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Toward extreme face
super-resolution in the wild: A
self-supervised learning
approach

Ahmed Cheikh Sidiya* and Xin Li

Lane Department of Computer Science and Electrical Engineering, West Virginia University,

Morgantown, WV, United States

Extreme face super-resolution (FSR), that is, improving the resolution of face

images by an extreme scaling factor (often greater than ×8) has remained

underexplored in the literature of low-level vision. Extreme FSR in the wild

must address the challenges of both unpaired training data and unknown

degradation factors. Inspired by the latest advances in image super-resolution

(SR) and self-supervised learning (SSL), we propose a novel two-step approach

to FSR by introducing a mid-resolution (MR) image as the stepping stone.

In the first step, we leverage ideas from SSL-based SR reconstruction of

medical images (e.g., MRI and ultrasound) tomodeling the realistic degradation

process of face images in the real world; in the second step, we extract

the latent codes from MR images and interpolate them in a self-supervised

manner to facilitate artifact-suppressed image reconstruction. Our two-step

extreme FSR can be interpreted as the combination of existing self-supervised

CycleGAN (step 1) and StyleGAN (step 2) that overcomes the barrier of critical

resolution in face recognition. Extensive experimental results have shown that

our two-step approach can significantly outperform existing state-of-the-art

FSR techniques, including FSRGAN, Bulat’s method, and PULSE, especially for

large scaling factors such as 64.

KEYWORDS

extreme face super-resolution, self-supervised learning, degradation learning, latent

space interpolation, face in the wild

1. Introduction

Face recognition at long range (e.g., from hundreds to thousands of meters) or

high altitude (e.g., from aerial platforms such as UAVs) has received increasingly more

attention in recent years. At this distance, the resolution of facial regions in the acquired

images can be as low as 16 pixels. In the literature, the smallest spatial resolution

for a human operator to discern facial identity information has been reported to be

around 18 × 24 pixels (Bachmann, 1991). Despite rapid advances in face recognition

and super-resolution (SR), reliable extraction of face identity information from extreme

low-resolution (LR) face images such as Widerface (Yang et al., 2016) has remained

beyond the capability of current technologies. As shown in Figure 1, there exists a critical
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FIGURE 1

Motivation to study extreme FSR. (A) Preserving identity information using the Openface face matching tool (Amos et al., 2016) and StyleGAN

FSR is infeasible below the critical resolution of 64× 64. Note that our two-step SSL-based approach (marked blue) significantly outperforms

PULSE (Menon et al., 2020) (marked green). (B) This work presents a two-step SSL-based approach to extreme FSR–MR serves as the stepping

stone to facilitate both degradation learning and image reconstruction.

resolution of 64 × 64 below which even the latest StyleGAN-

based face SR (FSR) (Menon et al., 2020) cannot preserve

important facial identity information.

Another fundamental limitation of existing FSR methods

is that they mostly assume a synthetic degradation model;

that is, the LR image is a down-sampled version of the high-

resolution (HR) image. This assumption is not valid for LR

images in the wild due to the notorious difficulty in modeling

complex acquisition conditions related to varying illumination,

poses, and camera distances (the so-called “simulated-to-real

gap”, Köhler et al., 2019). It takes a lot of effort to capture

paired LR/HR images by adjusting the focal length of a camera

(still requiring image registration) (Cai et al., 2019). More

importantly, the generalization property of such a supervised

approach remains questionable. So far, the issue of modeling

real-world degradation has been tackled using a GAN-based

approach in Bulat et al. (2018), but with limited success; An

unsupervised learning approach to real-world SR has recently

been studied in Lugmayr et al. (2019) and Wei et al. (2020), but

it is not specifically tailored to faces.

Self-supervised learning (SSL) (Liu et al., 2021b) allows

two birds to be killed (large magnification ratio and unknown

degradation process) with one stone. Two lines of research

findings have been reported at the intersection of SSL and

SR. On the one hand, several recent works, such as Synthetic

Multi-Orientation Resolution Enhancement (SMORE) (Zhao

et al., 2020) and Self-supervised CycleGAN (Liu et al., 2021a),

have shown promising performance in modeling real-world

degradation in MRI and ultrasound images. They share the

principle of generating the required LR-HR pairs in a self-

supervised manner. On the other hand, SSL has demonstrated

initial success to extreme FSR—e.g., self-supervised photo-

upsampling via latent space extrapolation (PULSE) (Menon

et al., 2020) has shown promising SR reconstruction results

for the magnification ratio as large as 64. However, the LR

images used in PULSE are assumed to be synthetic, making its

generalization property to realistic LR images unknown.

