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Abstract: Soil microbes play critical roles in nutrient cycling, net primary production, food safety,
and climate change in terrestrial ecosystems, yet their responses to cover cropping in agroforestry
ecosystems remain unknown. Here, we conducted a field experiment to assess how changes in
cover cropping with sown grass strips affect the fruit yields and quality, community composition,
and diversity of soil microbial taxa in a mango orchard. The results showed that two-year cover
cropping increased mango fruit yields and the contents of soluble solids. Cover cropping enhanced
soil fungal diversity rather than soil bacterial diversity. Although cover cropping had no significant
effects on soil bacterial diversity, it significantly influenced soil bacterial community compositions.
These variations in the structures of soil fungal and bacterial communities were largely driven by soil
nitrogen, which positively or negatively affected the relative abundance of both bacterial and fungal
taxa. Cover cropping also altered fungal guilds, which enhanced the proportion of pathotrophic
fungi and decreased saprotrophic fungi. The increase in fungal diversity and alterations in fungal
guilds might be the main factors to consider for increasing mango fruit yields and quality. Our
results indicate that cover cropping affects mango fruit yields and quality via alterations in soil fungal
diversity, which bridges a critical gap in our understanding of the linkages between soil biodiversity
and fruit quality in response to cover cropping in orchard ecosystems.
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1. Introduction

Cover cropping (i.e., sown grass strips) has been used as an important and effective
method to improve soil fertilizer and soil carbon stacks [1]. A 12-year field experiment
indicated that cover cropping increased soil organic carbon (SOC) stocks [1]. A meta-
analysis showed that cover cropping contributed to the changes in global cropland soil
carbon, with an overall mean change of 15.5% [2]. Compared with monospecies cover
crops, cover crop mixtures sequestered more SOC [2]. Elevated SOC is also associated
with improved soil health and fertility; therefore, increasing SOC may help to enhance
agricultural productivity [3]. However, not all studies found that cover cropping results
in SOC accumulation. Some studies demonstrated that the introduction of cover crops
resulted in losses of SOC due to the faster growth of cover crops [4]. In addition to an
increased carbon input, cover crops have been shown to increase biodiversity [5].

Soil harbors a rich diversity of invertebrate and microbial life, which drives bio-
geochemical processes at local and global scales. Soil microbes play critical roles in the
nutrient cycling, climate regulation, decomposition and turnover of soil organic matter [6].
Cover cropping alters soil quality and thereby influences soil microbial communities in
agro-ecosystems. The potential of cover crops to increase soil biodiversity and specific
microbial patterns has been highlighted in very few studies, especially in fruit orchards.
For example, sowing plant seed mixtures promoted the growth of the bacterial community
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and sarophytic fungi [7]. The long-term effects of green manure amendment are altered
soil microbial properties, first found in a field experiment carried out in 1956 [8]. The soil
microbiome plays important roles in fruit quality and production, as rhizosphere micro-
biome maintains plant health and primary productivity [9]. The plant-associated microbial
community has been considered as the second genome of the plant, which is critical for
plant health. Therefore, the cover cropping in orchards enhances the complexity and
diversity of soil microbes in intensive agriculture soils, which in turn strongly influences
plant health and net primary production.

The mango (Mangifera indica L.) is the most important fruit crop in the tropical zones,
having socio-economic significance, originating from South East Asia and cultivated world-
wide [10]. It is known as the king of fruits owing to its delicious taste and high vitamin
C and mineral contents [11]. Mango fruit has become the second tropical crop in terms
of production and cultivated acreage [12]. To steadily increase fruit yield, farmers have
increased the use of chemical fertilizers, which has caused many environmental problems,
such as soil degradation and water contamination [13]. Cover cropping began to be used
in orchards to resolve degraded soils and maintain higher crop yields and quality [14].
This green manure method has been widely used in the fruit ecosystem worldwide. The
positive effects of the long-term application of green manure have been reported by many
studies [15,16]. For example, some studies found grass cover to affect SOC [17–19]. Soil
carbon for plantings of switchgrass, no-till corn, and sweetgum with cover crops between
the rows increased over the first 3 years [20]. However, the variations in the structures of
the microbial community and diversity in soils caused by cover crops remain unknown,
which have been considered as the main drivers of multiple soil functions and plant health.
Therefore, the aims of this study are to identify (1) the effects of different sown grass
types in a mango orchard on the diversity of soil bacteria and fungi; (2) the changes in
the main taxa in response to sown grass trips; (3) the driving factors of the variations in
soil microbial diversity and community structure; and (4) the link between soil microbial
diversity, mango yield and fruit quality.

