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Abstract: This article assesses the predictive accuracy of factor models utilizing Partial·Least·Squares
(PLS) and Principal·Component·Analysis (PCA) in comparison to autometrics and penalization
techniques. The simulation exercise examines three types of scenarios by introducing the issues
of multicollinearity, heteroscedasticity, and autocorrelation. The number of predictors and sample
size are adjusted to observe the effects. The accuracy of the models is evaluated by calculating
the Root·Mean·Square·Error (RMSE) and the Mean·Absolute·Error (MAE). In the presence of se-
vere multicollinearity, the factor approach utilizing (PLS demonstrates exceptional performance in
comparison. Autometrics achieves the lowest RMSE and MAE values across all levels of heteroscedas-
ticity. Autometrics provides better forecasts with low and moderate autocorrelation. However,
Elastic·Smoothly·Clipped·Absolute·Deviation (E-SCAD) forecasts well with severe autocorrelation.
In addition to the simulation, we employ a popular Pakistani macroeconomic dataset for empirical
research. The dataset contains 79 monthly variables from January 2013 to December 2020. The
competing approaches perform differently compared to the simulation datasets, although “The PLS
factor approach outperforms its competing approaches in forecasting, with lower RMSE and MAE”.
It is more probable that the actual dataset exhibits a high degree of multicollinearity.

Keywords: fat big data; factor models; machine learning techniques; forecasting; Monte Carlo
experiments; inflation

MSC: 94D05

1. Introduction

Regression analysis is a widely recognized statistical method employed in various
fields, including finance and the social sciences. The main objective of regression analysis is
to create a model that accurately represents the influence of one or more independent vari-
ables on a dependent variable. The Ordinary·Least·Squares (OLS) approach is a frequently
employed technique for estimating unknown parameters of a regression model [1]. The
OLS estimates are derived by reducing the squared errors of the residuals. The approach is
widely favored because of its high interpretability and ability to generate accurate estimates,
provided that the underlying assumptions are met [2].

In the era of big data, dataset formats have changed. Previously, the number of observa-
tions, n, was generally much bigger than the number of explanatory variables, p. However,
currently, n ≈ p or even n < p is common, referred to as high-dimensional data. These
large datasets have presented new issues, such as degrees of freedom, multicollinearity,
heteroscedasticity, etc., rendering standard linear regression models ineffective. Traditional
econometric models do not provide sparse models, which may result in inefficient behavior
when n < p. Advanced regression approaches are consequently necessary for enormous
datasets, commonly known as big data [3].
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The recent developments in the collection of macroeconomic data have led to a great
focus on big data. An accurate analysis can be performed if we extract the important infor-
mation suitably from a huge set of features. However, the performance alters depending on
the data dimension and estimation tool which are applied as well. Failure in dimensional
reduction induces poor output because of redundant variables. Since influential work
on the forecasting through Diffusion·Index (DI) was conducted by [4], factors models are
considered the common approach for predictive modeling in a data-rich environment.
Stock and Watson [5] showed that forecasting via factor models is more accurate than the
existing forecasting tools like autoregressive forecasts, bagging, pretest methods, empirical
Bayes, and Bayesian model averaging. They inferred that the DI is an effective approach to
lessen the regression dimension, and it appears to be difficult to enhance this performance
without introducing severe changes to the predictive model. Recently, the factor models
extended for forecasting aims include those of [6–10].

In addition to the DI methodology, sparse regression is another family of tools utilized
for dimension reduction and forecasting, and it is specifically well-known in the economet-
rics and statistics fields. The sparse regression tools attempt to keep the relevant features
and force the coefficients of irrelevant features to zero. The benefit of such tools is that
they permit a curse of dimensionality that is available in macroeconomic time series for a
substantial amount of time, but the predictions that statistical tools produce also serve to
devise productive monetary policies [11,12].