In this paper, we propose a novel two-step FSR method

that combines the two prior lines of research (self-supervised

CycleGAN+StyleGAN). A new insight brought about by our

approach is to introduce a mid-resolution (MR) image as the

stepping stone connecting LR with HR (see Figure 2). Our

two-step FSR strategy simultaneously tackles challenges with

unknown degradation process and large magnification ratio

using the SSL strategy. In the first step, SSL allows us to bridge

the simulated-to-real gap by developing an embedded face

hallucination method. Similarly to self-supervised CycleGAN

(Liu et al., 2021b), ours enforces perceptual consistency by self-

supervised CycleGAN; unlike self-supervised CycleGAN (Liu

et al., 2021b), our network design is specially tailored for face

images (e.g., style-based generator). In the second step, SSL

allows us to achieve a large upsampling ratio through latent

space exploration, similar to StyleGAN-based PULSE (Menon

et al., 2020). Unlike PULSE, the MR image in our two-step

approach has a resolution of 128 × 128, which guarantees the

preservation of information on the identity of the face in the

latent space. Our technical contributions are summarized below.

(1) Two-step SSL-based FSR method. Previous work such

as PULSE (Menon et al., 2020) treats ×8 and ×64 as two

independent problems and trains separate networks. Our

approach introduces the MR image as a stepping stone

connecting LR with HR (the ×8 solution is embedded in

the ×64 one); the proposed two-step FSR method is based

on a hybrid of self-supervised CycleGAN (Liu et al., 2021b)

and StyleGAN (Karras et al., 2019), which unifies SSL-based

degradation learning and image upsampling.

(2) Self-supervised CycleGAN for degradation learning of

face images in the wild. Unlike Bulat’s open-loop approach
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FIGURE 2

Left: Simulated LR input (16× 16); middle: MR image (step-1

output, 128× 128); right: HR final (step-2 output, 1024× 1024).

(Bulat et al., 2018), we aim to exploit the dual-cycle losses of

forward and inverse processes (i.e., close-loop optimization),

as well as the adversarial characteristics of self-supervised

discriminator to promote a style-based generator for improved

perceptual consistency.

(3) Self-supervised StyleGAN for Semantic Interpolation in

Latent Space. Inspired by InterFaceGAN (Shen et al., 2020a),

we propose to cast FSR as a semantic interpolation problem in

latent space, which allows us to identify a principal direction in

HR face images and generate SR images by interpolating latent

codes. Our approach can be interpreted as imposing a Laplacian

prior on the latent code to regularize the inversion process. Our

FSR results dramatically outperform those of PULSE for the

upsampling ratio of 64 (see Figure 7).

2. Related works

2.1. Face super-resolution (FSR)

FSR (Bulat et al., 2018; Chen et al., 2018; Menon et al.,

2020), also known as face hallucination (FH) (Liu et al., 2007; Jia

and Gong, 2008; Wang et al., 2014), is one of the most studied

low-level vision problems due to the wide application of face

recognition systems in the real world. Model-based approaches

toward FSR/FH can be classified into Bayesian inference-

based, subspace learning-based, and sparse representation-based

approaches. Rapid advances in generative adversarial networks

(GANs) (Goodfellow et al., 2014) have made a splash in the

field of FSR in recent years. For example, designing a facial

geometry prior in terms of facial landmark heatmap and parsing

map has led to the construction of FSRNet and FSRGAN (Chen

et al., 2018) with end-to-end optimization. Most recently, an

attention map of facial components was implicitly imposed to

improve the performance of SR for face images in Kalarot et al.

(2020); StyleGAN’s style-based encoder (Karras et al., 2020) was

leveraged in the problem of FSR that leads to photo upsampling

through Latent Space Extrapolation (PULSE) (Menon et al.,

2020). Unfortunately, the performance of PULSE on real-

world low-resolution face images remains unsatisfactory, which

partially inspired this research.

2.2. Self-supervised learning

SSL has recently been studied for the SR of biomedical

and satellite images. SMORE (Zhao et al., 2020) is a self-

supervised anti-aliasing and SR Algorithm designed specifically

for MRI image reconstruction. A similar idea was developed

in ultrasound Image SR with perception consistency through

self-supervised CycleGAN (Liu et al., 2021b). Self-supervised

multi-image SR, namely DSA-Self (Nguyen et al., 2021), was

proposed for push-frame satellite images. Most recently, SSL

for real-world SR from dual-zoomed observations was proposed

in Zhang et al. (2022). The first step of our two-stage FSR is

closely related to these existing works; our focus is to develop

an SSL-based approach to degradation learning.