2. Materials and Methods
2.1. Site Description and Sampling

Mango is among the most important fruits in Hainan Province, Southern China. The
planted area of this fruit is more than 25,000 ha, and the yields are more than 560,000 kg
per year. The field experiment was conducted at the mango base in Tianya District, Sanya
City, Hainan Province, China (109◦24′ 52.70′′ (E) and 18◦19′54.10′′ (N)). It belongs to the
tropical maritime monsoon climate zone, with an annual average temperature of 25.7 ◦C.
The highest temperature is in June, with an average of 28.7 ◦C. The lowest temperature
is in January, with an average of 21.4 ◦C. The annual duration of sunshine is 2534 h. The
annual average precipitation is 1347.5 mm. The terrain is a gentle area in the lower hills,
and soil type is latosol [21].

A total of four treatments with different types of cover cropping were implemented,
including control (no-till + herbicide, M), planting Stylosanthes guianensis (Z), planting
Brachiaria eruciformis (B) between rows, and planting Butterfly pea (H). Each treatment was
repeated three times, with a plot area of 120 m2 (10 × 12 m) (Figure 1). All the plots were
arranged in a randomized block design and separated by five 5 m buffer zones. The cover
cropping was carried out in 2017. All treatments were transplanted with seedlings. Two
rows of grass were planted between each mango row. The tested mango was Hongjinlong,
with an age of 13 years. The row space between mango trees was 5 m. Fertilizers were
applied in accordance with the conventional fertilization of fruit farmers, and no fertilizer
was applied between rows.
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Figure 1. Experimental plot and soil sampling protocol: B, Brachiaria eruciformis; Z, Stylosanthes guianensis; H, Butterfly pea; 
M, no-till + herbicide. In the control, soils were collected between the rows (M) and the drip line of mango trees (MS). 
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lected. After removing the roots, stones and litters by hand, we sieved them through a 2 
mm sieve and separated them into two portions. One portion (approximately 5 g) was 
preserved in a 10 mL centrifuge tube (sterilized) and stored at −80 °C. The second portion 
was air-dried and used to measure soil properties. 
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Figure 1. Experimental plot and soil sampling protocol: B, Brachiaria eruciformis; Z, Stylosanthes guianensis; H, Butterfly pea;
M, no-till + herbicide. In the control, soils were collected between the rows (M) and the drip line of mango trees (MS). Other
soils (H, Z and B) with cover crops were collected between the rows.

Soils were collected in July (summer) 2019. In the control, soils were collected between
the rows (M) and the drip line of mango trees (MS). Other soils (H, Z and B) with cover
crops were collected between the rows. In each experimental plot, we collected 20 surface
soil cores (0–20 cm and 20–40 cm) randomly between rows (Figure 1). All the soil samples
in one experimental plot were mixed. In total, 18 samples per soil layer were collected.
After removing the roots, stones and litters by hand, we sieved them through a 2 mm sieve
and separated them into two portions. One portion (approximately 5 g) was preserved in a
10 mL centrifuge tube (sterilized) and stored at −80 ◦C. The second portion was air-dried
and used to measure soil properties.

