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In this paper, applying the weak maximum principle, we obtain the uniqueness results for the hypersurfaces under suitable
geometric restrictions on the weighted mean curvature immersed in a weighted Riemannian warped product I × ρM

n
f whose

fiber M has f -parabolic universal covering. Furthermore, applications to the weighted hyperbolic space are given. In particular,
we also study the special case when the ambient space is weighted product space and provide some results by Bochner’s
formula. As a consequence of this parametric study, we also establish Bernstein-type properties of the entire graphs in weighted
Riemannian warped products.

1. Introduction

In recent years, the study of complete hypersurfaces in
Riemannian manifolds has attracted many geometers. This
is due to the fact that such hypersurfaces exhibit nice
Bernstein-type properties.

Particularly, from the geometric analysis point of view,
many problems lead us to consider Riemannian manifolds
with a measure that has a positive smooth density with
respect to the Riemannian one. This turns out to be compat-
ible with the metric structure of the manifold, and the result-
ing spaces are the weighted manifolds, which are also called
manifolds with density or smooth metric measure spaces.
More precisely, the weighted manifold Mn

f is associated with
a complete n-dimensional Riemannian manifold ðMn, gÞ,
and a smooth function f on Mn is the triple ðMn, g, dμ =
e−f dMÞ, where dM stands for the volume element of Mn.
In this setting, we will take into account the so-called
Bakry-Émery Ricci tensor (see [1]) which is an extension of
the standard Ricci tensor Ric, which is defined by

Ricf = Ric + Hessf : ð1Þ

So, it is natural to extend some results of the Ricci curva-
ture to analogous results for the Bakry-Émery Ricci tensor.

Before giving more details on our work, we present a brief
outline of some recent results related to ours.

In [2], Wei and Wylie studied the complete n-dimen-
sional weighted Riemannian manifold and proved the
weighted mean curvature and volume comparison results
under the ∞-Bakry-Émery Ricci tensor is bounded from
below and f or ∣∇f ∣ is bounded. Later, de Lima et al. [3, 4]
researched the uniqueness of complete two-sided hypersur-
faces immersed in weighted warped products by applying
the appropriated generalized maximum principles. More-
over, [5] established Liouville-type results related to two-
sided hypersurfaces immersed in a weighted Killing warped
product. More recently, some uniqueness results of complete
two-sided hypersurfaces in warped products with density are
given in [6].

In this paper, we study complete hypersurfaces in a
weighted Riemannian warped product. The Riemannian
warped product I × ρM

n where I ⊂ℝ is an open interval,
Mn is a complete n-dimensional Riemannian manifold,
ρ : I ⟶ℝ+ is a positive smooth warping function, and
the warped metric is given by

,h i = dt2 + ρ tð Þ2 ,h iM , ð2Þ

where h,iM is the metric tensor of Mn. Furthermore, there
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exists a distinguished family of hypersurfaces in Riemannian
warped products, that is so-called slices, which are defined as
level hypersurfaces of the coordinate of the space. Notice
that any slice is totally umbilical and has constant mean
curvature.

This manuscript is organized as follows. In Section 2, we
introduce some basic notions and facts of the hypersurfaces
immersed in weighted Riemannian warped products. Section
3 is devoted to prove some results concerning the f -parabo-
licity of weighted manifolds and pay attention to show the
weak maximum principle for the f -Laplace operator Δf

holds on f -parabolic weighted manifolds. Moreover, by using
the weak maximum principle, we provide the sign relation-
ship among the f -mean curvature and the derivative of the
warping function. These auxiliary results will be the key to
obtaining our results. In our main results, we establish the
uniqueness results for complete hypersurfaces under appro-
priate conditions on the f -mean curvature and the warping
function in weighted Riemannian warped products �Mn+1 =
I × ρM

n
f whose fiber M

n
f has f -parabolic universal covering.

Besides, we also present some applications related to our
results. In Section 4, applying the weak maximum principle
and Bochner’s formula, we obtain some rigidity results for
the special case when the ambient space is weighted product
space. Section 5, as a nondirect application of our parametric
case, we get nonparametric results for the entire graphs in
weighted Riemannian warped products.