2.3. Semantic face image manipulation

Rapid advances in GAN-based face image synthesis (e.g.,

Karras et al., 2017, 2019, 2020) have inspired a flurry of work

on semantic face image manipulation. Image2StyleGAN (Abdal

et al., 2019) presented an efficient algorithm for embedding

a given image in the latent space of StyleGAN, allowing

semantic image editing operations. The extended latent space

(often known as “W+”) works better than the original latent

space (often known as “W”). Following this line of research,

InterFaceGAN (Shen et al., 2020a), StyleRig (Tewari et al., 2020),

and in-domain GAN inversion (Zhu et al., 2020) have been

developed for various semantic face image manipulation tasks

such as morphing attack, pose normalization, aging simulation,

expression transfer, and illumination compensation. The second

step of our two-stage FSR is built upon semantic manipulation

in the latent space and our method differs from the existing

approaches in terms of regularization strategy.

3. Problem formulation and system
overview

Given a set of LR face images XLR ∈ Rn×n and a set of

HR face images XHR ∈ RN×N , FSR deals with the problem of

learning a non-linear mapping f :XLR → XHR. Depending on

the modeling of the relationship between LR and HR, there are

two ways of formulating the FSR problem: (1) Simulated—LR

images are artificially downsampled versions of HR images. Such

paired LR/HR training data correspond to supervised learning

approaches [e.g., FSRNet/FSRGAN (Chen et al., 2018; Kalarot

et al., 2020; Menon et al., 2020)]; (2) Realistic—LR images are

acquired in the wild/real world. Such unpaired HR/LR training

data give rise to unsupervised learning approaches (e.g., Cai

et al., 2019; Lugmayr et al., 2019; Wei et al., 2020). The question

of how to model realistic degradation with large scaling factors

has remained an open problem in low-level vision.
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FIGURE 3

System overview: self-supervised CycleGAN (step-1, left) and self-supervised StyleGAN (step-2, right). Note that the MR image sized by

128× 128 serves as a bridge connecting the 16× 16 LR and 1024× 1024 HR images. The detail of Step 1 network architecture is shown in

Figure 4. The trained Low to High generator is used to get the MR image. Red arrows indicate the projection to the generative model latent

space. Green arrows represent the interpolation in the latent space as defined in Equation (6). The interpolated latent vectors are combined

using Equation (10).

Inspired by rapid advances in SR, we propose to tackle

both the problems of unknown degradation learning and the

large scaling factor using a two-stage SSL-based approach. In

the first stage, f1 :X
LR → XMR, we propose to tackle the

problem of modeling the unknown degradation process in LR

images by an SSL approach (refer to Figure 4). That is, to

overcome the challenge of acquiring paired LR/HR faces, it is

plausible to embed the FSR solution to simulated LR into the

more general solution to realistic LR. In other words, any of

existing works based on simulated LR faces can be used to pre-

train the generator network by paired LR/HR data; while such

pretrained generator network can be fine-tuned by unsupervised

learning using unpaired LR/HR data. Since both supervised and

unsupervised settings share the same generator network, an

SSL-based solution enjoys a good generalization property.

In the second stage, f2 :X
MR → XHR, we propose to cast

FSR as an SSL-based semantic editing problem for face images.

We advocate an interpolation instead of an exploration approach

(e.g., in self-supervised PULSE, Menon et al., 2020) based on

a recent study of semantics in latent space (Shen et al., 2020a).

In previous work (Menon et al., 2020), the latent vector in the

W+ space was searched by exploring the local neighborhood

that satisfies the data / likelihood constraint specified by the

SLR image. Inspired by the latest work (Shen et al., 2020a),

we propose to project face images of varying resolutions (e.g.,

MR vs. HR) onto their corresponding subspaces. By analogy

with conditional manipulation of particular attributes (e.g., pose

or age), we can generate the latent code of SR images by

interpolating along the principal normal direction toward the

HR-subspace. Improved image inversion with better artifact

suppression can be achieved by interpolating between the

estimated latent codes in the Gaussianized latent space (Wulff

and Torralba, 2020).