2.2. Mango Fruit Quality and Yield

When mango fruits were nearly matured (80%), all the mango fruits in each exper-
imental plot were harvested, and the masses were measured as yields. We randomly
chose 20 mango fruits in each experimental plot and placed them into plastic bags for
analysis of the fruit quality. Total soluble solids content of mango fruit was measured by a
digital refractometer and presented in percent Brix (%TSS). Organic acid concentration was
measured by an automatic titrator [22]. Vitamin C (Vc) content was determined via the
method of 2,6-dichlorophenol indophenol (Shao et al. 2013).

2.3. Analysis of Soil Properties

Soil properties were measured by the standardized methods as described previously.
Soil bulk density (BD) was measured by the volume–mass relationship via a cutting
ring [23]. Soil pH was determined by a glass pH meter in a 1:2.5 soil–water suspension.
Soil organic matter (SOM) was digested with 5 mL concentrated H2SO4 and 5 mL 0.8 M
K2Cr2O7, and then determined by 0.2 M Ferrous Ammonium Sulfate [24]. Soil total
nitrogen (TN) was determined as described previously [25]. Soil available nitrogen (AVN)
was extracted by 1 mol/L KCl and then measured by a Seal Auto Analyzer3 [26]. Soil total
phosphorus (TP) and soil available P (AVP) were determined by molybdenum, antimony
and scandium colorimetry. Total potassium (TK) and available potassium (AVK) in soil
were determined by a flame photometer.



Agriculture 2021, 11, 343 4 of 12

2.4. Molecular Analysis

We used the PowerSoil kit to extract DNA from 0.5 g soils. The protocol was listed in
the manufacturer’s instructions. After extraction, the ratios of A260/A230 and A260/A280
were determined to assess the quality of extracted DNA.

The soil bacterial community was determined by sequencing hypervariable V3-V4
regions of 16S rRNA genes using primers 338F (ACTCCTACGGGAGGCAGCA) and 806R
(GGACTACHVGGGTWTCTAAT) [27]. The PCR amplification conditions for 16S rRNA
were 50 s at 94 ◦C, 30 s at 40 ◦C, 35 cycles of 60 s at 72 ◦C, followed by 5 min at 72 ◦C [28]. The
ITS1 variable region was sequenced with primer sets ITS3 (5′-GCATCGATGAAGAACG-
CAGC-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) [29,30] to assess the soil fungal
community. As for the ITS1 variable region, the PCR program was 5 min at 94 ◦C, 32 cycles
of 30 s at 94 ◦C, 30 s at 54 ◦C, and 1 min at 72 ◦C [31]. Sequencing was conducted on an
Illumina MiSeq PE300 platform.

After sequencing, bioinformatics processing was performed using QIIME, USEARCH
and UNIOISE3 [32]. After removing the short sequences (<20 nucleotides) and chimeric se-
quences, the remaining sequences were clustered into operational taxonomic units (OTUs)
using 97% similarity [33] (version 7.1 http://drive5.com/uparse/). Taxonomy was as-
signed against the Greengenes (16S gene, Release 13.5 http://greengenes.secondgenome.
com/) and UNITE (ITS gene, Release 7.2 http://unite.ut.ee/index.php) databases. The
Shannon diversity index and richness (the numbers of OTUs) were calculated to express
the soil bacterial and fungal diversity.

2.5. Fungal Ecological Guilds Identification

We used FUNGuild to identify the fungal ecological guilds using fungal OTU dataset
with taxon assignments [34]. This prediction method has been widely used in gaining
insights into the distributions of soil fungal ecological groups [35,36]. In this study, we
used the data with confidence levels of “highly probable” and “probable” to perform
further analysis.