The sparse regression models can be fitted through penalized regression, also known
as shrinkage methods, such as the Least·Absolute·Shrinkage and Selection·Operator (Lasso)
of [13], the Smoothly·Clipped·Absolute·Deviation (SCAD) of [14], the Elastic·net (Enet)
of [15], the Adaptive·Lasso of [16], the Adaptive·Enet of [17], the Minimax·Concave·Penalty
(MCP) of [18], and the regression with an Elastic-SCAD (E-SCAD) of [19]. In general, these
penalties are collectively referred to as folded concave penalties. However, it is interesting
that shrinkage methods can attain both accurate forecasts and consistent feature selection.

The use of these methodologies along with sparse modeling has become well known
because they can successfully tackle huge sets of macroeconomic data and are a noticeable
alternative to factor models, as shown by [20–40]

By employing a reduction in size, the Stochastic·Dynamic·Factor (SDF, which is equiv-
alent to large factor models) model can exhibit significant effectiveness [41,42], even when
dealing with basic linear attributes from the conventional factor collection. According
to [43], it may be necessary to use multiple characteristics-based parameters in order to
accurately approximate the SDF. [44] provided formalization and evidence of the long-
standing conjecture that, where there are a large number of characteristics-based factors, an
unconditional SDF constructed from these factors will converge to the actual, conditional
SDF. One can utilize Large·Factor·Models (LFMs) to construct the genuine, conditional
stochastic discount factor (SDF). Although LFMs possess a high level of approximation
capacity, they encounter a significant obstacle: These phenomena display significant sta-
tistical complexity and necessitate the estimation of a vast number of parameters (such as
factor weights in the SDF) which greatly surpasses the number of observations. One could
predict that a simplified version of the LFMs would perform better when tested with new
data because it effectively reduces the problem of overfitting with the available data. [44]
disproved this intuition. The studies conducted by [41] demonstrated the importance of
complexity in factor pricing models. Specifically, LFMs with higher dimensions and a large
number of parameters demonstrate superior performance when tested on data not used
during training. These models exploit the numerous nonlinearities that are concealed in
the connection between attributes and stock returns.

Similarly, ref. [45] employed a four-layer neural network consisting of 64 neurons in
each layer, while ref. [46] utilized a four-layer neural network with four neurons in each
layer. These narrow network topologies had a high number of parameters and functioned
in regimes that were almost overfitting, as evidenced by the significant changes in their
performances between training and testing data, as described in the aforementioned articles.



Axioms 2024, 13, 418 3 of 15

These characteristics render them highly challenging to analyze systematically. The loss
landscape which they have is already extremely non-convex, containing many local minima
and having questionable performance when applied to new data [42].

The big data environment and machine learning tools have currently garnered a great
deal of attention in economic analysis [36]. When it comes to macroeconomic forecasting,
ref. [29] recommended penalized regression methods; refs. [4,5,47] suggested factor-based
models; and similarly, autometrics was suggested by [48]. Recently, big data was catego-
rized by [24] into three classes—Fat·Big·Data, Huge·Big·Data, and Tall·Big·Data—which
can be further illustrated as:

• Fat·Big·Data: the length of covariates (large P) exceeds the number of observations
(large N);

• Tall·Big·Data: the length of covariates (large P) is considerably lower than the number
of observations (sufficient large N);

• Huge·Big·Data: the length of covariates (large P) is lower than the number of observa-
tions (large N).

P and N indicate the number of covariates and the number of observations, respectively.
Visually, the three types of big data are depicted in Figure 1.
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Figure 1. Categorization of big data.

Earlier research works have focused on independent component analysis, PCA, and
sparse PCA for the formulation of factor-based models. However, very few past studies
have used the classical method (autometrics) for time series forecasting [22] and [48,49].
Apart from this, we have not found even a single paper to date in which the forecasting
performance of a factor model based on PLS analysis has been explored theoretically.
Moreover, various past studies have used penalization techniques such as ridge regression,
elastic net, Lasso, adaptive Lasso, and non-negative garrote, but none of the published
works have yet utilized the modified versions of penalization techniques for the forecasting
of macroeconomic variables.

