

Genetic diversity of a weed species can also be increased through hybridization
with another species, resulting in new genetic combinations and allowing for more rapid
adaptive evolution. Hybridization can be a way for genetically impoverished species, such
as those impacted by founder effects or bottlenecks, to gain genetic diversity that can then
be acted upon by natural selection. This greatly increases the chances of success when
invading new areas. Clonal species are also at risk for genetic loads, and hybridization is
one way to overcome this issue.

Hybrid weed species often exhibit hybrid vigor, also known as heterosis, where the
progeny exhibits improved biological function when compared to both parent species.
Generally, the hybrid will exhibit more aggressive growth, with an improved ability
to spread to new areas and compete within invaded areas, and may also have greater
biomass and higher fertility [83]. An excellent example of heterosis can be found in the
hybrid Reynoutria × bohemica Chrtek & Chrtková (Bohemian knotweed), a cross between
Reynoutria japonica Japanese knotweed, a clonal species, and Reynoutria sachalinensis (Friedr.
Schmidt Petrop.) Nakai (giant knotweed). Despite primarily reproducing vegetatively
and existing in its invasive range as a sterile clone, R. japonica is one of the most aggres-
sive invaders in the northern hemisphere [83]. R. sachalinensis, which has had multiple
introductions to North America and Europe, has high genetic diversity and can repro-
duce both vegetatively and by seed [84]. An interspecific hybrid between R. japonica and
R. sachalinensis was first reported in Europe in the late 19th century. However, it seems
that the importance of the hybrid in the spread of the taxon has risen in more recent
years, and is now considered to be the most common of the three knotweed taxa across
North America [84] and much of Europe [83]. Introgression between R. × bohemica hy-
brids and the R. japonica parent is also well documented in North America and Europe;
interestingly, these R. × bohemica most closely related to japonica hybrids have demon-
strated the most aggressive growth, as well as higher numbers of flowers and seeds, when
compared to R. japonica, R. sachalinensis, and a true intermediate R. × bohemica hybrid [83].
Parepa et al. [85] also reported that the hybrid species outcompetes native vegetation better
than either parent species, decreasing native plant biomass by over 20%, and at the end of
the experiment reached a biomass 3 times greater than either parent species.

R. × bohemica has been found to have incredibly high genetic and phenotypic diversity,
with multiple genotypes existing within patches, confirming that the hybrid can reproduce
vegetatively or by seed [84]. Despite reproducing clonally, R. japonica does exhibit heritable
variation between populations, likely from epigenetic variation, which plays a role in
its invasive success [80]. Some evidence indicates that epigenetic variation can play a
key role during hybridization events, helping to stabilize new genotypes, and could be a
factor in the rapid adaptation of hybrid species to novel environments and new climatic
zones, though further research is needed to confirm this [86]. The hybrid between these
two invasive knotweed taxa has created an even more invasive species, highlighting the
importance of hybridization as a means of further invasion.
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Heterosis is also observed in the hybrid between two invasive toadflax species,
Linaria vulgaris Mill. (yellow toadflax) and Linaria dalmatica (L.) Mill. (Dalmatian toad-
flax) [87]. Not only is the hybrid fertile, but it has also been found to be more resistant to
human management efforts. Environmental suitability modelling for the Linaria hybrid
revealed a large potential invasive range, including areas where neither parent species is
found, highlighting the hybrid’s phenotypic plasticity [87]. Common garden experiments
across the parent species range showed the hybrid to have significantly higher biomass and
fertility compared to the parents [88]. In water-limited environments, such as those where
L. dalmatica typically thrives, the hybrid species has been found to break dormancy earlier
than the parent species, allowing it to use available water without heavy competition from
other species. This strategy will likely provide a continued advantage amidst a chang-
ing climate, given that future models have projected a decrease in spring and summer
precipitation, more frequent drought, as well as higher temperatures.

