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Abstract 

 
In this paper, the study focused on carrying out a stability analysis on a modified SIR model for the COVID-

19 pandemic for the period after vaccination in Kenya. The purpose of the work was to show that whereas the 

rate and the extent of disease spread amongst the Kenyan people was not as wide spread as happened in other 

parts of the world, it was necessary for government and policy makers to roll out a robust civic education to 

convince the majority of the Kenyan population to embrace vaccination as a major containment measure in 

curbing the spread of COVID-19 and other infectious diseases since the study revealed that the infections 

drastically reduced to near zero after vaccination except for a few isolated cases that were and still continue 

to exhibit mild symptoms to none at all. This was attributed to the development of the vaccine which upon a 

massive campaign by the Kenyan government, led into a significant portion of the population being 

vaccinated. It is believed this vaccination drive enhanced herd immunity amongst the population. This 

development has had a significant effect in the control of more recent COVID-19 variants like JN-1 that have 
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remained largely mild and undetected in the country.  Both local and global post vaccination stabilities were 

analyzed for the system using the Lyapunov function. The main objective of the study was therefore to carry 

out a post vaccination stability analysis by estimating key parameters such as the basic reproduction number, 

( 𝑅0)  and herd immunity threshold (HIT) for infectious diseases by fitting data into the model to enable 

predictions of future dynamics of the disease. The study used the Next Generation matrix and the least square 

method besides the Python software to solve generated differential equations of the model for 𝑅0 and HIT 

parameters. Results obtained showed that, there was a significant reduction in infections due to enhanced 

herd immunity attributed largely to the roll out of vaccination.  

 

 
Keywords: SIVR model; vaccination; herd immunity; local stability; global stability. 

 
2010 Mathematics subject classification: 92B05, 93D15 

 

1 Introduction 
 

1.1 Background of COVID - 19 
 

COVID – 19 named as such by the World Health Organization (WHO), [1] is a disease caused by a virus that 

belongs to a family of Coronaviruses (CoVs) that cause respiratory and intestinal illnesses in humans and 

animals. A number of these viruses have been identified before, with COVID-19 first identified in the Wuhan 

province of china in December 2019(12). The virus gets transmitted from human to human through body fluids. 

Patients infected with COVID-19 range from those who don’t exhibit clinical symptoms (referred to as 

Asymptomatic patients) to those having such common symptoms as fever, cough, sore throat, general body 

weakness, fatigue, muscular pains etc. 

 

The first case of COVID-19 in Kenya was confirmed on 12th March, 2020 in Nairobi city. Ever since, the 

disease continued to spread exponentially in nearly all the regions until the roll out of vaccination upon the 

discovery of the vaccine. Elsewhere in India, Piu S, et al. [2] in their study established that COVID-19 had 

precipitated a major global crisis, with 968,117 total confirmed cases, 612,782 total recovered cases and 24,915 

deaths in India as of July 15, 2020. At this rate, it was very necessary that every effort was to be put in place to 

curb the disease, including but not limited to researching on it to understand every aspect of its dynamics. Piu S. 

et al. [2] in their study further found out that in the absence of any effective therapeutics or drugs and with an 

unknown epidemiological life cycle, predictive mathematical models can aid in understanding of both the 

coronavirus disease control and management.   

 

On the onset of the COVID-19 pandemic, particularly before the development of the vaccine, the rate at which 

the disease spread amongst the people was largely uncontrolled. Whereas there was restricted movement of 

people in urban centers, it was not practically possible to do so in rural and informal settlements where people 

depend on day to day manual jobs for their upkeep. In search of these casual jobs, people moved from one point 

to the next and hence had unlimited interactions with others which exposed them and their families back home 

with the possibility of contracting the disease. In the post vaccination period, much of the cases reported were as 

a result of re-infections. Isaac M.W., et al, [3] in their findings detailed how reinfection led into a surge in 

mortality rates and accumulation of COVID-19 active cases which the Kenyan health system could not handle. 

They further dettermined that even in the presence of reinfections, the surge in COVID-19 cases could be 

prevented by various intervention mechanisms through detection of asymptomatic individuals who unknowingly 

transmit the disease. It should however be acknowledged that in a country where people are reluctant to present 

themselves for testing, the only practical way out was to roll out vaccination across the populace.   

 

In a study carried out by Iyaya C. W. et al. [4] they showed that COVID-19 does not affect all population groups 

equally. In their findings, they noted that age is the strongest risk factor for severe COVID-19 outcomes. 

Additionally, some chronic medical conditions occur more frequently in certain population groups and the risk 

of severe COVID-19 increases as the number of underlying medical conditions increase in an individual. Thus, 

old people and those with underlying medical conditions such as cardiovascular disease, diabetes, hypertension, 

chronic respiratory disease and cancer are more likely to experience serious illness from COVID-19. This called 

for a more urgent intervention mechanism to protect this group of persons because in Kenya, the Ministry of 
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Health estimated that 1 out of 3 people aged 58 years and above were either diabetic or hypertensive or both. 

This group of people alongside the frontline health workers needed protection. The government therefore 

prioritized groups of individuals for vaccination and other intervention measures to protect them against 

contracting the disease. It was estimated that the bulk of the reported fatalities in Kenya comprised of people 

living with underlying medical conditions due to old age. 