2. Preliminaries

Let Mn be a connected n-dimensional oriented Riemannian
manifold and I ⊂ℝ be an open interval which is endowed
with the metric dt2. Let ρ : I ⟶ℝ+ be a positive smooth
function. Denote I × ρM

n to be the product manifold with
the following Riemannian metric

,h i = π∗
I dt2
� �

+ ρ πIð Þ2π∗
M ,h iMð Þ, ð3Þ

where πI and πM are the projections onto I and M,
respectively. Following the terminology used in [7], Chap.7,
this resulting space is a warped product with fiber ðM, h,iMÞ,
base ðI, dt2Þ, andwarping function ρ. Furthermore, for a fixed
point t0 ∈ I, we say thatMn

t0
= ft0g ×Mn is a slice of I × ρM

n.
Recalling that a smooth immersionψ : Σn ⟶ I × ρM

n of
an n-dimensional connected manifold Σn is called to be a
hypersurface. Moreover, the induced metric via ψ on Σn will
be also denoted for h,i.

Throughout this paper, we assume that Σn is a two-sided
hypersurface. Recalling that a hypersurface Σn is called a two-
sided hypersurface if its normal bundle is trivial, which
means that there exists a globally defined unit normal vector
field N ∈X⊥ðΣÞ. For instance, every hypersurface with never
vanishing mean curvature is trivially two-sided. Moreover,
when the hypersurface Σn is two-sided, a choice of N on Σn

makes the second fundamental form globally defined on
X⊥ðΣÞ. In the sequel, the Riemannian warped product is
clearly orientable. This allows us to take, for each two-sided

hypersurface Σn, a unique unitary normal vector field N
globally defined on Σn in the same orientation of the vector
field ∂t , ∂t ≔ ∂/∂t, i.e., such that hN , ∂ti ≤ 0. By the wrong-
way Cauchy-Schwarz inequality (see [7], Proposition 5.30),
we have −1 ≤ hN , ∂ti ≤ 0, and the first equality holds at a
point p ∈ Σn if and only if N = −∂t at p. Moreover, we will
refer to the function Θ : Σ⟶ ½−1, 0�, Θ≔ hN , ∂ti, as the
angle function. On the other hand, we will represent a partic-
ular function naturally attached to the hypersurface Σn by the
height function h = ðπIÞjΣ : Σn ⟶ I.

It can be easily seen that a hypersurface in Riemannian
warped products is a slice if and only if the height function
is constant. We also observe that slice ft0g ×Mn of I × ρM

n

has constant mean curvature H = ρ′ðt0Þ/ρðt0Þ with respect
to the unit normal vector field N = −∂t .

Let �∇ and ∇ stand for gradients with respect to the met-
rics of I × ρM

n and Σn, respectively. In a simple computation,
we have

�∇πI = �∇πI , ∂t
� �

∂t = ∂t: ð4Þ

So, the gradient of h on Σn is

∇h = �∇πI

� �Τ = ∂Τt = ∂t −ΘN: ð5Þ

Particularly, we have

∇hj j2 = 1 −Θ2, ð6Þ

where || denotes the norm of a vector field on Σn.
Now, we consider that a Riemannian warped product

I × ρM
n endowed with a weighted function f , which will be

called a weighted Riemannian warped product I × ρM
n
f . In this

setting, for a two-sided hypersurfaceΣn immersed into I × ρM
n
f ,

the f -divergence operator on Σn is defined by

div f Xð Þ = ef div e−f X
� �

, ð7Þ

where X is a tangent vector field on Σn.
For a smooth function u : Σn ⟶ℝ, we define its drifting

Laplacian by

Δf u = div f ∇uð Þ = Δu − ∇u,∇fh i, ð8Þ

we will also denote such an operator as the f -Laplacian of
Σn.

According to Gromov [8], the weighted mean curvature,
or f -mean curvature Hf of Σ

n, is given by

nHf = nH + �∇f ,N
� �

, ð9Þ

where H is the standard mean curvature of hypersurface Σn

with respect to the Gauss map N .
Notice it follows from a splitting theorem by the case (see

[9], Theorem 1.2) that if a weighted Riemannian warped
product I × ρM

n
f is endowed with a bounded weighted
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function f and such that �Ricf ðV , VÞ ≥ 0 for all vector fields V
on I × ρM

n
f , then f must be constant along ℝ. So, motivated

by this result, in the following, we will consider weighted
Riemannian warped products I × ρM

n
f whose weighted

function f does not depend on the parameter t ∈ I, that
is h�∇f , ∂ti = 0. Moreover, for simplicity, we will refer to
them as �Mn+1 ≔ I × ρM

n
f .

Remark 1. We note that the f -mean curvature Hf of a slice

ft0g ×Mn in a weighted Riemannian warped product �Mn+1

is given by,

Hf =
ρ′ t0ð Þ
ρ t0ð Þ : ð10Þ

Indeed, since −∂t =N is a normal vector field to the slice
ft0g ×Mn, from (9), we have that Hf =H = ρ′ðt0Þ/ρðt0Þ.

For the proof of our main results in this paper, we need
the following formulas that will be the extensions of Lemma
2 in [10].