In summary, an overview of the proposed two-step SSL-

based FSR system is shown in Figure 3. It can be interpreted

as combining the strengths of both self-supervised CycleGAN

(Liu et al., 2021b) and StyleGAN (Karras et al., 2020). The

introduction of an MR image sized by 128 × 128 kills two birds

with one stone. On the one hand, it helps overcome the critical

resolution barrier, as shown in Figure 1, which was overlooked

by PULSE (Menon et al., 2020). On the other hand, it aims to

reduce the simulated-to-real gap by a self-supervised CycleGAN

(Liu et al., 2021b).

4. FSR via self-supervised CycleGAN

Given an image of extreme LR (e.g., 16 × 16), we propose

to introduce the MR image as an intermediate result to facilitate

degradation learning and image reconstruction tasks. Such an

MR image also supports the extraction of latent code in the

second step by overcoming the barrier of critical resolution.

4.1. Overview of network design

In the first step of our FSR approach, we focus on

the design of self-supervised CycleGAN (refer to Figure 4),

consisting of reconstruction networks (low-to-high generator

and discriminator) and degradation networks (high-to-low

generator and discriminator). Despite the structural similarity

to self-supervised CycleGAN (Liu et al., 2021b), we note that

our design contains the following important differences. (1)

We have taken into account the simulated to real gap (Köhler

et al., 2019). For simulated LR, our high-to-low generator

becomes downsampling, and the high-to-low discriminator is

bypassed, which degenerates into a vanilla GAN for supervised

learning similar to SRGAN (Ledig et al., 2017). In other words,

our FSR solution to simulated LR is embedded into that of

real LR and serves as a pre-training network following the

SSL principle. (2) Our design of high-to-low and low-to-

high networks uses the latest advances, including a style-based
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FIGURE 4

Overview of the CycleGan (Liu et al., 2021b) based architecture of step 1 of our method. Details of all components are presented in Section 4.

generator (Karras et al., 2019) and a self-attention mechanism

(Zhang et al., 2019) for FSR. These designs allow us to handle

various uncertainty factors (e.g., pose and expression variations)

in face images without explicitly estimating facial landmarks

such as FSRNet (Chen et al., 2018). Note that erroneous

landmark estimation results often have a catastrophic impact

on FSR reconstruction. (3) Our training targets joint end-to-end

optimization of both High-to-Low and Low-to-High networks,

which shows faster convergence and improved stability over

separated training in Bulat’s approach (Bulat et al., 2018). Both

the selection of loss functions and the exclusion of normalization

strategies [e.g., AdaIN (Huang and Belongie, 2017) and spectral

normalization (Miyato et al., 2018)] jointly contribute to better

preservation of facial identity and suppression of artifacts.

4.1.1. Low-to-high generator

Low-to-high generator consists of four sections of six, three,

two, and one successive residual attention block separated by a

bilinear upsampling of two. Similarly to the GAN progressive

growth strategy (Karras et al., 2017), we start with the input of

the patch 16 × 16 and gradually increase the spatial resolution

by a factor of two after each section. In this way, the LR patch is

upsampled by a factor of eight after three sections reach the final

dimension of 128× 128.

4.1.2. Low-to-high discriminator

Low-to-high discriminator consists of four convolution

layers followed by a leaky relu layer and a last convolution layer.

We have also added two layers of self-attention (Zhang et al.,

2019) at the end of the network, which progressively increases

the complexity of the SR task (by matching the design of the

style-based generator).

4.1.3. High-to-low generator

High-to-low generator has an encoder-decoder type

architecture (Badrinarayanan et al., 2017): the encoder consists

of five residual + attention blocks (Zhang et al., 2018b) each

followed by an average pooling layer and the decoder consists

of four residual + attention blocks, where the first two are

followed by a bilinear upsampling layer (Karras et al., 2017).

Therefore, the input is downsampled by a factor of 32 and

upsampled by a factor of four, which produces a downsampled

image by a factor of eight, but with more flexibility in modeling

real-world degradation (e.g., unknown blur, Gu et al., 2019).

We also concatenate a noise vector into the input image of the

network using a fully connected layer, which contributes to the

robustness of our degradation modeling.

4.1.4. High-to-low discriminator

High-to-low discriminator consists of three convolution

layers followed by a leaky relu layer and a last convolution layer.

Similarly, we have added two layers of self-attention at the end

of the network. Compared to the high-to-low discriminator in

Bulat’s method (Bulat et al., 2018), ours shares a similar strategy

of skipping batch normalization, but differs in the introduction

of self-attention layers and LeakyRelu units. In other words,
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Bulat’s is closer to Resnet (Ledig et al., 2017), while ours is more

similar to non-local neural networks (Wang et al., 2018). Note

that our High-to-Low and Low-to-High Discriminators share

similar architectures: In the presence of simulated LR, we simply

skip this module.