 

The post vaccination period had two groups of people, the vaccinated and unvaccinated both of whom were 

assumed to have acquired herd immunity. Initially, it wasn’t clear whether or not the infected and recovered had 

acquired everlasting or partial protective immunity. In the works of Bendadavid E., et al, [5] they pointed out 

that at the time, researchers believed, that the infected acquired ‘passport’ immunity and therefore required to be 

allowed to relax COVI-19 containment measures, including the freedom to mingle freely with the general 

public.  

 

Edridge A.W.D., et al, [6] in a further research on serological testing for seasonal Human Coronavirus (HCoV-

229E), found that the majority of patients lost 50% of the acquired antibodies after six months, 75% after a year 

and completely returned to baseline after four years pointing out to the need for a more reliable prevention 

mechanism such as the development of a vaccine for the disease. 

 

This study sought to show that by carrying out a stability analysis, post the vaccination roll out, the extent of 

transmissions drastically reduced compared to the period before vaccination. The end result showed that 

vaccination indeed enhanced herd immunity amongst the Kenyan people, both rural and urban and there is 

therefore need to depart from their traditional and/or cultural beliefs and practices that had negative attitudes 

that slowed down vaccination rollout amongst the people with a majority of them in rural and informal 

settlements.  

 

1.2 Model formulation 
 

According to Diekmann O., et al, [7] mathematical modeling of transmission trends of infectious diseases has 

extensively been studied. These models have been used by many researchers to understand and predict 

transmission dynamics of infectious diseases. This study proposed a deterministic modified SIVR ordinary 

differential equation model that captures the COVID-19 dynamics, a member of the family of novel coronavirus 

or SARS-CoV-2. The study classified the Kenyan human population into four compartments, namely 

susceptible individuals (S), infected individuals (I), Vaccinated individuals (V) and Recovered individuals (R) to 

formulate, the SIVR (susceptible or uninfected (S) → infected individuals (I) → Vaccinated individuals 

(V)   → Recovered individuals (R) model. The total size of the population is N(t) = S(t) + I(t) + V(t) + R(t). The 

study presupposed that it’s only a section of the susceptibles that were vaccinated. Further, that only interactions 

between the infected and the susceptibles caused the transmission of the viruses. The proposed modified SIVR 

model for the Kenyan COVID-19 transmission dynamics is illustrated in Fig. 1. The model consists of the 

following set of nonlinear differential equations; 

 

1.2.1 Differentia equations 

 

The compartmental SIVR model together with the rates of change amongst the different parameters as shown in 

the diagram above yields the following differential equations 

 

           
𝑑𝑆

𝑑𝑡
= Ʌ − 𝛽𝑆𝐼 − 𝜌𝑆 − 𝜇𝑆                                                                                                                            [1] 

 

           
𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝜇𝐼 − 𝛾𝐼                                                                                                                                     [2] 

 

           
𝑑𝑉

𝑑𝑡
=  𝜌𝑆 −  𝜏𝑉                                                                                                                                            [3] 

 

           
𝑑𝑅

𝑑𝑡
= 𝛾𝐼 + 𝜏𝑉 − 𝜇𝑅                                                                                                                                     [4] 

 

with S(t) + I(t) + V(t) + R(t) = N(t) 
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List 1. Description of variables and parameters used in the model 

     

 Λ: Per-capita entry rate.  

 S: Susceptible individuals.  

  I:  Infectious individuals.  

 V: The vaccinated individuals. 

 R: Recovered individuals 

 N(t): total size of the population  

 β:  Disease transmission rate. 

 γ:  Per- capita recovery rate. 

 𝜌: Vaccination rate 

 µ: Per-capita removal rate 

 𝜏: Recovery rate for the vaccinated 

 

 
 

Fig. 1. Diagrammatic Representation of the SIVR Model with Vaccination 

 

1.3 SIVR model   
       

1.3.1 Assumptions  

 

The following assumptions hold:  

 

1. Closed population size, N. 

2. Transmission and removal rates are regarded constant 

3. A well-mixed population i.e. one where any susceptible individual can get infected. 

4. Birth rate or entry population is equal to death rate 

 

1.3.2 Epidemiology 

 

Epidemiology is the study of the distribution and determinants of disease prevalence in humans, Ma S., et al, [8] 

 

Murray J. [9] details in his book how the compartments, Susceptible, Infected, and Removed model’s equations 

form a dynamical system.  Since all three variables vary over time. Analyzing stability helps us to establish 

whether or not we have constant solutions, whether these solutions near the equilibrium points move towards or 

away from the equilibrium points, how the solutions behave as time, t, approaches infinity and if any of the 

solutions oscillate. 

 

If the solutions tend toward the equilibrium value, such point will be considered stable or an attractor. In 

dynamical systems, an attractor refers to a set of states towards which a system tends to evolve, for a wide 

variety of starting conditions of the system. The system solutions get close enough to the attractor values and 

remain close even if slightly disturbed. 

 

On the other hand, if the solutions of the system near the equilibrium value all tend away from the value, such 

point is said to be unstable, or a repelling equilibrium point. 

 

1.4 Local stability 
 

Local stability means that all solutions of the system that have initial values within a particular domain of the 

feasible region approach the equilibrium point.  
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1.5 Global stability 
 

Global stability means that all solutions of the system approach the equilibrium point independent of the initial 

values. The case where both eigenvalues are real, negative, and distinct produces a phase portrait that shows all 

trajectories tending toward the equilibrium point as t → ∞, the value of x(t) gets small, so it is a globally stable 

equilibrium point. 