Lemma 2 ([10]). Let ψ : Σn ⟶ I × ρM
n
f be a hypersurface

immersed in a weighted Riemannian warped product, with
height function h. Then

Δfσ hð Þ = nρ hð Þ ρ′ hð Þ
ρ hð Þ +HfΘ

 !
, ð11Þ

Δf h = log ρð Þ′ hð Þ n − ∇hj j2� �
+ nHfΘ, ð12Þ

Δf ρ hð Þ = n
ρ′ hð Þ2
ρ hð Þ + ρ hð Þ log ρð Þ′′ hð Þ ∇hj j2 + nρ′ hð ÞHfΘ,

ð13Þ
where σðtÞ is a primitive function of ρðtÞ.

In the following terminology introduced in [11], we
present the definition of the weak maximum principle for
the drifted Laplacian. The next lemma extended the result
of [11].

Lemma 3 ([11]). Let ðMn, h,iM , e−f dMÞ be an n-dimensional
(not necessarily complete) weighted Riemannian manifold.
We say that the weak maximum principle for the f -Laplace
operator Δf holds on M, if for any smooth bounded above
function u on M, there exists a sequence fpjg ⊂M such that

lim
j
u pj
� �

= sup u, and lim
j
Δf u pj

� �
≤ 0: ð14Þ

Equivalently, for any smooth bounded below function u
on M, then there is a sequence fqjg ⊂M such that

lim
j
u qj
� �

= inf u, lim
j
Δf u qj

� �
≥ 0: ð15Þ

On the other hand, a smooth function u on a weighted
manifold Mf is called f -superharmonic if Δf u ≤ 0. Taking
this into account, a noncompact weighted manifold ðMn, ; ;
e−f dMÞ is said to be f -parabolic if it does not admit noncon-
stant positive f -superharmonic functions on M. So, we can
conclude the following extension of Theorem 1 in [12],
which establishes sufficient conditions to ensure that the
two-sided hypersurface Σn in �Mn+1 is f -parabolic.

Lemma 4 ([12]). Let Σn be a complete two-sided hypersurface
in a weighted Riemannian warped product I × ρM

n
f whose

fiber M has f -parabolic universal covering. If the angle func-
tion Θ is bounded and the restriction ρðhÞ on Σn of warping
function ρ satisfies:

(c1) sup ρðhÞ <∞
(c2) inf ρðhÞ > 0
then, Σn is f -parabolic.

3. Uniqueness Results in Weighted Riemannian
Warped Products

In this section, we will study the uniqueness for complete
hypersurfaces in weighted Riemannian warped products
�Mn+1. Before describing our main results, we will prove
some auxiliary propositions which will be essential in the
sequel.

Proposition 5. If the weighted manifold ðMn, h,iM , e−f dMÞ is
f -parabolic, then the weak maximum principle for the f
-Laplace operator Δf holds on M.

Proof. Since weighted manifold M is f -parabolic, using Cor-
ollary 6.4 in [13] it follows that M is also stochastically
complete.

On the other hand, by the fact which in [11] that M sat-
isfies the weakmaximum principle for the f -Laplace operator
Δf if and only if M is stochastically complete, this concludes
the proof.

Furthermore, for any compact subset Ω ⊂ ðMn, h,iM , e−f
dMÞ, we define the f -capacity of Ω as,

capf Ωð Þ = inf
ð
M

∇uj j2e−f dM : u ∈ Lipf Mð Þ, u
����
Ω

≡ 1
	 


,

ð16Þ

where Lipf ðMÞ is the set of all compactly supported Lipschitz
functions on M. By the fact that a weighted manifold is
f -parabolic if and only if capf ðΩÞ = 0 for any compact
set Ω.

The following lemma is the extension of Lemma 3 in [14],
which will allow us to obtain our technical result.

Lemma 6 ([14]). Let ðMn, h,iM , e−f dMÞ be an nð≥2Þ -dimen-
sional weighted manifold and consider v ∈ C2ðMÞ which
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satisfies vΔf v ≥ 0. Let BR be a geodesic ball of radius R around
p ∈M. For any r such that 0 < r < R, we have

ð
Br

∇vj j2e−f dM ≤
4 sup

BR

v2

μr,R
, ð17Þ

where Br denotes the geodesic ball of radius r around p ∈M
and 1/μr,R is the f -capacity of the annulus BR \ �Br .

Proposition 7. Let ðMn, h,iM , e−f dMÞ be an f -parabolic
weighted manifold and u ∈ C2ðMÞ be a positive function on
M and u∗ = supMu < +∞. If Δf u does not change the sign
on M, then u is constant on M.