4.2. Loss functions and training
procedures

4.2.1. High-to-low loss functions

The High-to-Low generator loss is the weighted sum of the

content loss and the GAN loss, as shown in Equation (1) where

α = 1 and β = 0.001.

LG = αLpixel + βLGGAN (1)

The relativistic GAN loss and the pixel loss follow the

formula in Equations (2) and (3) (Jolicoeur-Martineau, 2018).

Lr(u, v) =
1

2

{

E
u∼Pu

[

max
(

0, 1−
(

D(u)− E
v∼Pv

[

D(v)
]))]

+

E
v∼Pv

[

max
(

0, 1+
(

D(v)− E
u∼Pu

[

D(u)
]))]}

(2)

L2(u, v) =
1

WH

W
∑

i=1

H
∑

j=1

(ui,j − vi,j)
2 (3)

In a supervised setting, we have LGGAN = Lr(IFHR, IHR),

LDGAN = Lr(IHR, IFHR) and Lpixel = L2(IHR, IFHR) where

FHR refers to fake HR images; In an unsupervised setting,

we have LGGAN = Lr(IRLR, IFLR), L
D
GAN = Lr(IFLR, IRLR),

and Lpixel = L2(ISLR, IFLR) where ISLR, IRLR, IFLR denote the

simulated/real/fake LR images, respectively.

4.2.2. Low-to-high loss functions

Similarly, the Low-to-High generator loss is the weighted

sum of content loss and GAN loss, as shown in Equation (1)

where α = 1 and β = 0.001. The GAN losses and the

pixel loss follow the same formula as in Equations (2) and (3):

LGGAN = Lr(IHR, IFHR), L
D
GAN = Lr(IFHR, IHR) and Lpixel =

L2(IHR, IFHR) where IFHR is the fake HR image generated by

the Low-to-High generator and IHR is the real-world HR image.

It should be noted that a major difference between this work

and Bulat et al. (2018) lies in the selection of regularization

parameters. In Bulat et al. (2018), the specification of (α,β)

satisfies the constraint αLpixel < βLGAN in general. We argue

that this is not desirable from the perspective of preserving

facial identity. We advocate the setting of parameters of α =

1 and β = 0.001, leading to comparable loss terms (i.e.,

αLpixel ≈ βLGAN ). According to our own experience, such a

balanced choice of regularization terms is beneficial for end-to-

end optimization.

4.2.3. Training strategy

It is worth mentioning that we have NOT augmented the

data during training using standard techniques such as image

flipping, scaling, and rotation. Our experience suggests that,

for unsupervised learning, data augmentation does not help

improve the accuracy of face SR reconstruction, but increases

the computational burden and the risk of introducing artifacts

(due to unpaired LR-HR training data). We have used a batch

of size 32 and the total training requires about 20 epochs or

∼ 143,000 generator and discriminator updates (by contrast,

Bulat et al., 2018 requires 570,000 updates). The learning rate is

maintained at 0.001 throughout the training process (in contrast

to the decoupled training in Bulat et al., 2018).We also use Adam

optimizer (Kingma and Ba, 2014) with β1 = 0.9 and β2 = 0.999

and adopt a PyTorch-based implementation (Paszke et al., 2019).

5. FSR via self-supervised latent
space interpolation

In the second step of our FSR approach, we extract the

latent code from the intermediate MR result and reconstruct

the HR image from the latent code using StyleGAN. A similar

idea exists in PULSE (Menon et al., 2020); however, PULSE

assumes a synthetic LR image and lacks generalization to

realistic LR images.

5.1. FSR via semantic face manipulation

The success of StyleGAN-based face image synthesis (Karras

et al., 2020) is largely due to the construction of a latent space

(e.g., W or W +) in which semantic information is exploited

for the reconstruction of high-quality face images. A pre-trained

GAN model such as Karras et al. (2020) can be formulated

as a deterministic function g :W → X where W denotes

the low-dimensional latent space and X is the image space

(here X = XHR). Instead of constructing a semantic scoring

function as in Shen et al. (2020a), we propose to consider an

embedding function e :XMR → W as in Image2StyleGAN

(Abdal et al., 2019). In this way, we can bridge the MR image

space and the HR image space with f2 = g(e(XMR)). Due to

the two properties (hyperplane separation and large deviation)

of semantics in the latent space (Shen et al., 2020a), we can

formulate the construction of f2 as a generalized problem of

semantic face editing.