 

1.6 Herd immunity 
 

In their brief history on vaccines [10], the World Health Organization defines vaccination as a simple, safe, and 

effective way of protecting an individual against harmful diseases before they come into contact with them. For 

centuries, people have looked for ways of protecting themselves against diseases and infections. Vaccination 

has stood the test of time as an effective method. In earlier times, this was done by exposing healthy people to 

the infection, as in the case of smallpox in the 15th century, in the hope that they would develop immunity 

against the pathogens. However, with time, proper vaccines for different diseases have been developed, and 

proper trials done to ascertain their suitability before administering them to humans. Herd immunity is defined 

as the immunity developed by the majority of a population against contagious diseases. 

 

The term herd immunity was first used by Topley W., et al, [11]. It has since helped to serve as the bedrock for 

vaccines and their applications, vaccination programs, cost analysis, and eradication of diseases such as 

smallpox. 

 

Acquired immunity is developed at the individual level either through vaccination or via natural infection with a 

pathogen, Randolph H., et al, [12]. Herd immunity stems from the effects of individual immunity to that of the 

entire population of a particular region. As such, as long as a sizable percentage of a population has been 

vaccinated, immunity is rolled out to the entire population, even those who have not been vaccinated. This 

population-level effect aims to establish a population immunity so that individuals who cannot be vaccinated 

such as the young and immunocompromised are still protected against the disease. 

 

The herd immunity threshold (HIT) depends on a single parameter known as the Basic Reproduction number, 

𝑅0 . The 𝑅0  refers to the average number of secondary infections caused by a single infectious individual 

introduced into a completely susceptible population. If a pathogen with an 𝑅0 of 2 is considered for example, it 

means on average, one infected person is capable of infecting two others on average during the infectious 

period. 

 

In his book, Murray J. [9]. The basic reproduction number, 𝑅0, is a necessary parameter when dealing with an 

epidemic under control with vaccination. One of the ways to reduce the reproduction rate of a disease is to 

reduce the number of susceptible in a population. Vaccination is the best way of achieving this. For example, 

according to Anderson R., et al, [13] it was successful in eradicating smallpox in the world in 1979. Similarly, 

substantial progress has been made through vaccination to reduce and eventually eliminate polio in the world. In 

1988, polio paralyzed an estimated 350,000 individuals per year in more than 125 countries. However, by 2019, 

according to the European Union Centre for Disease Control, 125 cases caused by wild poliovirus were reported 

globally. 

 

Recently, in their findings, Isaac M.W., et al, [3] found that re-infection with COVID-19 led into an increase in 

the cumulative deaths. Further, they found that the comparison on the impact of non-pharmaceutical 

interventions such has treatment and/or vaccination on curbing the spread of the disease, suggested that the 

wearing of face masks reduced COVID 19 prevalence compared with social/physical distancing. Their study 

revealed that early detection of asymptomatic cases through contact tracing, testing and isolating drastically 

reduced the disease surge 

 

1.7 Study population 
 

The sample data used in the study as obtained from the Ministry of Health, and the World statistics [14] Kenya, 

was distributed across the country. The population of Kenya as of the year 2022 was approximately 54, 027, 

487. However, for this study sample population used in our study period indicated was 2, 926,470 people. The 
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pandemic did not affect the country uniformly; urban areas were adversely affected compared to rural areas 

where its believed people had a form of unexplained immunity attributed to their feeding habits [15]. 

 

Table 1. COVID-19 data for the first twenty days in kenya after the introduction of the vaccination 

 

Day Date Total Infected Discharged Deaths 

1  

2  

3  

4  

5  

6  

7  

8  

9  

10  

11  

12  

13  

14  

15  

16  

17  

18  

19  

20 

03-Apr-21 

04-Apr-21 

05-Apr-21 

06-Apr-21 

07-Apr-21 

08-Apr-21 

09-Apr-21 

12-Apr-21 

13-Apr-21 

14-Apr-21 

15-Apr-21 

16-Apr-21 

17-Apr-21 

18-Apr-21 

19-Apr-21 

20-Apr-21 

22-Apr-21 

23-Apr-21 

24-Apr-21 

25-Apr-21 

7139  

6045  

2753  

2923  

7423  

11352 

7300  

2989  

6417  

7529  

5958  

7753  

7184  

3664  

2515  

5832  

5673  

7036  

9316  

4194 

1184  

911  

460  

394  

1523  

1698  

1091  

486  

991  

981  

1091  

1041  

1024  

366  

241  

629  

904  

773  

1153  

469 

220  

533  

178  

2217  

616  

456  

533  

115  

370  

655  

392  

343  

382  

280  

636  

1560  

88  

762  

191  

304 

20  

18  

20  

14  

18  

16  

17  

20  

26  

26  

4  

19  

20  

18  

20  

18  

20  

23  

20  

19 
Source: Ministry of Health, Kenya 

 

2 Post-Vaccination Findings 
 

To arrive at these findings, the COVID-19 data from April 2021 to March 2022, readily available in the Kenyan 

Ministry of Health website, was fed into a computer software, python, using recorded computation of 

parameters necessary to determine the 𝑅0 number. A remarkable observation under the circumstances is that the 

data available for use relates to the period during which the vaccination drive against COVID-19 was underway 

and the same data has varied over time. 
 