2.6. Statistical Analysis

We first used ANOVA to compare the differences of soil properties, mango fruit yield
and quality, and bacterial and fungal diversity among different treatments on SPSS 20.0
(IBM Corporation, Armonk, NY, USA). We then conducted Pearson correlation analyses
between the microbial diversity (Shannon diversity index) and soil properties. Prior to
ANOVA and Pearson correlation analyses, the data were used to conduct a log transforma-
tion to meet the normality and homogeneity. Multiple regression models were constructed
to compare the effects of soil properties on microbial diversity in R 3.5. Anosim analysis
was performed to compare the effects of sown grass strips on the soil microbial community
structure in R 3.5. The bacterial and fungal community structure was calculated based
on the Bray–Curtis dissimilarity and visualized by a nonmetric multidimensional scaling
(NMDS) plot in R 3.5 with the vegan package [37]. The effects of soil properties on the
bacterial and fungal community structure were analyzed by the Mantel test in R 3.5. The
associations between the soil microbial community structure and soil properties were
determined by the Mantel test in R 3.5 [38].

3. Results
3.1. Soil Properties of the Tested Orchard

The impacts of cover cropping with sown grass strips on soil properties depended on
the types of sown grass and soil layers. The upper soils (0–20 cm) were more sensitive to
the application of sown grass strips. B20 had the highest soil AVN, which was significantly
higher than other sown grass types. The application of sown grass strips had no significant
effects on soil pH, SOM and AVK at both soil layers (Table 1).

http://drive5.com/uparse/
http://greengenes.secondgenome.com/
http://greengenes.secondgenome.com/
http://unite.ut.ee/index.php
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Table 1. The characteristics of soil properties of mango soils under different sown grass strips.

Treatment Soil
layers BD g/cm3 Moisture % TK% TN% TP% pH SOM % AVP mg/kg AVK mg/kg AVN

mg/kg

B20

0–20 cm

1.48 ± 0.06 6.49 ± 1.19 3.44 ± 0.27 0.07 ± 0.01 0.01 ± 0 5.76 ± 0.14 1.35 ± 0.2 5.7 ± 1.59 97.43 ± 16.37 49.47± 7.68
H20 1.48 ± 0.01 6.02 ± 0.14 3.26 ± 0.53 0.07 ± 0 0.02 ± 0 5.55 ± 0.06 1.12 ± 0.01 6.32 ± 1.5 90.33 ± 11.77 38.27± 2.14
Z20 1.45 ± 0.06 5.86 ± 0.66 3.49 ± 0.05 0.06 ± 0.01 0.02 ± 0 5.51 ± 0.09 1.36 ± 0.06 11.95 ± 6.12 81.07 ± 22.86 37.45± 5.85
M20 1.51 ± 0.04 3.75 ± 0.8 2.25 ± 0.13 0.07 ± 0 0.01 ± 0 5.49 ± 0.04 1.28 ± 0.18 7.15 ± 2.15 101.33 ± 28.45 34.07± 7.01

MS20 1.38 ± 0.06 5.01 ± 1.33 2.07 ± 0.3 0.07 ± 0.01 0.05 ± 0.03 5.55 ± 0.36 1.44 ± 0.11 30.03 ± 18.81 104.88 ± 11.55 51.57± 5.06
B40

20–40 cm

1.46 ± 0.05 8.31 ± 1.69 3.58 ± 0.19 0.05 ± 0.01 0.02 ± 0 5.71 ± 0.17 1.16 ± 0.16 6.56 ± 0.3 93.18 ± 21.85 34.88± 6.95
H40 1.53 ± 0.13 7.55 ± 1.58 2.9 ± 0.53 0.06 ± 0.01 0.02 ± 0.01 5.48 ± 0.13 0.96 ± 0.04 5.3 ± 0.73 91 ± 6.58 40.6 ± 9.15
Z40 1.55 ± 0.01 7.99 ± 0.8 3.32 ± 0.13 0.05 ± 0 0.02 ± 0 5.44 ± 0.14 1.19 ± 0.31 11.66 ± 5.5 86.07 ± 37.41 35.7 ± 1.4
M40 1.5 ± 0.02 7.56 ± 1.37 2.35 ± 0.17 0.05 ± 0 0.02 ± 0 5.37 ± 0.02 1.06 ± 0.27 5.57 ± 2.1 76.23 ± 8.73 29.63± 2.65

MS40 1.4 ± 0.04 7.08 ± 1.08 2.56 ± 0.31 0.07 ± 0.02 0.03 ± 0.01 5.4 ± 0.17 1.19 ± 0.22 42.71 ± 49.83 122.1 ± 45.21 46.43± 2.46

BD, soil bulk density; TK, total potassium; TN, total nitrogen; TP, total phosphorus; SOM, soil organic matter; AVP, available phosphorus;
AVK, available potassium; AVN, available nitrogen.