Hybridization also poses a risk to agricultural settings, as hybridization can occur
between crops and weeds. Allele flow between transgenic herbicide resistant crops and
closely related non-resistant, herbicide sensitive weeds has been recently documented.
In Conyza, for instance, hybridization of a transgenic glyphosate resistant (GR) crop and
glyphosate sensitive (GS) species resulted in a resistant hybrid [89]. Not only was this
hybrid resistant, but it displayed a significantly higher level of resistance than its GR parent,
despite employing the same mechanism of resistance [89]. Introgression between the hybrid
and either the weed or crop parent also results in a resistant hybrid. These hybrid GR
weeds prove to be more difficult for landowners and farmers to control than a typical GR
weed, requiring integrated management practices [89]. The transfer of herbicide resistance
through hybridization has been documented in several cases, including between Brassica
crops (canola) and their weedy relatives [90], between crop and wild rice (Oryza spp.) [91],
and between crop and wild wheat (Aegilops spp.) [92].

Beyond the transfer of resistance to weeds, hybridization between crops and weeds
can pose other threats, such as decreasing crop yield. For example, sugar beet crops have a
well-documented history of hybridization with wild beets, and the hybrid produces seeds
that are indistinguishable from the cultivated, certified seeds [93]. These seeds are often
inadvertently spread alongside sugar beet seeds, and the difference can only be seen during
bolting and flowering. The hybrid will flower during its first year, contrary to the crops
which are biannual and are harvested for their roots before flowering, decreasing overall
sugar beet yield. These hybrids also have the potential to produce many seeds, which
would exacerbate the problem the following year. Because the weeds and crop beets are
closely related, they cannot be treated with herbicides and require integrated management
techniques, which generally involve higher costs and time for land managers.

Hybridization often results in progeny with improved fitness, and these heterotic
hybrids may be more likely to adapt to climate change. Traits like aggressive growth, high
fertility, and increased biomass will likely be useful in overcoming environmental stresses
such as high temperatures and drought. Additionally, hybridization may also be driven by
climate change due to altered timing of flowering and pollen release caused by seasonal
temperature changes. Recent studies have indicated that some weeds, such as Ambrosia spp.
(ragweeds), will increase pollen production in Europe by as much as four times by 2050,
based on climate modelling [69]. In addition, warmer spring temperatures have begun to
influence timing of flowering, with the timing shifting earlier in several observed species,
including both weeds and crops [88,94,95]. In the U.S., early flowering has been reported
in several species of Brassica, driven by strong directional selection due to increasing spring
temperatures [95]. Ultimately, increases in pollen as well as shifts in timing of flowering
and pollination of both weedy species and agricultural crops may result in the production
of new hybrids that were previously not reproducing at overlapping times. As temperature
and precipitation continues to shift due to anthropogenic climate change, we may observe
an increase the number of weedy hybrids.
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2.6. Herbicide Resistance

Herbicide resistance represents a crucial way for weeds to defy human management
efforts, since the broad scale application of herbicides in the 1950s, where for most cropping
systems around the world herbicides became the critical tool for controlling weeds. Yet
this tool has been jeopardized by the dramatic rise in herbicide resistance cases in the
last several decades, with resistance seen for 23 of 26 of the herbicide modes of action,
observed in a broad spectrum of weeds in 71 different countries [96]. Much has been written
elsewhere about the serious problems herbicide resistance presents for weed management,
but here we will focus on how these serious problems are exacerbated by climate change.
A key driver of herbicide resistance evolution is the frequency of herbicide application and
exposure [97] and such exposure may or may not increase under climate change. Changes
in herbicide exposure in relation to climate change are predicted to depend on management
factors, such as the potential for additional applications due to enhanced weed growth or
herbicide tolerance (see Section 2.7), or environmental factors either affecting herbicide
exposure directly (e.g., rainfall pattern changes) or indirectly (e.g., changes in weed growth
or reproduction, phenology or other physiological aspects).

However, what may be of greater concern regarding herbicide resistance specific
to climate change is the increased dissemination of herbicide resistance biotypes due to
climates that favor greater weed spread, at local and regional levels. Two chief means
of spread of herbicide resistant agricultural weeds are (1) spatial dissemination via wind
dispersal, farm machinery or other means, and (2) temporal dissemination via persistent
seed banks or bud banks in the case of perennial weeds [98]. Herbicide resistant weeds
are spreading throughout the globe, to an alarming extent in every region [99]. Warming
temperatures, changing moisture and storm regimes that facilitate further range expansion
of weeds also facilitate expanding distribution of herbicide resistant weeds [100].