Data from Kenya’s ministry of health website for the period between April 2021 to March 2022 was fed into the 

software for computation 𝑅0, and HIT at intervals of 30 days to give a summary shown in Table 2 below; 
 

Table 2.  𝑹𝟎 and herd immunity threshold of COVID-19 during vaccination 
 

S/no: Period (Days) 𝑹𝟎 HIT (1-1/𝑹𝟎) 

1  

2  

3  

4  

5  

6  

7  

8  

9  

10 

11 

30  

60  

90  

120  

150  

180  

210  

240  

270  

300  

330 

1.0914 

1.0389 

1.0391 

1.0581 

1.0787 

1.0719 

1.0722 

1.1241 

1.1743 

1.0708 

1.061 

0.0837  

0.0374  

0.0376  

0.0549  

0.0729  

0.0671  

0.0673  

0.1104  

0.1484  

0.0661  

0.0575 
 

From Table 2, an average value of  𝑅0 was calculated and determined as 1.080045 and an average HIT value of 

0.07, correct to two decimal places. Applying the formulae, 𝐻𝐼𝑇 = 1 − 
1

𝑅0
 , with 𝑅0  = 1.080045, HIT is 

obtained as 0.07, correct to two decimal places which agrees with the table average value.    
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The value of 𝑅0 is obtained as; 𝑅0 = 1.08, and an HIT value of 0.07, both correct to two decimal places.  This 

implied that only a paltry 7% of the total Kenyan population needed to be vaccinated to bring the disease to a 

halt.  

 

2.1 Stability analysis for the modified SIR model with vaccination 
 

In Fig. 1, the diagrammatic representation of the modified SIR Model with Vaccination, an analysis of   the 

stability of the model with induced vaccination is carried out. With vaccination, the system of equations            

[1- 4] were obtained; 

 

With assumption 4) above, the population size N remains constant over time. Thus, 
𝑑𝑆

𝑑𝑡
+ 

𝑑𝐼

𝑑𝑡
 + 

𝑑𝑉

𝑑𝑡
 + 

𝑑𝑅

𝑑𝑡
= 0. This 

implies that 𝑆(𝑡) + 𝐼(𝑡) + 𝑉(𝑡) + 𝑅(𝑡) = 𝑁. For purposes of the current analysis, it will be assumed that during 

the transmission of COVID-19 viruses, the no births equals the number of deaths since the epidemic dynamics 

occur on a relatively faster time scale than the rate of change of human population. Hence the population will be 

treated as constant. 

 

From 𝑆(𝑡) + 𝐼(𝑡) + 𝑉(𝑡) + 𝑅(𝑡) = 𝑁,  𝑅(𝑡) can be determined from the other variables, hence it sufficient to 

consider the other three variables. 

 

The rearranged equations now become 

 

              
𝑑𝑆

𝑑𝑡
= Ʌ − 𝛽𝑆𝐼 − 𝜌𝑆 − 𝜇𝑆                                                                                                                         [5] 

 

              
𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝜇𝐼 − 𝛾𝐼                                                                                                                                  [6]  

     

              
𝑑𝑉

𝑑𝑡
=  𝜌𝑆 −  𝜏𝑉                                                                                                                                         [7] 

 

Incorporating assumption 4) above, the system of equations become 

 
𝑑𝑆

𝑑𝑡
= 𝜇 − 𝛽𝑆𝐼 − 𝜌𝑆 − 𝜇𝑆 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝜇𝐼 − 𝛾𝐼            

𝑑𝑉

𝑑𝑡
=  𝜌𝑆 −  𝜏𝑉        

 

          or    

   
𝑑𝑆

𝑑𝑡
= 𝜇(1 − 𝑆) − 𝛽𝑆𝐼 − 𝜌𝑆                                                                                                                  [8] 

   
𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝜇𝐼 − 𝛾𝐼                                                                                                                              [9] 

  
𝑑𝑉

𝑑𝑡
=  𝜌𝑆 −  𝜏𝑉                                                                                                                                     [10] 

 

 Making the set below positively invariant 

 

ɸ= {(𝑆(𝑡), 𝐼(𝑡), 𝑉(𝑡))  ∈  ℜ+
3 , 𝑆(𝑡) + 𝐼(𝑡) + 𝑉(𝑡) ≤ 1}                           

      

2.2 Local stability of the system 
 

Two equilibrium points exist for the above model:  

 

The Disease Free Equilibrium point  𝐸0 (𝑆 = 1 −  𝜌, 𝐼 = 0, 𝑉 =  𝜌) and the Endemic Equilibrium point  

 

𝐸∗ (𝑆 =  
𝜇+ 𝛾

𝛽
 , 𝐼 =  

𝜇(𝛽(1−𝜌)−𝜇−𝛾)

𝛽(𝜇+ 𝛾)
 , 𝑉 =  𝜌). 
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A determination of I from [8] shows the existence of an Endemic equilibrium point. Substituting this value in 

[9], we obtain 

 

              𝑆2 − 𝑆 (1 − 𝜌 + 
𝜇

𝛽
+ 

𝛾

𝛽
) + 

(1−𝜌)𝜇

𝛽
+ 

(1−𝜌)𝛾

𝛽
= 0                                                                                 [11] 

 

The discriminant to [11] is 

 

            𝐷 =  (1 − 𝜌 + 
𝜇

𝛽
+ 

𝛾

𝛽
)
2

− 4(
(1−𝜌)𝜇

𝛽
+ 

(1−𝜌)𝛾

𝛽
) 