Proof. Since Δf u does not change the sign onM, thus Δf u ≥ 0
or Δf u ≤ 0. If Δf u ≥ 0, then uΔf u ≥ 0. Considering u is
bounded from above and u > 0, we shall find a positive
constant C such that u2 ≤ C on M. For a geodesic ball
BR of radius R around p ∈M, by Lemma 6, for any r such
that 0 < r < R, we have that the function u satisfies

ð
Br

∇uj j2e−f dM ≤
4C
μr,R

: ð18Þ

Taking into account that M is f -parabolic, we know
that 1/μr,R ⟶ 0 as R⟶∞, that is, j∇uj2 vanishes iden-
tically on M. So, u is constant on M.

On the other hand, when Δf u ≤ 0, it follows that u is a f
-superharmonic function on M, which is bounded from
above. So, the conclusion now follows from f -parabolicity.

In the following, applying the weak maximum principle,
we provide the sign relationship between the f -mean
curvature and the derivative of warping function, in which
the results extend the Lemma 14 in [15]. We point out that,
to prove the following results, we do not require that the
f -mean curvature Hf of the hypersurface Σn is constant.

First, recall that a slab of a weighted Riemannian warped
product I × ρM

n
f is a region of the type

t1, t2½ � ×Mn
f = t, pð Þ ∈ I × ρM

n
f : t1 ≤ t ≤ t2

n o
: ð19Þ

Proposition 8. Let ψ : Σn ⟶ I × ρM
n
f be a hypersurface with

nonvanishing f -mean curvature which is contained in a slab.
Choose on Σ the orientation such thatHf > 0. Assume that the
weak maximum principle for the f -Laplace operator Δf holds
on Σ. If either

(i) The warping function ρ is monotonic or

(ii) The function ðlog ρÞ′ is nondecreasing
then ρ′ðhÞ ≥ 0. On the other hand, if Hf < 0, then

ρ′ðhÞ ≤ 0.

Proof. Since the hypersurface Σn is contained in a slab, then
the height function h is bounded and supΣσðhÞ = σðh∗Þ,
infΣσðhÞ = σðh∗Þ, where h∗ = supΣh, h∗ = infΣh. Applying
the weak maximum principle to the f -Laplacian ΔfσðhÞ, we
may find two sequences fpjg, fqjg ⊂ Σn such that

lim
j
σ h pj

� �� �
= σ h∗ð Þ, lim

j
Δfσ h pj

� �� �
≤ 0,

lim
j
σ h qj

� �� �
= σ h∗ð Þ, lim

j
Δfσ h qj

� �� �
≥ 0:

ð20Þ

From (11), we have ΔfσðhÞ = nρðhÞððρ′/ρÞðhÞ +HfΘÞ,
then

lim
j
Δfσ h pj

� �� �
= lim

j
nρ h pj

� �� � ρ′
ρ

h pj
� �� �

+Θ pj
� �

Hf pj
� � !

≤ 0,

ð21Þ

lim
j
Δfσ h qj

� �� �
= lim

j
nρ h qj

� �� � ρ′
ρ

h qj
� �� �

+Θ qj
� �

Hf qj
� � !

≥ 0:

ð22Þ

(i) Since Hf > 0, from (22), we get

lim
j

ρ′
ρ

h qj
� �� �

≥ lim
j
−Θ qj
� �

Hf qj
� �

≥ 0, ð23Þ

where the last inequality is due to −1 ≤Θ ≤ 0. Further-
more, taking into account that ρðhÞ is monotonic, therefore
ρ′ðhÞ ≥ 0.

On the other hand, since Hf < 0 and −1 ≤Θ ≤ 0, jointly
with (21), we have

lim
j

ρ′
ρ

h pj
� �� �

≤ lim
j
−Θ pj
� �

Hf pj
� �

≤ 0: ð24Þ

So ρ′ðhÞ ≤ 0 follows from that ρðhÞ is monotonic.

(ii) Since Hf > 0, −1 ≤Θ ≤ 0, and ðlog ρÞ′ is nondecreas-
ing, it follows from (22) that

ρ′
ρ

h∗ð Þ ≥ lim
j
−Θ qj
� �

Hf qj
� �

≥ 0: ð25Þ

Therefore,

ρ′
ρ

hð Þ ≥ ρ′
ρ

h∗ð Þ ≥ 0: ð26Þ

So ρ′ðhÞ ≥ 0.
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Now assume that Hf < 0, from (21), we have

ρ′
ρ

h∗ð Þ ≤ lim
j
−Θ pj
� �

Hf pj
� �

≤ 0: ð27Þ

Therefore, we conclude that

ρ′
ρ

hð Þ ≤ ρ′
ρ

h∗ð Þ ≤ 0: ð28Þ

So ρ′ðhÞ ≤ 0.
After the following theorem, we derive our uniqueness

results for parabolic hypersurfaces.