The key new insight brought by this work is that the spaces

of XLR,XMR,XHR—when projected onto the latent space W—

are separated just like the semantic attributes of face images

(e.g., pose, age, gender). It follows that there exists a hyperplane

in the latent space such that all samples from the same side

have shared characteristics (e.g., visual quality or semantic

attributes). Instead of the subspace for attribute manipulation
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(Viazovetskyi et al., 2020), we target the one associated withXHR

and define the distance from a sample latent code Ez ∈ W to

the unit normal vector En (called “principal normal”, Shen et al.,

2020a) of this HR-face subspace by the following:

d(En, Ez) = EnTEz (4)

Note that d(·, ·) can be negative because the latent code can

be on either side of the hyperplane. Conceptually similar to

the semantic score used in Shen et al. (2020a), we can define

the visual quality of a latent code z as linearly dependent on

its projected distance from the target hyperplane (the closer,

the better).

e(g(Ez)) = λd(En, Ez), (5)

where λ > 0 is a scalar that controls how fast the quality varies

along with the change in projected distance. In summary, we

assume that the target XHR can be approximately modeled by

a linear subspace defined by the principal normal vector En in the

latent space.

Based on the above assumption, we can cast FSR as

a manipulation problem in latent space. Similarly to facial

attribute editing, we can manipulate the latent code as follows.

Ezedit = Ez + γ En, (6)

where γ > 0 is a regularization parameter. To estimate

the principal normal En, we have collected two classes of

MR/HR face images and trained a linear SVM to find the

separation hyperplane. The unit vector orthogonal to the

hyperplane that separates the two classes is taken as principal

normal En.

5.2. Improving FSR via latent space
interpolation

Despite the impressive synthesis performance delivered

by GAN and its variants, less has been studied about the

inversion problem—i.e., given an input image XMR, can we

find a latent code Ez such that g(Ez) ≈ I? This is an ill-

posed problem because the projected latent vectors are often

unstable, and small perturbations in the latent space could

result in significant quality distortions (e.g., noticeable artifacts)

in the reconstructed images. Inspired by recent work on

Gaussianized latent spaces (Wulff and Torralba, 2020), we

propose regularizing the process of inversion or imposing a

Laplacian prior on the data distribution in the latent space

as follows.

Similarly to previous work (Abdal et al., 2019; Wulff and

Torralba, 2020), we formulate image inversion as the following

continuous optimization problem in the latent space.

Ew = argmin
Ez∈W

L(XMR, g(Ez)), (7)

where L(·) denotes reconstruction loss (e.g., LPIPS perceptual

distance, Zhang et al., 2018a). Alternatively, extended latent

space W+ has often been found to be preferred to better invert

natural images (Menon et al., 2020). Therefore, we can also

project an input image onto the extended latent space as follows.

Ew+ = argmin
Ez∈W+

L(XMR, g(Ez)). (8)

Note that the expanded W + latent space having the

dimension of 18 × 512 does not represent an 18-time

repetition of the 512-dimensional vector W, which explains

its tremendous expressive power. However, the price paid for

greater flexibility is the tendency to produce artifacts, especially

when regularization is absent. Since both W and W+ latent

spaces have their own strengths and weaknesses, it is natural

to combine them to simultaneously preserve facial identity and

suppress artifacts.

Based on the analysis in Wulff and Torralba (2020), we have

developed an interpolation-based approach to regularize the

codes (Ew, Ew+ in the latent space. The interpolated latent codes

are obtained by moving the original code toward the empirical

mean w̄ by some scaling factors (γ , γ+), that is,

EwI = Ew+ γ (w̄− Ew), Ew+
I = Ew+ + γ+(w̄− Ew+) (9)

Then we take the weighted code as the final output.

EwHR = aEwI + (1− a)Ew+
I , (10)

where 0 < a < 1 is inversely proportional to the projection error

in the latent space, that is,

a =
||Ep+||

−1

||Ep+||−1 + ||Ep||−1
. (11)

where Ep and Ep+ denote the mean squared error (MSE) of the

projection in the W and W+ space, respectively (note that both

MSE values are strictly bounded away from zeros). For example,

when projected into theW space, we have the following.