 

whose positive solution, 𝐷 ≥ 0 

 

          i.e. (1 − 𝜌 + 
𝜇

𝛽
+ 

𝛾

𝛽
)
2

≥ 0 

 

giving a reproduction number   for the vaccinated as  𝑅𝑣 = 𝑅0(1 − 𝜌) and 𝐸∗ will only exist if  𝑅𝑣 > 1 

 

Applying the Jacobian in determining the stability of the equilibrium points, we have, 

 

    𝐽(𝑆, 𝐼, 𝑉) =  

(

 
 

𝜕

𝜕𝑆
((1 − 𝜌)𝜇 − 𝛽𝑆𝐼 − 𝜇𝑆)

𝜕

𝜕𝐼
((1 − 𝜌)𝜇 − 𝛽𝑆𝐼 − 𝜇𝑆)

𝜕

𝜕𝑉
((1 − 𝜌)𝜇 − 𝛽𝑆𝐼 − 𝜇𝑆)

𝜕

𝜕𝑆
(𝛽𝑆𝐼 − 𝜇𝐼 − 𝛾𝐼)

𝜕

𝜕𝐼
(𝛽𝑆𝐼 − 𝜇𝐼 − 𝛾𝐼)

𝜕

𝜕𝑉
(𝛽𝑆𝐼 − 𝜇𝐼 − 𝛾𝐼)

𝜕

𝜕𝑆
(𝜌𝑆 − 𝜏𝑉)

𝜕

𝜕𝐼
(𝜌𝑆 − 𝜏𝑉)

𝜕

𝜕𝑉
(𝜌𝑆 − 𝜏𝑉)

)

 
 

       [12]            

 

Differentiating [12] respectively with respect to S, I and V, we obtain 

 

            𝐽(𝑆, 𝐼, 𝑉) =  (

−𝛽𝐼 − 𝜇 −𝛽𝑆 0
𝛽𝐼 𝛽𝑆 − 𝜇 − 𝛾 0
𝜌 0 −𝜏

)                                                                                          [13]       

                

2.2.1 Disease Free Equilibrium (DFE)  

     

At DFE, 𝐸0 (𝑆 = 1 −  𝜌, 𝐼 = 0, 𝑉 =  𝜌) , [13] becomes              

Thus,  

     

            𝐽(𝑆, 𝐼, 𝑉) =  (

−𝜇 −𝛽(1 − 𝜌) 0

0 𝛽(1 − 𝜌) − 𝜇 − 𝛾 0
𝜌 0 −𝜏

)                                                                                        [14] 

 

The characteristic equation corresponding to [14] is 

 

          |

−𝜇 − 𝜆 −𝛽(1 − 𝜌) 0

0 (𝛽(1 − 𝜌) − 𝜇 − 𝛾) − 𝜆 0
𝜌 0 −𝜏 − 𝜆

|    = 0                                                                              [15]         

 

 

Simplifying and solving for 𝜆, we obtain the eigenvalues 𝜆1 = −𝜇,    𝜆2 = (𝛽(1 − 𝜌) − 𝜇 − 𝛾),    and  𝜆3 =
 −𝜏. 
From the results above, it’s clear 𝜆1 and 𝜆3 are negative.  

 

From 𝜆2 = (𝛽(1 − 𝜌) − 𝜇 − 𝛾), there are two possibilities depending on the value of (𝛽(1 − 𝜌) − 𝜇 − 𝛾) 
 

i) If  (𝛽(1 − 𝜌) − 𝜇 − 𝛾) > 0, then 

              𝑅𝑣 = 𝑅0(1 − 𝜌) > 1 

               𝑅𝑣 > 1 
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              The interpretation is that the DFE point is not asymptotically stable 

 

ii) If  (𝛽(1 − 𝜌) − 𝜇 − 𝛾) < 0, then   

              𝑅𝑣 = 𝑅0(1 − 𝜌) < 1 

              𝑅𝑣 < 1 

             

The interpretation is that the DFE point is asymptotically stable and the trajectories will approach the   

disease-free equilibrium point. The interpretation is that the disease will die out and there will be no epidemic. 

 

2.2.2 Endemic equilibrium 

 

               𝐽(𝑆, 𝐼, 𝑉) =  (

−𝜇 −𝛽(1 − 𝜌) 0

0 𝛽(1 − 𝜌) − 𝜇 − 𝛾 0
𝜌 0 −𝜏

)       

   

  At 𝐸∗ (𝑆 =  
𝜇+ 𝛾

𝛽
 , 𝐼 =  

𝜇(𝛽(1−𝜌)−𝜇−𝛾)

𝛽(𝜇+ 𝛾)
 , 𝑉 =  𝜌), making these substitutions into [13], we have, 

 

               𝐽(𝑆, 𝐼, 𝑉) =  

(

 
 
−𝛽 (

𝜇(𝛽(1−𝜌)−𝜇−𝛾)

𝛽(𝜇+ 𝛾)
) − 𝜇 −𝛽 (

𝜇+ 𝛾

𝛽
) 0

𝛽 (
𝜇(𝛽(1−𝜌)−𝜇−𝛾)

𝛽(𝜇+ 𝛾)
) 𝛽 (

𝜇+ 𝛾

𝛽
) − 𝜇 − 𝛾 0

𝜌 0 −𝜏)