3.2. Yield and Fruit Quality of Mango under Different Sown Grass Trips

The application of sown grass trips had significant effects on mango fruit yield, with
the highest yield in B (Table 2). There were no significant differences observed between Z
and M. The applications of B, H and Z significantly enhanced TSS content and decreased
organic acid compared to M.

Table 2. The yield and fruit quality of mango under different sown grass trips.

Treatment Yield (kg/ha) TSS (%) Vc (mg/100 g) Organic Acid (g/kg)

B 18,736 ± 202 a 12.7 ± 0.16 a 27.97 ± 1.22 a 2.44 ± 0.13 b
H 17,424 ± 362 b 11.47 ± 0.16 b 26.31 ± 0.62 ab 2.33 ± 0.07 b
Z 16,488 ± 298 c 11.59 ± 0.3 b 24.18 ± 1.93 b 2.51 ± 0.11 ab
M 16,436 ± 189 c 10.75 ± 0.21 c 24.19 ± 0.49 b 2.93 ± 0.06 a

TSS, total soluble solids content; Vc, vitamin C. Different letters indicate significant differences under different
sown grass trips. B, Brachiaria eruciformis; Z, Stylosanthes guianensis; H, Butterfly pea; M, no-till + herbicide. Different
letter indicates significant differences between different sown grass trips.

3.3. Variations in Soil Microbial Diversity under Different Sown Grass Strips

The observed bacterial Shannon diversity index ranged from 5.47 to 6.64, while
phylotype richness (OTUs) varied from 1886 to 3509. Sown grass strips have no significant
effects on soil bacterial α-diversity indices (Shannon diversity index and richness index).
The soil fungal phylotype richness ranged from 419 to 1080, and the fungal Shannon
diversity index ranged from 3.81 to 4.95. Among these soil properties, TN and AVN had
significant associations with the bacterial Shannon diversity index (Figure 2). A multiple
regression models indicated that soil TN and AVN were the best predictors of the soil
bacterial Shannon diversity index (with a relative importance of 0.54 and 0.42), followed
by AVP, with a relative importance of 0.04. Soil properties had no significant correlations
with the fungal diversity index.

3.4. Variations in Soil Microbial Community under Different Sown Grass Strips

Across all soils, a total of 1,506,304 quality bacterial sequences, and an average of
50,210 sequences per sample, were obtained. Four of the 28 phyla detected were dominant,
including Acidobacteria (15.51%), Actinobacteria (17.55%), Proteobacteria (24.26%) and
Chloroflexi (24.77%) (with an average relative abundance of >5%, n = 30), accounting
for more than 82% of the bacterial sequences (Figure 3A). The Proteobacteria taxa were
dominated by Alphaproteobacteria (17.66%), followed by Deltaproteobacteria (4.12%) and
Gammaproteobacteria (2.49%). The soil layer had no significant effects on the relative
abundance of Acidobacteria and Proteobacteria. The upper soils (20.5%) had a higher
relative abundance of Actinobacteria than that of the lower soils (14.6%).
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Figure 3. The community compositions of soil bacteria (A) and fungi (B) at phylum level. B, Brachiaria eruciformis; Z,
Stylosanthes guianensis; H, Butterfly pea; M and MS, no-till + herbicide.
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Across all mango soils, a total of 1,777,037 quality fungal sequences, and an average
of 59,234 sequences per sample, were obtained. The dominant fungal phyla in soils were
Ascomycota and Basidiomycota, with average relative abundances of 79.38 and 11.28%,
respectively (Figure 3B). Other minor phyla (Anthophyta, Cercozoa, Rozellomycota and
Glomeromycota) were also found at a lower relative abundance (relative abundance < 1%).
The soil layer and sown grass trip had no significant effects on the relative abundance
of Ascomycota and Basidiomycota. Based on taxonomical classification at the class level,
Sordariomycetes (36.69%), Eurotiomycetes (18.96%), Dothideomycetes (15.33%) and Agari-
comycetes (9.50%) were more abundant than other groups (relative abundance > 1%), which
accounted for 80.48% of the fungal sequences. Other fungal classes were less abundant in
all the soils.