Theorem 9. Let �Mn+1 = I × ρM
n
f be a weighted Riemannian

warped product whose fiberM has f -parabolic universal cov-
ering. Let ψ : Σn ⟶ �Mn+1 be a complete hypersurface with
nonvanishing f -mean curvature which lies in a slab. Suppose
the warping function ρðhÞ satisfies conditions ðiÞ or ðiiÞ. If
H2

f ≤ ðρ′2/ρ2ÞðhÞ, then Σn is a slice.

Proof. SinceM has f -parabolic universal covering, Σ lies in a
slab and −1 ≤Θ ≤ 0; then, we deduce that Σ is f -parabolic by
Lemma 4. Moreover, from Proposition 5, it follows that weak
maximum principle for the f -Laplace operator Δf holds on Σ
. Proceeding as above and considering the assumption that
the warping function ρðhÞ satisfies conditions (i) or (ii), we
have that Proposition 8 holds true.

In the case where Hf > 0, by Proposition 8, we have

ρ′ðhÞ ≥ 0. Combining the assumption H2
f ≤ ðρ′2/ρ2ÞðhÞ,

we obtain Hf ≤ ðρ′/ρÞðhÞ. Therefore, from (11), we have

Δfσ hð Þ = nρ hð Þ ρ′
ρ

hð Þ +HfΘ

 !
≥ nρ hð Þ ρ′

ρ
hð Þ −Hf

 !
≥ 0,

ð29Þ

where the first inequality is due to Θ ≥ −1.
Moreover, since σðhÞ is a positive smooth function and

there is a constant C such that σðhÞ ≤ C. From Proposition
7, we conclude that σðhÞ, and hence, h is constant. Conse-
quently, Σn is a slice.

Finally, in the case where Hf < 0, we know from Proposi-

tion 8 that ρ′ðhÞ ≤ 0, so that Hf ≥ ðρ′/ρÞðhÞ. Therefore,

Δfσ hð Þ = nρ hð Þ ρ′
ρ

hð Þ +HfΘ

 !
≤ nρ hð Þ ρ′

ρ
hð Þ −Hf

 !
≤ 0:

ð30Þ

The proof then follows as in the case Hf > 0.
Moreover, if warping function ρðhÞ satisfies condition

(ii), then using (13), we have the next result which extends
Theorem 9.

Theorem 10. Let �Mn+1 = I × ρM
n
f be a weighted Riemannian

warped product whose fiber M has f -parabolic universal cov-
ering. Let ψ : Σn ⟶ �Mn+1 be a complete two-sided hypersur-
face that lies in a slab. Suppose the warping function ρðhÞ
satisfies conditions (ii). If the f -mean curvature Hf satisfies

H2
f ≤ ð1/Θ2Þðρ′ðhÞ2/ρðhÞ2Þ, then Σn is a slice.

Proof. From (13), we have

1
ρ hð ÞΔf ρ hð Þ = n

ρ′ hð Þ2
ρ hð Þ2 + log ρð Þ′′ hð Þ ∇hj j2 + n

ρ′ hð Þ
ρ hð Þ HfΘ

≥ n
ρ′ hð Þ2
ρ hð Þ2 + log ρð Þ′′ hð Þ ∇hj j2 − n

2
ρ′ hð Þ2
ρ hð Þ2 +H2

fΘ
2

 !

≥
n
2

ρ′ hð Þ2
ρ hð Þ2 −H2

fΘ
2

 !
+ log ρð Þ′′ hð Þ ∇hj j2:

ð31Þ

By the hypothesis, we have Δf ρðhÞ ≥ 0. Moreover, since
Σn lies in a slab, and ρðhÞ is a positive smooth function, then
there exists a positive constant C such that ρðhÞ ≤ C. So, we
can apply Proposition 7 to get ρðhÞ as constant. Therefore,
Σn is a slice.

Now, we consider the ðn + 1Þ-dimensional weighted
hyperbolic spaceℍn+1, which instead of the more commonly
used weighted half-space model, as the weighted warped
product ℝ × etℝ

n
f . It can be easily seen that the slices ft0g ×

ℝn
f of ℍn+1 =ℝ × etℝ

n
f are precisely the horospheres. Fur-

thermore, according to Theorem 10, we have the following
application in weighted hyperbolic space.