 
 

             

 

Simplifying, 

                       

             𝐽(𝑆, 𝐼, 𝑉) =  

(

 
 
−(

𝜇(𝛽(1−𝜌)−𝜇−𝛾)

(𝜇+ 𝛾)
) − 𝜇 −(𝜇 +  𝛾) 0

(
𝜇(𝛽(1−𝜌)−𝜇−𝛾)

(𝜇+ 𝛾)
) (𝜇 +  𝛾) − 𝜇 − 𝛾 0

𝜌 0 −𝜏)

 
 

             

 

           𝐽(𝑆, 𝐼, 𝑉) =  

(

 
 

𝜇(𝛽(1−𝜌)−𝜇−𝛾+𝜇+ 𝛾)

(𝜇+ 𝛾)
−(𝜇 +  𝛾) 0

(
𝜇(𝛽(1−𝜌)−𝜇−𝛾)

(𝜇+ 𝛾)
) 0 0

𝜌 0 −𝜏)

 
 

               

 

          𝐽(𝑆, 𝐼, 𝑉) =  

(

 
 

𝜇(𝛽(1−𝜌))

(𝜇+ 𝛾)
−(𝜇 +  𝛾) 0

(
𝜇(𝛽(1−𝜌)−𝜇−𝛾)

(𝜇+ 𝛾)
) 0 0

𝜌 0 −𝜏)

 
 

                                                                                  [16]        

 

From [16], the resulting characteristic equation is given by, 

 

           |
|

𝜇(𝛽(1−𝜌))

(𝜇+ 𝛾)
− 𝜆 −(𝜇 +  𝛾) 0

(
𝜇(𝛽(1−𝜌)−𝜇−𝛾)

(𝜇+ 𝛾)
) 0 − 𝜆 0

𝜌 0 −𝜏 − 𝜆

|
| = 0                                                                                           [17] 

 

Solving [17] for the eigenvalues 𝜆,  we obtain,  

 

         −(𝜏 +  𝜆 ) {𝜆2 − (
𝜇𝛽(1−𝜌)

𝜇+ 𝛾
) 𝜆 +  𝜇[(𝛽(1 − 𝜌) − 𝜇 − 𝛾)] } = 0                                                                 [18] 
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Solving [18] for the eigenvalues, we obtain, 

 

                𝜆1 =  𝜏 
 

                𝜆2 = −
𝜇(𝛽(1−𝜌))

(𝜇+ 𝛾)
 ± { 

𝜇2(𝛽2(1−𝜌)2)

(𝜇+ 𝛾)2
− 4𝜇[𝛽(1 − 𝜌) − 𝜇 − 𝛾]}

1

2
  which reduces to, 

 

                𝜆2 = −𝜇𝑅𝑣  ± {𝜇
2𝑅𝑣

2 − 4𝜇(𝜇 + 𝛾)(𝑅𝑣 − 1)}
1

2                                                                                  [19] 

 

Given that 
(𝛽(1−𝜌))

(𝜇+ 𝛾)
= 𝑅𝑣(1 − 𝜌) =  𝑅𝑣  and given that 𝜇(𝛽(1 − 𝜌) − 𝜇 − 𝛾)  is positive,  𝜇2𝑅𝑣

2 − 4𝜇(𝜇 +

𝛾)(𝑅𝑣 − 1) i.e. either greater or smaller than 𝜇2𝑅𝑣
2.                              

 

The solutions are complex if greater than 𝜇2𝑅𝑣
2 with −µR as the real part.  The real part of the eigenvalue will 

still be negative if it is smaller in value than 𝜇2𝑅𝑣
2. 

 

The interpretation is that since 𝜆1  and both real parts of the eigenvalues from [19] are negative, it can be 

concluded that the Endemic Equilibrium point is locally stable, implying that both the susceptible and the 

infected persons survive in either case. 

  

2.3 Global stability of the system 
 

Here, we also perform both the DFE and the EE of the system using the Lyapunov function 

 

A function F(x,y) is negative definite on a region ɸ from the origin if  ∀ (𝑥, 𝑦), 𝐹(𝑥, 𝑦) < 0, whereas it is 

positive definite on a region ɸ, with the origin if  ∀ (𝑥, 𝑦), 𝐹(𝑥, 𝑦) > 0. The same function is considered 

Lyapunov on an open region ɸ, if it is continuous, positive definite and has continuous first order partial 

derivatives on the region ɸ  

 

2.3.1 Disease free equilibrium 

 

Theorem 2.1  

 

The Disease Free Equilibrium point of the system is globally asymptotically stable on ɸ 

 

Proof.  