This work employs several novel methods in big data analysis to enhance the exist-
ing empirical and theoretical research on macroeconomic forecasting by addressing the
following shortcomings of a recent study which specifically concentrated on Fat·Big·Data.
By utilizing dimension reduction techniques, we develop factor-based models to empha-
size the impact of these models on macroeconomic forecasting. To achieve this objective,
factor-based models are developed by employing PCA and PLS. In addition, we evaluate
both the conventional approach and updated forms of penalization approaches, namely,
MCP and E-SCAD. We provide a thorough examination of the predictive capacities of
factor models, classical methods, and penalized regression techniques. To summarize the
entire discussion, our primary contribution is a comparison of the forecasting performance
of penalized regression tools and autometrics with factor models that have recently been
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established. The comparison is constructed through the use of exhaustive simulation exer-
cises, such as multicollinearity, autocorrelation, and heteroscedasticity, as well as empirical
application to the macroeconomic dataset. The purpose of this research is to develop a more
advanced tool that can be used to provide assistance to practitioners and policymakers
who are working with fat big data. The improved tool is not restricted to inflation, but can
be applied to any macroeconomic time series.

The remaining sections are organized as follows. Section 2 provides a thorough dis-
cussion of factor, classical and penalized methods. Simulation exercise on the comparative
performance of various forecasting methods is discussed in Section 3. Empirical results
and visualization are presented in Section 4. Concluding remarks are given in Section 5.

2. Methods

To effectively tackle the challenges presented by fat big data, we use a comprehensive
set of advanced statistical methodologies, as well as penalization and machine learning
techniques. Figure 2 depicts several approaches in great detail, including factor models
based on PLS and PCA, as well as traditional econometric methods such as autometrics.
In addition, we use penalization methods like Lasso, Elastic Net, and SCAD to improve
predictive accuracy and model selection. Our methodology is intended to solve major
concerns such as multicollinearity, heteroscedasticity, and autocorrelation, resulting in a
robust and dependable forecasting performance.
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Figure 2. Schematic representation of fat big data methods.

2.1. Factor Models

One of the most widely applied methods in macroeconomic forecasting, under a large
set of features, is principal component analysis, which is based on factor models suggested
by [4,5]. The basic notion behind factor models is to distill the unseen, hidden factors from
a huge set of features and then to utilize a relatively small number of factors as covariates
for predictive modeling. Suppose Zit is a potential candidate covariate generated from the
following equation:

Zjk = π′
jF

s
k+ϵjk (1)

For j = 1, 2, . . ., M, and k = 1, 2, . . ., N, Fs
k = ( f1k, f2k, . . . , flk)

′ is a vector of size ‘s’
common factors, π

′
j is a vector of size ‘s’ factor loadings, and ϵjk denotes the idiosyncratic

random term.
The PCR: The formulation of factor-based model requires the following two steps. In

the first step, the Fs
k latent factors are extracted as principal components using all included
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covariates Zjk by minimizing the term ∑M
j=1 ∑N

k=1

(
Zjk − π′

jF
s
k

)2
. In the second step, the

h-period of the sample forecast is constructed by running the PCR as follows:

Rk+h= γ′
jF

s
k + ek+h (2)

where γj, the dimension of estimated coefficients, is ‘s’, which is basically estimated from
Rk and Fk. Detailed discussions regarding the factor approach are given by [4,30,50,51].

This method is most commonly employed in the literature on factor model, as PCs are
easily generated using singular value decompositions [4,52,53].

It is more likely that the factor approach will provide a poor forecast if the included
common factors are dominated by omitted common factors [54]. Likewise, ref. [34] argued
that PCA utilizes the factor structure for Z and does not account for the response variable.
It illustrates, no matter what, that the response is variable in the forecast. Due to ignoring
the response variable during factors extraction, the resulting model’s forecast is inaccurate.