Corollary 11. Let ℍn+1 =ℝ × etℝ
n
f be a weighted hyperbolic

space whose fiber ℝn has f -parabolic universal covering and
let ψ : Σn ⟶ℍn+1 be a complete two-sided hypersurface
which is contained in a slab. If H2

f ≤ ð1/Θ2Þ, then Σn is a slice.

Next, we will use the weak maximum principle to study
another rigidity of the hypersurfaces in weighted Riemannian
warped products.

Theorem 12. Let �Mn+1 = I × ρM
n
f be a weighted Riemannian

warped product whose fiberM has f -parabolic universal cov-
ering. Let ψ : Σn ⟶ �Mn+1 be a complete two-sided hypersur-
face which lies in a slab. Suppose the warping function ρðhÞ
satisfies condition (ii), and there is a point h0 ∈ I such that
ρ′ðh0Þ = 0. If Hf does not change sign, then Hf = 0 and Σn

is a slice.

Proof. Since the hypersurface Σn is contained in a slab, then h
is bounded, and supΣh = h∗, infΣh = h∗. Reasoning as in the
proof of Theorem 9, we have the weak maximum principle
for f -Laplace operator Δf holds on Σn; then, there exist two
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sequences fpjg, fqjg ⊂ Σn such that

lim
j
h pj
� �

= h∗, lim
j
Δf h pj
� �

≤ 0,

lim
j
h qj
� �

= h∗, limj Δf h qj
� �

≥ 0:
ð32Þ

From (12), we have that

lim
j
Δf h pj
� �

= lim
j

ρ′
ρ

h pj
� �� �

n − ∇h pj
� ���� ���2� �

+ nΘ pj
� �

Hf pj
� �

≤ 0,

ð33Þ

lim
j
Δf h qj
� �

= lim
j

ρ′
ρ

h qj
� �� �

n − ∇h qj
� ���� ���2� �

+ nΘ qj
� �

Hf qj
� �

≥ 0:

ð34Þ
Take −1 ≤Θ < 0. Thus, it follows from (33) and (34) that

Hf pj
� �

≥
−ρ′ h∗ð Þ/ρ h∗ð Þ
� �

n−∣∇h pj
� ����2	 


nΘ pj
� � , ð35Þ

and

Hf qj
� �

≤
−ρ′ h∗ð Þ/ρ h∗ð Þ
� �

n − ∇h qj
� ���� ���2	 


nΘ qj
� � : ð36Þ

Furthermore, taking into account that ðρ′/ρÞ is nonde-
creasing yields

ρ′
ρ

h∗ð Þ ≤ ρ′
ρ

h0ð Þ ≤ ρ′
ρ

h∗ð Þ: ð37Þ

On the other hand, by (6), we have n − j∇hj2 > 0. There-
fore, using (35) and (36), we conclude that

Hf pj
� �

≥
−ρ′ h0ð Þ/ρ h0ð Þ
� �

n − ∇h pj
� ���� ���2	 


nΘ pj
� � = 0,

Hf qj
� �

≤
−ρ′ h0ð Þ/ρ h0ð Þ
� �

n − ∇h qj
� ���� ���2	 


nΘ qj
� � = 0:

ð38Þ

Considering that Hf does not change the sign on Σn,
hence Hf = 0, that is, Σn is a f -minimal hypersurface. Using
(13), we have

Δf ρ hð Þ = n
ρ′ hð Þ2
ρ hð Þ + ∇hj j2ρ hð Þ log ρð Þ′′ hð Þ ≥ 0: ð39Þ

In the following, by the same argument as in Theorem 10,
we have Σn is a slice.

4. Uniqueness Results in Weighted
Product Spaces

In this section, we establish some uniqueness results con-
cerning the complete hypersurfaces Σn in weighted product
spaces I ×Mn

f . Firstly, as a consequence of Theorem 9, when
the ambient space is weighted product space, we have the fol-
lowing result.

Corollary 13. Let �Mn+1 = I ×Mn
f be a weighted product space

whose fiber M has f -parabolic universal covering, and let
ψ : Σn ⟶ �Mn+1 be a complete hypersurface with nonvan-
ishing f -mean curvature which is contained in a slab. If
Hf does not change the sign on Σn, then Σn is a slice.

Proof. From (12), we have

Δf h = nHfΘ: ð40Þ

Since Hf does not change sign, we have Δf h does not
change the sign on Σn, and proceeding as in the proof of The-
orem 9, we obtain that Σn is parabolic. Furthermore, we
know that height function h is bounded, which implies that
Σn is a slice from Proposition 7.

Theorem 14. Let ψ : Σn ⟶ I ×Mn
f be a complete hypersur-

face with nonvanishing constant f -mean curvature in a
weighted product space I ×Mn

f whose fiberM has f -parabolic
universal covering. Assume that KM ≥ k for some nonnegative
constant k and the weighted function f is convex. If −1 ≤Θ
≤ −ð ffiffiffi

2
p

/2Þ, then Σn is a slice.