Anosim analysis indicated that the fungal community structure was strongly impacted
by the application of sown grass strips (r2 = 0.825, p = 0.001 for 0–20 cm soil layer; r2 = 0.413,
p = 0.001 for 20–40 cm soil layer). Soil bacterial community structure was not sensitive
to sown grass strips (r2 = 0.179, p = 0.095 for 0–20 cm soil layer; r2 = 0.092, p = 0.203 for
20–40 cm soil layer). Different soil samples were clearly separated by the sown grass types
in the NMDS plot (Figure 4A,B). The Mantel test showed that SOM (r = 0.16, p = 0.036), TN
(r = 0.45, p = 0.001), TP (r = 0.42, p = 0.001) and AVN (r = 0.23, p = 0.004) had significant effects
on the bacterial community structure (Figure 4C). For the fungal community structure, soil
BD (r = 0.17, p = 0.033), TN (r = 0.17, p = 0.016), TK (r = 0.21, p = 0.002) and AVN (r = 0.15,
p = 0.032) were the main factors.
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3.5. Variations in Soil Fungal Ecological Guilds under Different Sown Grass Strips

Soil functional fungal groups significantly altered under different cover cropping with
different sown grass strips. Cover cropping enhanced the proportion of pathotroph fungi
and decreased saprotroph fungi. Cover cropping increased the proportion of Arbuscular
Mycorrhizal fungi and wood saprotroph fungi, while cover cropping had no significant
effects on the plant pathogen or animal pathogen (Figure 5).
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Figure 5. The functional groups of soil fungi under different cover cropping treatments. B, Brachiaria eruciformis; Z,
Stylosanthes guianensis; H, Butterfly pea; M, no-till + herbicide. In the control, soils were collected between the rows (M) and
the drip line of mango trees (MS).

3.6. The Associations between Soil Microbial Community and Diversity and Mango Fruit Yields
and Quality

The correlation between fungal diversity (richness) and mango fruit yields was sig-
nificant (r = 0.75, p < 0.01) (Figure 6). The soil fungal community structure (repressed by
NMDS1) was significantly correlated with mango fruit yields (r = −0.79, p < 0.01). These
also showed significant correlations between fungal diversity and mango fruit TSS (r = 0.71,
p = 0.01) and organic acid (r = −0.76, p < 0.01). However, the soil bacterial diversity had no
significant associations with mango fruit yields and TSS (data not shown).
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4. Discussion

Cover cropping has been widely used in agriculture systems to improve crop yield
and quality as well as soil quality. In our study, the mango yield was significantly enhanced
by 3–14% after the application of sown grass strips between rows. Similarly, winter cover
cropping improved corn yields [39], and soybean yield significantly increased after the
3-year application with a multispecies mixture of legumes, grasses and Brassica spp [40].
These positive effects of cover cropping in crop yields suggested that cover cropping is an
effective method to increase yields. In this study, we also found a significant increase in
mango yields with B and H. However, Z had a slight increase in mango yields, suggesting
that Z is not suitable to use in mango orchards. The positive effects of B and H on mango
yields might be explained by the variations in nutrients and microbial community diversity
in soils caused by cover cropping.