The PLS method: This study takes into account PLS regression, a widely used alterna-
tive to PCA which was first introduced by [55]. The approach is suitable in a mountain-of-
data environment (fat big data) and is deemed an alternative to factor models constructed
using PCA. In contrast to PCA, PLS yields independent components by utilizing the exist-
ing association amid covariates and the corresponding response variable, although it also
retains most of the variance of the covariates. PLS has proved to be successful in situations
where the number of predictors (P) is sufficiently larger than the number of data points
(N) and extreme multicollinearity exists among the covariates [56]. Generally, the PLS
approach seeks the directions of maximal variance that assist in delineating the covariates,
as well as the response variable. The mathematical form of the PLS can be expressed as

Rt= ytαP+εt (3)

where yt = [y1,t, y2,t, . . . , yk,t]
′ is a vector of covariates of size k × 1 observed at time

t = 1, . . ., T; αP is a vector of coefficients with a dimension k × 1; and εt is a random error. To
achieve a k-period ahead of the sample forecast, we may utilize the equation given below:

R̂t+k= α̂′kyt (4)

2.2. Panelized Regression and Classical Approach

In addition to the above factor models, we also consider methods of penalized regres-
sion, including MCP and E-SCAD, as well as the classical method (autometrics), as both
approaches are good alternatives to factor models. Here, we give concise outlines of a
number of these approaches, as well as the corresponding citations to thorough debates
regarding them.

Panelized·Regression·Methods

The parameters of the included Panelized·Regression·Methods are estimated accord-
ing to the following objective function:

∑T
t=1

{(
Rk+h − ∑n

i=1 αiyit

)2
+ πg(α)

}
(5)

where π refers to the hyperparameter of regularization. The specification of a penalty
term g(α) differs for the aforementioned penalized techniques; by definition, α is equal
to (α1, α2, . . . , αn )′. For the selection of hyperparameter π, we adopt a cross-validation
approach in our study, following [36].

MCP: The MCP was initially developed by [18]. It corresponds to the penalized family
of regression with a penalty term gπ(α) = (ℵπ−ϑ)+

ℵ . According to Zhang, the probability
that the MCP penalty may choose the right model tends to be 1. Moreover, in terms of
Lq-loss, the MCP estimator enjoys oracle properties provided that ℵ and π ensure certain
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conditions in a high-dimensional setting [57]. More recently, the MCP has shown very
interesting findings in terms of variable selection, estimation, and forecasting [58].

E-SCAD: SCAD was modified by adding the L2 penalty. The new method is called
elastic SCAD (E-SCAD). In addition to an oracle property, E-SCAD achieves an extra
property in which the penalty function drives the inclusion or exclusion of a strongly
correlated set of predictors from the model. To accomplish this, the process does not
require any prior information [19]. Mathematically, the penalty function of E-SCAD is
given as follows:

gπ(α)= ∑C
c=1 gπ(αc)+λ2 ∑n

c=1 α2
d (6)

2.3. Classical Approach

Autometrics is a popular statistical approach which is applicable in the case of huge
big data as well as fat big data [24]. In general, the algorithm of autometrics basically
consists of five steps. In the initial step, the model is designed in a linear form in which all
the covariates are included, called a Generalized·Unrestricted·Model (GUM). The second
step provides us with the estimates of unknown parameters and tests them for statistical
significance. The third step involves the pre-search process and is followed by a tree path
search in step four. In step five, the model is selected for forecasting.

We obtain the forecasting model by implementing autometrics into the GUM:

Rt= β0+∑n
u=1 ∑m

v=1 αu,vyu,t−v+εt (7)

For model selection, the liberal strategy, also known as the super-conservative strategy,
is considered in this study. This strategy is primarily based on a level of significance of
one percent. Put differently, the significance of the estimated coefficients is based on a
significance level of one percent.

3. Monte Carlo Evidence on Forecasting Performance

This section performs some simulation exercises intending to explore the predictive
power of factor models against classical and penalization methods. In doing so, we consider
three main scenarios: multicollinearity, heteroscedasticity, and autocorrelation. Considering
the cases of multicollinearity, three types of correlation structure among the set of features
are assumed—low (0.25), moderate (0.50), and high (0.90)—under the normally distributed
errors. To generate the artificial data for our simulation experiments, we follow the data
generation process of [24,59].