Ep = ||X − g(e(X))||L2 . (12)

6. Experimental results

6.1. Dataset collection

We have tested our two-step FSR method on simulated and

real LR face images. The first is generated by downsampling HR

images (following a procedure similar to PULSE, Menon et al.,

2020); the latter consists of real LR face images taken from the

Widerface dataset (Yang et al., 2016).
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FIGURE 5

Comparison of visual quality among di�erent stages of our two-step FSR method. From left to right: low resolution 16× 16 input image, The

mid-resolution 128× 128 image. Wproj and W+
proj

: The projection of the Mid-resolution image into the W and W+ spaces of StyleGan (Karras

et al., 2019). Winterp and W+
interp indicate the interpolated vectors in the W and W+ spaces of StyleGan (Karras et al., 2019) using Equation (9). Final

results is obtained by combining the interpolated vectors using Equation (10).

6.1.1. High resolution data (HR)

Wehave used several publicly available HR face datasets with

a resolution of 1024 × 1024: CelebA HQ (Karras et al., 2017)

(30,000 images) and FFHQ (Karras et al., 2019) (70,000 images).

Both datasets contain considerable variations in terms of the age,

ethnicity, and background of the image. We have paid special

attention to the issue of racial bias as suggested by Menon et al.

(2020) and tried to achieve a good balance between different

races in the training data.

6.1.2. Simulated LR data

Similar to previous work (Chen et al., 2018; Menon et al.,

2020), we have downsampled our HR face images by a factor

of eight using the bicubic method provided by Matlab. Note

that the use of simulated LR is only for the study of supervised

learning, which requires paired HR-LR training data.

6.1.3. Realistic LR data

To simulate the real world scenario (Bulat et al., 2018), we

have followed a similar protocol to create our real LR dataset

fromWiderface (Yang et al., 2016). The face regions are cropped

using Zhang et al. (2017), which ended up with a total of 156,557

real LR training images and 8,241 real LR testing images. All

images have been resized to 16×16 for the study of unsupervised

learning (there is no HR ground truth available).

6.2. Ablation study

StyleGAN-based face image editing in latent space is

known to suffer from notorious artifacts (Karras et al., 2020).

This is because latent codes are often unstable, so small

perturbations in the latent space could lead to significant

image distortions (Wulff and Torralba, 2020). To demonstrate

FIGURE 6

Artifact reduction by imposing the Laplacian prior.

TABLE 1 Quantitative comparison of visual quality improvement by

imposing the Laplacian prior.

Configuration FID NIQE

Without prior 215.37 12.7

With prior 207.5 13.18

The bold values indicate the highest quality within each column.

how a Laplacian prior helps the suppression of artifacts,

we have compared the reconstruction images without and

with the prior (please refer to Figure 5). The suppression

of artifacts by a Laplacian prior can be observed. More

results of image comparison can be found in the study

in different stages of our proposed method (see Figure 6).

Table 1 shows the comparison of objective metrics between

the results with and without the Laplacian prior (note

that a lower FID or NIQE value corresponds to better

image quality).
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FIGURE 7

Comparison of FSR results on the Widerface dataset between

ours, FSRGAN (Chen et al., 2018), Bulat’s method (Bulat et al.,

2018), and GFPGAN (Wang et al., 2021) (no GT is available).

TABLE 2 Quantitative comparison of visual quality between PULSE

(Menon et al., 2020), GFPGAN (Wang et al., 2021) and ours.

Method FID NIQE

Pulse (Menon et al., 2020) 238.4 9.62

GFPGAN (Wang et al., 2021) 271.62 15.89

Ours 181.7 12.28

The bold values indicate the highest quality within each column.

6.3. SR performance comparison with
others

6.3.1. Visual quality comparison on simulated
LR

We first report our experimental results for SLR data

(artificially created low-resolution face images) and compare

them with the state-of-the-art PULSE method (Menon et al.,

2020). Although synthetic, SLR images are still useful because

they have ground truth (HR) available and appropriate to

gauge the performance of supervised learning (with paired HR-

LR training data). Figure 7 shows the qualitative comparisons

between our supervised/unsupervised approach and the existing

PULSE method (Menon et al., 2020). It can be easily verified

that ours can produce visually more convincing and pleasant

HR results than PULSE (e.g., sharper contrast and fewer

artifacts around the earrings), as well as better ability to

preserve the original ethnic information and head position of

the ground truth image; first and second rows of Figure 7.

Furthermore, we present an objective metric comparison

between our method and the pulse (Menon et al., 2020) present

in Table 2.

6.3.2. Visual quality comparison on realistic LR

We have tested our two-step method on the popular

widerface LR dataset in the real world (Yang et al., 2016). This

dataset is particularly challenging for face detection and SR

because its 393,703 faces contain a high degree of variability

FIGURE 8

Comparison of the image quality of the extreme FSR between

ours, PULSE (Menon et al., 2020) and GFPGAN (Wang et al.,

2021).