A good example of a weed that is benefitting from both herbicide selection pressures
and climate change is Bassia scoparia (L.) A. J. Scott (kochia), which exhibits widespread
herbicide resistance, especially to glyphosate [101]. In North America, its range and
impact has been extending rapidly in the northern U.S. and Canada, partly through
widespread herbicide resistance, and partly through extended growing seasons due to
climate warming, changed rainfall patterns, enhanced atmospheric CO2, all of which favor
its physiology [101–103]. Many other factors also promote its spread, including potential
for rapid evolutionary change, epigenetic factors, its tumbleweed mode of spread, and
seed longevity, which increases the long-term persistence of resistant biotypes [101]. All
in all, kochia presents a good cautionary tale, that beyond the widely recognized issue of
herbicide resistance, the combination of resistance and climate change threatens to make
the problem worse.

2.7. Herbicide Tolerance

Given the high degree of efficacy expected from herbicides, weeds that are not killed
by herbicide applications are not given much attention, especially when control is rated
at 90% or higher. There is some concern over the potential for tolerance to eventually
lead to resistance, but in this section, we will focus on the potential effects of climate
change on herbicide tolerance, specifically, on what climatic conditions may tend to favor
herbicide tolerance.

Because many environmental factors such as temperature, carbon dioxide and mois-
ture levels affect herbicide efficacy, it is abundantly clear that climate change is currently
having, and will have major impacts on herbicide effects, generally reducing their effi-
cacy [104,105]. Increasing temperatures can reduce herbicide efficacy because of more
rapid plant metabolism at higher temperatures and/or increased evaporation from the
soil, although these effects vary by site and for particular weed species [106–108]. When
Benedetti et al. [109] exposed Echinochloa colona (L.) Link (junglerice) to repeated low doses
of herbicides under two heat stress levels (30 and 45 ◦C), they found that several genes
were upregulated in junglerice that tended to increase herbicide tolerance.
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Increased atmospheric CO2 concentration may have considerable impacts on crop-
weed relations, especially considering that concentrations are projected to rise as much as
4× current levels by the end of the 21st century [110]. Increased levels of atmospheric CO2
will reduce herbicide efficacy due to a variety of factors including increased growth rates
and increased allocation to underground storage organs in target weeds [111,112]. Perennial
weeds such as Cirsium arvense L. (Canada thistle) under a pre-emergence glyphosate regime
may exhibit increased biomass due to enhanced CO2 levels, with concomitant reductions
in crop yields [113].

Drier conditions predicted under climate change, including more frequent droughts
may decrease herbicide efficacy in at least two distinct ways: by reducing absorption of
herbicides in weed roots or by reducing herbicide absorption in weed leaves that develop
thicker cuticles to resist drought conditions [114–116]. Taken together, these lines of
evidence collectively point to a serious loss in the expected effectiveness of herbicides,
given future predicted climate regimes. Indeed, if one goes beyond the study of single
weed species, as Waryszak et al. [117] did, examining effects of elevated CO2 levels on
herbicidal control of 14 weed species, including C3 and C4 weeds, and weedy shrubs,
reduced efficacy may call for a wholesale re-evaluation of herbicide use.

2.8. Cropping Systems Vulnerability

The world is changing in many ways due to climate change, with many of these shifts
happening in the way things have been done the same way for a long time, and once the
tipping point is reached, there is no going back [118,119]. One of these tipping points is
in the nature of cropping systems and the need for rapid adaptation. There are concerns
that crop variety development cannot keep up to the rapid changes in climate that are
anticipated [120], and part of the issue is the increased unpredictability of pest control in
current cropping systems under climate change [121]. More resilient cropping systems,
including better use of conservation tillage, cover crops, crop rotations and perennial
crops may be imperative to combat the inherent vulnerability of present practices [122].
However, there is often a natural trend towards growing crops better adapted to conditions
as temperate regions become warmer, in response to favorable economics.