3.1. Data·Generating·Process (DGP)

The following equation is used to generate data:

Ri= yT
i α + εi (8)

The set of covariates yi is generated from a multivariate normal distribution with a
mean of zero, and the pairwise covariance between m and n is cov(xm, xn) = ∑|m−n| [59].
We split the two candidate sets of variables into 50 and 70, then further divide them into
relevant (p) and irrelevant (q) variables, as depicted in Figure 3.

The second scenario explores the forecast performance in the presence of autocorrela-
tion. More specifically, this refers to how factor models compete with the rival methods
provided the error term of a model is autocorrelated. The correlation between current and
lagged realizations is symbolized by ρ, which is generated as

εt= ρεt−1+µt (9)
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Our simulation exercises assume three levels of autocorrelation—low, moderate, and
high—as, for example, ρ ∈ {0.25, 0.5, 0.9}.

Similarly, the third scenario focuses on heteroscedasticity, which demonstrates the
variance of the error term across observations by δk.

E
(

µ2
t

)
= δk (10)

Thus, we break the variance δk into two segments, i.e., δ1 and δ2. Suppose there are ‘n’
data points, we adjust the variance of (n/2) data points as δ1 and the remaining data points
variance to be δ2. Our simulation exercises conjecture the low, moderate, and high levels of
heteroscedasticity and adjust the values of πi = (σ1/σ2), where i = 1, 2, 3 and πi ∈ {0.1/0.3,
0.2/0.6, 0.3/0.9}. For all penalization techniques and factor models in our study, we select
the optimal hyper parameter(s) by means of tenfold cross-validation

We divide the dataset so that 80 percent of the data are used for model training
and the remaining data are used for model evaluation in order to compare the predic-
tion capabilities of all procedures. We repeat the process H = 1000 times. The mean of
the Root·Mean·Square·Error (RMSE) and the Mean·Absolute·Error (MAE) are calculated
over ‘H’ to evaluate the predictive power. Through these two criteria, we can achieve
prediction accuracy with all included methods. The smaller values of MAE and RMSE
indicate comparatively better forecasts. To obtain the simulation and empirical results, we
rely on various packages, like gets, pls, caret, ncvreg, Metrics, and forecast, under the R
programming language.

3.2. Simulation Results

The forecast comparison output obtained from Monte Carlo exercises is reported
in Tables 1–3. The entries in bold show the best performances of the underlying model.
It can be observed that the performances of all procedures improve with the increasing
data points.

Scenario 1. Considering the cases of low and moderate multicollinearity, the predictive
ability of autometrics is more effective than that of competing methods. But, in case of a
small sample, the RMSE and MAE associated with autometrics are slightly better than the
PLS-based factor approach. This clearly indicates that the PLS-based factor approach is
strongly competitive. Similarly, despite achieving a considerable improvement in RMSE
and MAE by E-SCAD when the sample size is increased, the results are not satisfactory in
contrast to autometrics. Moreover, by increasing the number of active and inactive variables,
autometrics remains dominant, with the lowest RMSE and MAE. In the presence of extreme
multicollinearity, the factor approach based on PLS outperforms its rival counterparts in
terms of the lowest forecast error. According to both error criteria, autometrics stands as a
good competing method.

Scenario 2. Based on RMSE and MAE, the forecasting capabilities of autometrics are
superior to those of all competing counterparts in the presence of heteroscedasticity. In
contrast, the MCP and E-SCAD perform poorly using a small size, but as we expand the
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data window (large sample), their forecasting performance dramatically improves. This
indicates that penalized regression models require a large number of data points in order
to provide accurate forecasts.

Scenario 3. Despite adding more irrelevant variables, autometrics demonstrates re-
markable forecasting performance for low and moderate autocorrelation. E-SCAD remains
a good competing method, particularly when more observations are used. Considering the
extreme autocorrelation, E-SCAD provided the lowest RMSE and MAE compared to the
other competing counterparts, but autometrics was still a good contester.