A meta-analysis found that global cropland soil carbon changes due to cover cropping,
which increases SOC in near-surface soils by an average of 15.5% [2]. However, in our
study, we found the sown grass did not enhance SOC in both soil layers. This difference
might be explained by the duration of application of the sown grass. Sown grass strips
caused the changes in available nutrients, such as AVN and AVP. The growth of sown grass
could produce root exudates and litters, which were the main resources of soil nutrients,
especially available nutrients. These variations in soil nutrients directly and indirectly
influenced soil microbial diversity and community compositions, respectively.

In this study, we found that soil fungal diversity was sensitive to the application of
sown grass strips. The introduction of sown grass between the rows enhanced the fungal
diversity compared to the control (no sown grass). This might be explained by the higher
decomposition ability of litters and roots than bacteria. Fungi are considered the primary
decomposers of dead plant biomass in terrestrial ecosystems. The results from the litter-bag
decomposition experiments in the field and the laboratory indicated the overwhelming
advantage of fungi during the litter decomposition process [41–44]. Pascoal and Cássio
(2004) showed that the contribution of fungi to litter decomposition greatly exceeded
that of bacteria [45]. Despite the critic roles of fungi, the roles of bacteria could not be
neglected [46], especially during the litter decomposition in which they mainly worked at
the later decomposition stage. Therefore, the long-term introduction of sown grass strips
might cause variations in soil bacterial diversity and community.

Different types of sown grasses also had different effects on soil fungal diversity. B
and H soils had higher soil fungal diversity than Z. These variations might be explained by
the quality of plant litter, roots and root exudates, which were the main factors impacting
soil fungal diversity and community. For example, high quality litter decomposed faster
than the low-quality litter [47,48]. The fast decomposition released a much higher amount
of nutrients to the soil and resulted in the fast succession of soil fungi.

Nitrogen was considered as the main resource of soil microbes and strongly affected
soil biodiversity and community structure [26,49]. Wang et al. (2018) found that tropical
forest soil microbial community composition was shaped by N addition, with the increase
in the proportion of arbuscular mycorrhizal fungi [50]. In the present study, we found that
soil TN and AVN had significant effects on soil bacterial diversity, suggesting that soil N
was the best predictor of the regulation of soil bacterial diversity in the mango orchards.

Soil microorganisms are considered as the main regulator of soil nutrient cycles and net
primary production. In this study, we found that soil microbes enhanced mango fruit yields
and quality via increasing fungal diversity and alterations in fungal community structure.
Soil microbial diversity may improve crop yields through these mechanisms. First, soil
biodiversity mediated nutrients available in the soil, which were the main resources of crop
plant growth. Many previous studies have suggested that soil biodiversity enhances plant
growth and drives crop yields [51,52]. Second, soil microorganisms help to maintain soil
health and prevent the invasion of pathogens. Higher soil biodiversity provides higher
ecosystem functions, such as net primary production and nutrient cycling. Therefore,
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soil microbial diversity, especially for fungal diversity, is vital in order to improve mango
fruit yields.

5. Conclusions

This field experiment showed that cover cropping with sown grass had significant
effects on the soil microbial community in a mango orchard. Fungal diversity was more
sensitive than bacterial diversity in response to sown grass. The application of Brachiaria
eruciformis (B) had the strongest effects on soil fungal diversity. The increase in fungal
diversity suggested that sown grass had positive influences on soil biodiversity. Across
soil properties, AVN and TN were the most important predictors affecting soil bacterial
communities, while soil nutrients (TN and AVN) were the most important factors in
mediating soil fungal communities. These results show that the sown grass strips in a
mango orchard regulated the soil microbial community and diversity via soil organic
matter and nitrogen, which might be of great significance in mango production and quality
and the suitability of mango orchards. Mixtures of sown grasses might be more effective for
soil biodiversity and soil function, and operations in mango orchards and future research
should be focused on this aspect.
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