In view of predicted cropping system changes under climate change, there are two ma-
jor ways these agroecosystems could become more vulnerable to weeds: (1) use of cropping
systems that are inherently more vulnerable, (2) greater ability of the weed flora to adapt
to climate change than the crops. Numerous reports have warned of greater vulnerability
of cropping systems under climate change, across many parts of the globe [120,123–125]. It
has been shown that although soybean yields respond favorably to enhanced CO2 levels,
the presence of weeds compromises this ability [126].

In temperate regions, the poleward expansion of weed distributions is predicted
as climates in these regions become warmer with climate change, and this expansion
is already occurring, with numerous examples of weeds moving northward in North
America [15,127–129] and Europe [130,131] (Kollmann and Bañuelos 2004; Hyvönen et al.,
2012), and southward in Australia [33,132]. However, the movements of these weeds are
also highly determined by selection of cropping systems, which is a key mechanism by
which weeds and their propagules are transported [133]. The choice to begin growing
crops in different regions to adapt to climate change, will thus likewise influence shifts
in weed distributions. Many C4 weeds are more competitive than C3 weeds, which have
tended to be in the majority in cooler temperate zones, and an increased mix of C4 and C3
weeds in a given region could create more weed competition with crops [134]. Moreover,
areas such as Australia and California already facing some extreme high temperature and
drought conditions due to climate change have recorded changes in weed-crop competition
relationships, usually in favor of the weeds [134,135].

Although we have referred to a variety of studies that have attempted to predict
cropping systems vulnerability to increased spread and impact of invasive plants, there
is a shortage of empirical studies on such predictions [134,136]. Pyšek et al. [136] call for
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additional research to better link changes in distribution of invasive species to shifts in
temperature or precipitation under climate change. They highlight the importance of such
research to assess interactions among invasive species and with other species, such as the
critical interaction with crops touched on here.

2.9. Co-Evolution with Human Management

The world is in the midst of a great experiment, an experiment unwittingly designed
to research the effect of our management of weeds on the evolution of said weeds [15].
John Harper, often considered the father of modern weed ecology, said in 1956 that, “arable
weeds constitute an ecological group . . . that have been selected by the very practices that
were originally designed to suppress them” [137]. It is clear that the artificial selection for
crop traits favoring uniformity in general is no match for the potentially rapid evolution
of weeds via natural selection [138,139]. We are also experimenting with climate effects,
through our actions to cause climate change, thereby turning up the temperature on the
great experiment.

In effect, we are placing agronomic fields already impacted by weed competition
into greenhouses, via the “greenhouse effect.” Greenhouses often provided a rarified
atmosphere for insect pests and pathogens to flourish more than in outdoor environments
exposed to weather extremes. However, weed pests are not normally as big of a problem as
other pests in greenhouses because they do not tend to invade greenhouses en masse. With
temperate areas of the globe warming, weeds now have access to warmer temperatures
facilitating growth and, in many instances, herbicide resistance, along with increased CO2
levels, another frequent additive in artificial greenhouses. Just as our agronomic methods
select for weeds, so does our facilitation of the greenhouse effect. The milder conditions
and elevated CO2 levels in temperate zones tend to help both weeds and crops, except
along with climate warming comes climate extremes, which as discussed previously also
favor many weeds that may be more drought tolerant than crops or have their dispersal
promoted by extreme weather.

2.10. Riding the Climate Change Storm

Climate change literally leads to increased storm frequency and severity [140,141].
Although climate change is metaphorically like a storm moving across the globe and
affecting all flora and fauna in its path, organisms like weeds and other invasive species
are the most likely organisms to “ride out the storm.” In the wake of Tropical Storm Irene
in 2011, Reynoutria japonica (Japanese knotweed) increased its distribution in Vermont via
fragments spread by the storm’s fury [142]. Likewise, the invasive sedge, Carex kobomugi
Ohwi proliferated after Hurricane Sandy in 2012, performing much better than the local
native coastal grass Ammophila breviligulata Fernald (American beachgrass) [143]. A planet
heavily scarred by climate change could well become the “planet of weeds” referred
to earlier [4].