Table 1. Variable selection under multicollinearity from Monte Carlo simulation.

Models ∑ = 0.25, P = 130 ∑ = 0.25, P = 150

n = 50/100/125 RMSE MAE RMSE MAE

MCP 6.86/5.41/2.243 5.602/4.375/1.811 6.043/3.319/1.208 4.970/2.681/0.975
E-SCAD 5.80/2.00/1.355 4.741/1.620/1.095 4.899/1.364/1.257 4.008/1.098/1.016

Autometrics 4.192/1.312/1.189 3.419/1.058/0.957 3.267/1.222/1.145 2.673/0.986/0.924
PLS_FM 4.530/3.213/2.727 3.678/2.589/2.197 5.260/3.786/3.295 4.309/3.062/2.623
PCA_FM 6.475/5.781/5.695 5.725/4.685/4.589 6.512/6.398/6.342 5.318/5.166/5.104

n = 50/100/125 ∑ = 0.50, P = 130 ∑ = 0.50, P = 150

MCP 7.918/4.414/3.007 6.505/3.564/2.429 6.512/3.192/1.748 5.353/2.579/1.406
E-SCAD 5.380/2.093/1.581 4.414/1.688/1.276 4.118/1.548/1.326 3.375/1.247/1.070

Autometrics 4.394/1.469/1.221 3.282/1.186/0.983 3.178/1.325/1.159 2.599/1.069/0.934
PLS_FM 4.414/2.533/2.151 3.60/2.043/1.732 5.285/3.037/2.519 4.330/2.458/2.029
PCA_FM 6.724/6.310/6.186 5.544/5.107/4.977 7.809/7.255/7.076 6.402/5.854/5.698

n = 50/100/125 ∑ = 0.90, P = 130 ∑ = 0.90, P = 150

MCP 5.031/3.784/3.638 4.101/3.057/2.932 4.123/3.253/3.146 3.372/2.636/2.541
E-SCAD 2.699/2.344/2.307 2.215/1.895/1.856 2.222/2.024/2.016 1.817/1.630/1.629

Autometrics 2.709/1.982/1.757 2.219/1.605/1.418 2.437/1.788/1.620 2.001/1.443/1.307
PLS_FM 1.797/1.347/1.274 1.472/1.086/1.027 2.080/1.426/1.326 1.706/1.143/1.069
PCA_FM 3.125/2.306/2.149 2.571/1.865/1.742 4.037/2.881/2.685 3.293/2.326/2.162

Noted: Bold values show a better forecast.

Table 2. Variable selection under heteroscedasticity from Monte Carlo simulation.

Models π1 = 0.1/0.3, P = 130 π1 = 0.1/0.3, P = 150

n = 50/100/125 RMSE MAE RMSE MAE

MCP 6.317/2.072/0.472 5.183/1.679/0.381 7.656/3.935/1.649 6.244/3.178/1.331
E-SCAD 3.824/0.849/0.668 3.131/0.686/0.539 5.143/1.412/0.948 4.194/1.145/0.765

Autometrics 0.403/0.327/0.317 0.330/0.264/0.255 0.582/0.332/0.326 0.477/0.268/0.263
PLS_FM 4.236/1.985/1.328 3.455/1.603/1.070 5.146/2.668/1.898 4.216/2.158/1.530
PCA_FM 6.658/6.222/6.134 5.477/5.037/4.936 7.863/7.195/7.043 6.300/5.805/5.668

n = 50/100/125 π2 = 0.2/0.6, P = 130 π2 = 0.2/0.6, P = 150

MCP 6.419/2.349/0.798 5.269/1.899/0.642 7.711/4.002/1.962 6.296/3.238/1.583
E-SCAD 3.891/1.038/0.871 3.185/0.837/0.703 5.186/1.567/1.121 4.222/1.270/0.906