Proof. Let E1,⋯, En be a (local) orthonormal frame in XðΣÞ;
using the Gauss equation, we have

Ric X, Xð Þ = 〠
n

i=1
�R X, Eið ÞX, Ei

� �
+ nH AX, Xh i − AXj j2,

ð41Þ

for any X ∈XðΣÞ. Moreover, we also have

�R X, Eið ÞX, Ei

� �
= KM X∗, E∗

ið Þ X∗, X∗h i E∗
i , E∗

ih i − X∗, E∗
ih i2

� �
,

ð42Þ

where KM is the sectional curvature of M, X∗ = X − hX,
∂ti∂t and E∗

i = Ei − hEi, ∂ti∂t are the projections of the tan-
gent vector fields X and Ei onto M, respectively.
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Considering the hypothesis that KM ≥ k for some non-
negative constant k, and by direct computation, we have

〠
n

i=1
�R X, Eið ÞX, Ei

� �
≥ k n − 1ð Þ Xj j2 − n − 2ð Þ X,∇hh i2 − Xj j2 ∇hj j2� �

:

ð43Þ

Summing up,

Ric X, Xð Þ ≥ k n − 1ð Þ Xj j2 − n − 2ð Þ X,∇hh i2 − Xj j2 ∇hj j2� �
+ nH AX, Xh i − AXj j2:

ð44Þ

Furthermore, taking into account that the weighted func-
tion f is convex, we have

Hessf X, Xð Þ = �Hessf X, Xð Þ + �∇f ,N
� �

AX, Xh i ≥ �∇f ,N
� �

AX, Xh i:
ð45Þ

So

Ricf X, Xð Þ ≥ k n − 1ð Þ Xj j2 − n − 2ð Þ X,∇hh i2 − Xj j2 ∇hj j2� �
+ nHf AX, Xh i − AXj j2:

ð46Þ

Particularly,

Ricf ∇h,∇hð Þ ≥ k n − 1ð Þ 1 − ∇hj j2� �
∇hj j2 + nHf A∇h,∇hh i − A∇hj j2:

ð47Þ

On the other hand, using the Bochner-Lichnerowiz for-
mula (see [2]),

1
2Δf ∇hj j2� �

= Hesshj j2 + Ricf ∇h,∇hð Þ + ∇Δf h,∇h
� �

, ð48Þ

where

Hessh Xð Þ = ∇X∇h =ΘAX, for any X ∈X Σð Þ: ð49Þ

Thus, from (5), we have that

Hesshj j2 = Aj j2Θ2 = Aj j2 1 − ∇hj j2� �
: ð50Þ

Using Hf as a constant and (12), we have

∇Δh = nHf∇ Θð Þ = −nHf A ∇hð Þ: ð51Þ

Consequently,

1
2Δf ∇hj j2 ≥ k n − 1ð Þ 1 − ∇hj j2� �

∇hj j2� + Aj j2 1 − 2 ∇hj j2� �
:

ð52Þ

Next, by the hypothesis −1 ≤Θ ≤ −ð ffiffiffi
2

p
/2Þ and (6), we

have j∇hj2 ≤ ð1/2Þ. So, from (52), it follows that

Δf ∇hj j2 ≥ 2k n − 1ð Þ 1 − ∇hj j2� �
∇hj j2 ≥ 0: ð53Þ

Moreover, reasoning as in the proof of Theorem 9, we
have that Σn is parabolic. Since j∇hj2 is bounded on Σn, thus
by Proposition 7, we conclude that j∇hj2 is constant. So, Δf

j∇hj2 = 0. From (53), we also have j∇hj2 = 0 on Σn; conse-
quently, h is constant, that is, Σn is a slice.

To prove our next result, we need the following auxiliary
lemma.

Lemma 15 ([3]). Let ψ : Σn ⟶ I ×Mn
f be a hypersurface

with constant f -mean curvature immersed in a weighted
product space I ×Mn

f ; then

ΔfΘ = − Aj j2 + fRicf N∗,N∗ð Þ
� �

Θ, ð54Þ

where fRicf is the Bakry-Émery-Ricci tensor of the fiber M
and N∗ =N − hN , ∂ti∂t is the orthonormal projection of N
onto M.