 

In analyzing the global stability of the Disease Free point, apply the following Lyapunov function L: ɸ →R and 

L (S, I, V) = S(t) + I(t) + V(t), whose derivative is given by, 

 

                   
𝑑𝐿

𝑑𝑡
(𝑆, 𝐼, 𝑉) =  

𝑑𝑆

𝑑𝑡
+ 

𝑑𝐼

𝑑𝑡
+
𝑑𝑉

𝑑𝑡
                                                                                                               [20] 

 

                   
𝑑𝐿

𝑑𝑡
(𝑆, 𝐼, 𝑉) =  𝜇(1 − 𝑆) − 𝛽𝑆𝐼 − 𝜌𝑆 +  𝛽𝑆𝐼 − 𝜇𝐼 − 𝛾𝐼 + 𝜌𝑆 −  𝜏𝑉                                                [21] 

 

Simplifying, we have, 

 

                   
𝑑𝐿

𝑑𝑡
(𝑆, 𝐼, 𝑉) =  𝜇 − 𝜇𝑆 − 𝛽𝑆𝐼 − 𝜌𝑆 +  𝛽𝑆𝐼 − 𝜇𝐼 − 𝛾𝐼 + 𝜌𝑆 −  𝜏𝑉                         

 

            or   
𝑑𝐿

𝑑𝑡
(𝑆, 𝐼, 𝑉) =  𝜇 − 𝜇𝑆 − 𝜇𝐼 − 𝛾𝐼 −  𝜏𝑉                                                                                             [22]    

 

Collecting like and factoring common terms, 

  

                     
𝑑𝐿

𝑑𝑡
(𝑆, 𝐼, 𝑉) =  𝜇(1 − 𝑆) − (𝜇 − 𝛾)𝐼 −  𝜏𝑉                                                                                     [23]   
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           or      
𝑑𝐿

𝑑𝑡
(𝑆, 𝐼, 𝑉) =  𝜇(1 − 𝑆) −  𝜏𝑉 − (𝜇 + 𝛾)𝐼                                                                                      [24]    

 

           or      
𝑑𝐿

𝑑𝑡
(𝑆, 𝐼, 𝑉) =  (𝜇 + 𝛾) {

(1−𝑆)𝜇𝑅0

𝛽
−
𝜏𝑅0𝑉

𝛽
− 𝐼}                                                                                  [25]  

   

            or     
𝑑𝐿

𝑑𝑡
(𝑆, 𝐼, 𝑉) =   

 (𝜇+𝛾)

𝛽
 {[((1 − 𝑆)𝜇𝑅0) − 𝜏𝑅0𝑉] − 𝐼}                                                                      [26] 

 

             or    
𝑑𝐿

𝑑𝑡
(𝑆, 𝐼, 𝑉) =  

 (𝜇+𝛾)

𝛽
 {𝑅0[𝜇(1 − 𝑆) − 𝜏𝑉] − 𝛽𝐼}                                                                             [27] 

 

Implication,   

 

If 𝑅0 < 0,  then 
𝑑𝐿

𝑑𝑡
(𝑆, 𝐼, 𝑉) < 0 

 

The interpretation that the Disease Free Equilibrium is globally asymptotically stable. 

 

2.3.2 Endemic equilibrium 

 

Theorem 2.2 

 

The Endemic Equilibrium Point E*(S*, I*, V*) of the system is globally asymptotically stable on ɸ 

 

Proof.  

 

We use a Lyapunov function L: ɸ+ → R, where ɸ+ = {S(t), I(t), V(t) ∈ ɸ such that S(t) > 0, I(t) > 0 and V(t) > 0} 

Our function L is given by, 

 

             𝐿(𝑆, 𝐼, 𝑉) =  𝜗 [𝑆 − 𝑆∗ ln (
𝑆

𝑆∗
)] + 𝜑 [𝐼 − 𝐼∗𝑙𝑛 (

𝐼

𝐼∗
)] + 𝜔 [𝑉 − 𝑉∗𝑙𝑛 (

𝑉

𝑉∗
)]                                             [28] 

 

where 𝜗, 𝜑 and 𝜔 are constants. 

 

Differentiating the function with respect to time, t, we have 

 

     
𝑑𝐿

𝑑𝑡
= 

𝜕𝐿

𝜕𝑆

𝑑𝑆

𝑑𝑡
+ 

𝜕𝐿

𝜕𝐼

𝑑𝐼

𝑑𝑡
 +

𝜕𝐿

𝜕𝑉

𝑑𝑉

𝑑𝑡
                                                                                                                             [29] 

 

   
𝑑𝐿

𝑑𝑡
=  𝜗 [(1 −

𝑆∗

𝑆
) ((1 − 𝜌)𝜇 − 𝛽𝑆𝐼 − 𝜇𝑆)] + 𝜑 [(1 −

𝐼∗

𝐼
) (𝛽𝑆𝐼 − 𝜇𝐼 − 𝛾𝐼)] + 𝜔 [(1 −

𝑉∗

𝑉
) (𝜇𝑆 − 𝜏𝑉)]       [30]     

 

 

  
𝑑𝐿

𝑑𝑡
=  𝜗 [(

𝑆−𝑆∗

𝑆
) ∗ 𝑆 (

(1−𝜌)𝜇

𝑆
− 𝛽𝐼 − 𝜇)] + 𝜑 [(

𝐼−𝐼∗

𝐼
) ∗ 𝐼(𝛽𝑆 − 𝜇 − 𝛾)] + 𝜔 [(

𝑉−𝑉∗

𝑉
) ∗ 𝑉 (

𝜇𝑆

𝑉
− 𝜏)]                  [31]  

 

 

   
𝑑𝐿

𝑑𝑡
=  𝜗 [(𝑆 − 𝑆∗) (

(1−𝜌)𝜇

𝑆
− 𝛽𝐼 − 𝜇)] + 𝜑[(𝐼 − 𝐼∗)(𝛽𝑆 − 𝜇 − 𝛾)] + 𝜔 [(𝑉 − 𝑉∗) (

𝜇𝑆

𝑉
− 𝜏)]                        [32]                                         

 

At equilibrium point 

    