TABLE 3 Quantitative comparison of visual quality between other

competing methods and ours.

Method FID NIQE

FSRGAN (Chen et al., 2018) 420.8 18.72

Bulat et al. (2018) 481.4 19.05

Ours (mid-resolution) 447.4 18.73

GFPGAN (Wang et al., 2021) 361.63 15.59

Ours (Final) 343.7 12.49

The bold values indicate the highest quality within each column.

in scale, pose, and occlusion. We report that our proposed

method outperforms FSRGAN (Chen et al., 2018) and the

unsupervised FSR method (Bulat et al., 2018) in visual quality

(Figure 8). Furthermore, we calculate the Fréchet inception

distance (FID) (Heusel et al., 2017) and the Naturalness Image

Quality Evaluator (NIQE) (Mittal et al., 2012) scores to verify

that our method can outperform existing methods on both

metrics. FID has been widely used as a metric used to assess

the quality of images created by GAN-based generative models;

NIQE is a popular blind image quality metric that measures

the distance based on natural scene statistics (NSS) between a

given image and the training dataset. The metrics are calculated

by averaging the results of different images. Table 3 shows

the results.

6.4. Discussions and limitations

6.4.1. Critical resolution for preserving facial
identity

As mentioned above, the smallest spatial resolution for

human operators to tell the identity of a person has been

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1037435
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Cheikh Sidiya and Li 10.3389/fcomp.2022.1037435

FIGURE 9

Failure cases in our study. Top: step-1 (due to extreme pose

conditions and expressions); bottom: step-2 (due to poor

handling of occlusion by eyeglasses).

found to be 18 × 24 (Bachmann, 1991). However, the

relationship between spatial resolution and face recognition

has not been well-studied in the literature; among the

few existing works, seven usable pixels between eyes were

shown to be sufficient to identify the Boston Bomber

(Abiantun et al., 2019). To investigate in a more systematic

way, we conducted an experiment with the Openface face

matcher (Amos et al., 2016) at different scaling factors

(×64,×32,×16 etc.). It can be observed from Figure 1

that (1) this work significantly outperforms PULSE (Menon

et al., 2020) in terms of matching performance across all

resolutions; (2) there is a critical resolution of 64 × 64

below which matching performance degrades rapidly. This

observation indirectly justifies the plausibility of our two-

step approach, where the magnetic resonance image has to

serve as a step-stone to facilitate the extraction of identity

information.

6.4.2. Failure cases and computational issues

To suppress artifacts, our approach intentionally skips the

step of data augmentation. It turns out that it is still sensitive

to extreme variations in face pose, such as those shown in

Figure 9. Meanwhile, artifacts may still appear due to severe

occlusions (e.g., eyeglasses); those real LR examples are rare

even among the Widerface dataset (refer to Figure 9). We have

trained step-1 of the overall architecture on four Titan GTX

GPUs for around 14 h. The low-to-high network has a 34

MB size for a test time of less than 1 s. For the second step,

the projection time of an MR image in the latent space is ≈

90 s; and it takes around 4 min to obtain the final output.

However, we note that other semantic face image manipulation

in the latent space (e.g., InterFaceGAN, Shen et al., 2020b)

also have comparable complexity when StyleGAN was used for

extracting the latent code. How to improve the computational

efficiency of StyleGAN-based face image manipulation is left for

future studies.

7. Conclusions

In this paper, we have studied the problem of extreme FSR

and proposed a novel two-step FSR method that combines

self-supervised CycleGAN with StyleGAN. In the first step of

embedded face hallucination, we aim at learning an unknown

degradation model in the real world using a self-supervised

CylceGAN approach that combines a style-based generator

with a relativistic discriminator. We demonstrate that the

intermediate MR image is capable of preserving facial identity.

In the second step of face reconstruction, the MR face image

serves as a stepping stone to generate super-resolved HR images

at ×64. A Laplacian prior is imposed to regularize the inversion

process in the latent space for artifact suppression. Unlike

previous works, our two-step approach takes advantage of the

identity code embedded in the latent space of MR images as

the connection bridging LR and HR. Extensive experimental

results are reported to demonstrate the superiority of this work

over other competing FSR approaches. Our two-step approach

has achieved highly competitive and often better performance

than others in terms of both subjective and objective qualities,

especially in the extreme case of magnification ratios.
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