Theorem 16. Let ψ : Σn ⟶ I ×Mn
f be a complete hypersur-

face with nonvanishing constant f -mean curvature in a
weighted product space I ×Mn

f whose fiber M has f -para-
bolic universal covering. Assume that KM ≥ −k for some posi-
tive constant k and the weighted function f is convex. If
j∇hj2 ≤ ððαjAj2Þ/ððn − 1ÞkÞÞ, for some constant 0 < α < 1, then
Σn is a slice.

Proof. By the Gauss equation and with a direct computation,
we have

fRicf N∗,N∗ð Þ ≥ −k n − 1ð Þ ∇hj j2: ð55Þ

In the case where −1 ≤Θ < 0, from Lemma 15 and the
condition j∇hj2 ≤ ððαjAj2Þ/ððn − 1ÞkÞÞ, we have

ΔfΘ ≥ − Aj j2 − k n − 1ð Þ ∇hj j2� �
Θ ≥ −

1
α
− 1

� �
k n − 1ð Þ ∇hj j2Θ ≥ 0:

ð56Þ

On the other hand, as we did before in the proof of The-
orem 9, it follows that Σn is parabolic. Moreover, since Θ is
bounded on Σn, we conclude from Proposition 7 that Θ is
constant. So, ΔfΘ = 0. Using (56), we have j∇hj2 = 0, which
implies that h is constant. Therefore, Σn is a slice.

As a consequence of the proof of Theorem 16, we can get
the following corollary.

Corollary 17. Let ψ : Σn ⟶ I ×Mn
f be a complete hypersur-

face with nonvanishing constant f -mean curvature in a
weighted product space I ×Mn

f whose fiberM has f -parabolic
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universal covering. Assume that KM ≥ −k and �Hessf ≥ −β for
some positive constants k and β. If j∇hj2 ≤ ððαjAj2Þ/ððn − 1Þ
k + βÞÞ, for some constant 0 < α < 1, then Σn is a slice.

5. Nonparametric Results for the Entire Graphs

In this section, we consider the vertical graphs in a weighted
Riemannian warped product �Mn+1 = I × ρM

n
f , which are

defined by

Σn uð Þ = u xð Þ, xð Þ: x ∈Ωf g ⊂ �Mn+1, ð57Þ

whereΩ ⊆M be a connected domain ofM and u is a smooth
function on Ω. Moreover, the metric induced on Ω from the
metric on ambient space �Mn+1 via ΣnðuÞ, which is repre-
sented by

,h i = du2 + ρ2 uð Þ ,h iM: ð58Þ

It is easy to see from the metric induced on Ω of ΣnðuÞ
that if the function ρðuÞ is bounded on Ω, the graphs ΣnðuÞ
is complete. Furthermore, the graph ΣnðuÞ is said to be entire
if Ω =M.

In the following, we can give the reason as in the proof of
the Theorem 9 to obtain a nonparametric result.

Corollary 18. Let �Mn+1 = I × ρM
n
f be a weighted Riemannian

warped product whose fiberM has f -parabolic universal cover-
ing, and let ΣnðuÞ be an entire graph with nonvanishing f
-mean curvature which lies in a slab. Suppose the warping func-

tion ρðhÞ satisfies condition ðiÞ or ðiiÞ. If H2
f ≤ ðρ′2/ρ2ÞðhÞ,

then ΣnðuÞ is a slice.

Next, it is not difficult to obtain the following nonpara-
metric version of Theorem 10.

Corollary 19. Let �Mn+1 = I × ρM
n
f be a weighted Riemannian

warped product whose fiber M has f -parabolic universal
covering. Let ΣnðuÞ be an entire graph which lies in a slab.
Suppose the warping function ρðhÞ satisfies condition (ii). If the
f -mean curvature Hf satisfies H

2
f ≤ ð1/Θ2Þððρ′ðhÞ2Þ/ðρðhÞ2ÞÞ,

then ΣnðuÞ is a slice.

If, moreover, ρ = 1, we can have the following corollaries
of all other theorems of Section 4.

Corollary 20. Let ΣnðuÞ be an entire graph with nonvanishing
constant f -mean curvature in a weighted product space
I ×Mn

f whose fiber M has f -parabolic universal covering.
Assume that KM ≥ k for some nonnegative constant k and
the weighted function f is convex. If −1 ≤Θ ≤ −ð ffiffiffi

2
p

/2Þ,
then ΣnðuÞ is a slice.

Corollary 21. Let ΣnðuÞ be an entire graph with nonvanishing
constant f -mean curvature in a weighted product space
I ×Mn

f whose fiber M has f -parabolic universal covering.

Assume that KM ≥ −k for some positive constant k and the
weighted function f is convex. If j∇hj2 ≤ ððαjAj2Þ/ððn − 1ÞkÞÞ,
for some constant 0 < α < 1, then ΣnðuÞ is a slice.
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