3. Conclusions

If the 10 ways described here by which weeds defy human management efforts
become more serious as the climate changes, business as usual or small modifications in
the way weeds are managed will not suffice (Table 2). Each of these 10 challenges to weed
management (and others) call for the design and implementation of more resilient cropping
systems rather than simply relying on attempts to improve herbicidal control, which itself
can be compromised by climate change. Such improvements may include, but are not
limited to, better use of conservation tillage, cover crops, crop rotations and perennial
crops [122]. In fact, the best approach to managing the multiple ways that weeds can
thwart weed control management under climate change is through an integrated approach
that incorporates a variety of agronomic tactics including cultural weed control methods,
biological control, crop competitiveness, and a proactive overall strategy to ensure the
forces that drive selection of weedy traits are kept off balance.
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Table 2. Ten ways that that weed evolution defies human management efforts amidst a changing climate.

Weed Evolution Element Challenges to Human Management Amidst Climate Change

1. General-purpose Genotype Difficult to account for weed phenotype variation as exacerbated by climate change

2. Life History Strategies Life history strategies subject to change under climate change so management must adjust

3. Rapid Evolution Many weed traits capable of evolving rapidly in response to climate change, requiring
management to pivot

4. Epigenetics Difficult to predict weed phenotype variation even intra-generationally

5. Hybridization Abrupt genotype change on a large scale creating new weeds to manage

6. Herbicide Resistance Additional spread of herbicide resistant weeds likely under climate change

7. Herbicide Tolerance More climatic variation leading to more variable effectiveness of herbicide applications

8. Cropping Systems Vulnerability Weed communities better adapted to respond to climate change than cropping systems

9. Co-evolution with Human
Management

Management of weeds tends to select for better adapted weeds more difficult to manage;
climate change adds another selection factor

10. Riding the Climate Change
Storm

Weeds are well adapted for climate extremes which may help further spread them and
increase their overall persistence amidst changing climates

4. Management Implications

Human selection pressures are ubiquitous [144]. We are the ones igniting the wildfires
of weed evolution, and so perhaps we need to think more about fighting fire with fire [145].
Ideally, crop cultivars should be designed to counter the effects of both weed competition
and climate change [139]. In fact, because weeds “break the rules” constituting the normal
constraints of evolution creating novelty in the process, their innovative adaptations may
actually be a great benefit to humanity [146].

For example, given the evolutionary potential of weeds as enhanced under climate
change, an “evolutionary plant breeding” approach could be developed [147], both to
counter evolutionary advances of weeds and incorporate the lessons weeds have taught
us. The close evolutionary relationship between crops and weeds should facilitate this
approach [37]. This approach to crop breeding could even directly incorporate some of the
evolutionary advances weeds have made in response to climate change, such as the idea of
incorporating Sorghum halepense (L.) Pers. (Johnsongrass) genes into sorghum (S. bicolor)
breeding programs to develop varieties suited for a broader range of climates [148]. Sim-
ilarly, it has been suggested that we should prospect for favorable rice traits in weedy
rice—in this case, both the weed and crop are classified as Oryza sativa but exhibit consider-
able trait differentiation as discussed in Section 2.3.1 [42].

Similarly, Small and Raizada [149] argue that drought-tolerant, nitrogen fixing “weeds”
should be investigated as potential crops in subtropical regions. Given that both crops
and weeds are under strong selection pressures, with crops artificially being selected for
adaptation to changing conditions, including climate change, and weeds adapting along
with them, it is clear that agronomists must be vigilantly aware of the implications of evo-
lutionary theory in these times [150]. The innovative photosynthetic system possessed by
the fast-growing invasive mile-a-minute vine (M. micrantha) could perhaps be investigated
as a potential quantum leap in crop improvement [46].

As Mahaut et al. [146] contend, although the usual response to the various ways that
weeds defy human management is frustration, the novel strategies of weeds have much
to teach us. We have much to learn from the ten weedy issues described here amidst
a changing climate: (1) general-purpose genotypes, (2) life history strategies, (3) ability
to evolve rapidly, (4) epigenetic capacity, (5) hybridization, (6) herbicide resistance, (7)
herbicide tolerance, (8) cropping systems vulnerability, (9) co-evolution of weeds with
human management, and (10) the ability of weeds to ride the climate storm humans
have generated.
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