      𝜇 =
(1−𝜌)𝜇

𝑆∗
− 𝛽 ∗ 𝐼∗ ,   𝜇 +  𝛾 =  𝛽𝑆∗   and   𝑉∗ =  𝜌 

 

Making these substitutions, we have, 

  
𝑑𝐿

𝑑𝑡
= −𝜇𝜗(1 − 𝜌) (

(𝑆−𝑆∗)2

𝑆𝑆∗
) + 𝛽(𝜗 − 𝜑)(𝐼 − 𝐼∗)(𝑆 − 𝑆∗) − 𝜏𝜔[(𝑉 − 𝑉∗)]2                                            [33]  

 

 



 
 

 

 
Mocheche; Asian Res. J. Math., vol. 20, no. 9, pp. 151-165, 2024; Article no.ARJOM.123321 

 

 

 
162 

 

Additionally, 

 

If      𝜗 =  𝜑 + 𝜔 = 1,  

 

then  
𝑑𝐿

𝑑𝑡
=  𝜇𝜗 (

(𝑆−𝑆∗)2

𝑆𝑆∗
) − 𝜏𝜔[(𝑉 − 𝑉∗)]2 ≤ 0      and if  𝑆 =  𝑆∗ ,  𝑉 =  𝑉∗,     

𝑑𝐿

𝑑𝑡
= 0 

 

The interpretation is that by LaSalle’s Invariance Principle, the Endemic Equilibrium Point is globally 

asymptotically stable, since in other words, both eigenvalues are real, negative, and distinct producing a phase 

portrait that shows all trajectories tending toward the equilibrium point as t → ∞, the value of x(t) gets small, so 

it is a globally stable equilibrium point. 

 

4 Post Vaccination Projections 
 

For post vaccination projection dynamics, the parameters as illustrated on the flow diagram are used. The 

Endemic Equilibrium Points, E∗ corresponding to the first four months after the inception of the vaccination 

drive in Kenya are given in Table 3.  

 

The data used to simulate the results shown in the graphs depicted in Fig. 1 through 7 was obtained from 

Kenya’s Ministry of Health (MoH) website. The same was therefore readily available as was captured and 

tabulated by the Ministry of Health officials on a daily basis.  

 

 
 

Fig. 2. S, I, and R relationship after 250 days 

 

Table 3. Endemic Equilibrium Points, E*(S,I,V) for the first five months after commencement of COVID-

19 Vaccination drive in Kenya 
 

Month Endemic Equilibrium Point E*(S I V) 

1  

2  

3  

4  

5 

E* (0.946022 0.001599 0.0031)  

E* (0.745570 0.062665 0.0170)  

E* (0.768893 0.046577 0.0200)  

E* (0.756590 0.040811 0.0290)  

E* (0.756967 0.037387 0.0348) 

 

As is depicted in the following graphs, as the vaccination numbers increase, those of susceptibles and infected 

reduce. 

 

This is depicted in Fig. 3, 4, 5, 6, and 7. 

The reproduction number, Rv, was obtained from: Rv = R0(1 −p).  

 

For the first instance above, Rv = 0.946022(1 −0.0031) = 0.9453089 < 1 hence implies that the Disease Free 

Equilibrium is stable.      

  

Fig. 3 shows a somewhat sharp increase in the number of the vaccinated, whereas those for susceptibles and 

recovered are both decreasing respectively. 
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Fig. 3. S, I, R and V relationship at DFE 

 

Fig. 4. S I R and V relationship after 50 days 
 

Figs. 4 and 5 below show a reduction in the number of susceptibles whereas the number of recovered is 

increasing. These numbers are seen stabilizing at some point. On the other hand, the infected numbers remain 

low. 
 

  
 

Fig. 5. S I R and V relationship after 100 days 

 

Fig. 6. S I R and V relationship after 150 days 
 

Figs. 6 and 7 show that the numbers of the vaccinated increasing while those for recovered remain low and 

stable as the number of days increase. 
 

 

 

 

Fig. 7. S I R and V relationship after 200 days. 

 

Fig. 8. S I R and V relationship after 250 days. 
 

5 Conclusions and Recommendations 
 

5.1 Conclusions 
 

With an estimated 𝑅𝑜 value approaching 1.08, translating into a Herd Immunity Threshold of 0.07, implied that 

the population that needed to be vaccinated to keep the pandemic under control was 7%. This was a huge 

milestone achieved in curbing the spread of the disease. This is believed to be attributed to the herd immunity 

obtained through vaccination. or naturally. From the post vaccination stability analysis carried out, it can be 

concluded that vaccination significantly contributed to the acquisition of herd immunity. 
 

Upon vaccination, results show that the susceptible population gradually decreased while the infected 

population declined steadily as shown by the infection rate, β. This is believed to be a result of enhanced herd 

immunity due to the robust vaccination roll out. 
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5.2 Recommendations 
 

Its highly recommended that stability analyses be carried out amongst people of different age groups with a 

view to determining which group is most vulnerable. It’s not lost on the study that a large portion of Kenyans 

never got vaccinated due to their cultural beliefs, yet they continue to exhibit characteristics of herd immunity, 

pointing out to the fact that a large portion acquired natural herd immunity upon infection. It might be necessary 

to determine, if possible, which between natural immunity or one acquired due to vaccination is more effective 

in curbing the spread of COVID-19 and other similar pandemics and how the same can be enhanced. 
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