Autometrics 0.974/0.653/0.644 0.798/0.528/0.519 1.765/0.668/0.653 1.443/0.538/0.527
PLS_FM 4.277/2.106/1.555 3.487/1.695/1.253 5.178/2.743/2.038 4.485/2.220/1.645
PCA_FM 6.680/6.244/6.155 5.495/5.050/4.952 7.735/7.216/7.055 6.350/5.822/5.679

n = 50/100/125 π3 = 0.3/0.9, P = 130 π3 = 0.3/0.9, P = 150

MCP 6.463/2.661/1.152 5.300/2.147/0.926 7.743/4.131/2.292 6.363/3.339/1.851
E-SCAD 3.983/1.293/1.131 3.263/1.043/0.912 5.257/1.796/1.359 4.287/1.455/1.097

Autometrics 1.939/0.977/0.958 1.588/0.785/0.772 2.730/1.010/0.975 2.225/0.818/0.786
PLS_FM 4.345/2.281/1.838 3.542/1.839/1.480 5.234/2.867/2.241 4.292/2.320/1.807
PCA_FM 6.719/6.284/6.203 5.540/5.084/4.991 7.780/7.241/7.089 6.386/5.843/5.705

Noted: Bold values show a better forecast.
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Table 3. Variable selection under autocorrelation from Monte Carlo simulation.

Models ρ = 0.25, P = 130 ρ = 0.25, P = 150

n = 50/100/124 RMSE MAE RMSE MAE

MCP 6.566/3.266/1.780 5.364/2.641/1.440 7.935/4.379/3.076 6.488/3.541/2.475
E-SCAD 4.254/1.614/1.364 3.475/1.306/1.102 5.335/2.154/1.609 4.362/1.738/1.297

Autometrics 3.253/1.407/1.214 2.659/1.137/0.982 4/1.548/1.278 3.248/1.252/1.030
PLS_FM 4.520/2.617/2.204 3.695/2.117/1.777 5.330/3.096/2.538 4.348/2.499/2.048
PCA_FM 6.713/6.282/6.195 5.490/5.073/4.987 7.691/7.239/7.024 6.291/5.869/5.697

n = 50/100/124 ρ = 0.50, P = 130 ρ = 0.50, P = 150

MCP 6.642/3.376/2.111 5.441/2.722/1.702 7.996/4.524/3.295 6.562/3.654/2.663
E-SCAD 4.326/1.756/1.507 3.541/1.422/1.220 5.359/2.310/1.772 4.364/1.867/1.431

Autometrics 3.462/1.622/1.388 2.840/1.316/1.123 4.470/1.789/1.489 3.637/1.446/1.201
PLS_FM 4.585/2.689/2.329 3.764/2.174/1.877 5.330/3.207/2.683 4.362/2.598/2.164
PCA_FM 6.847/6.393/6.228 5.611/5.142/5.019 7.457/7.214/7.185 6.108/5.853/5.796

n = 50/100/124 ρ = 0.90, P = 130 ρ = 0.90, P = 150

MCP 7.069/4.646/4.002 5.771/3.782/3.257 8.268/5.544/4.678 6.780/4.84/3.781
E-SCAD 4.963/3.279/2.923 4.065/2.705/2.425 5.957/3.653/3.193 4.901/3.001/2.623

Autometrics 5.257/3.687/3.329 0.268/3.031/2.736 6.169/4.013/3.573 5.013/3.270/2.916
PLS_FM 5.128/3.822/3.454 4.209/3.129/2.822 7.735/7.216/7.035 6.350/5.822/5.679
PCA_FM 6.939/6.692/6.601 5.664/5.426/5.322 7.964/7.523/7.459 6.530/6.079/6.015

Noted: Bold values indicate a better forecast.

4. Testing on Empirical Dataset

Complementing the simulation exercises, we analyze the macroeconomic time series
dataset for Pakistan.

The dataset consists of 79 aggregated and dis-aggregated variables collected at a
monthly frequency during the period from 2013 to 2020. The dataset covers the fiscal sector,
real sector, financial and monetary sector, and external sector of the economy of Pakistan.
The data are taken from the state bank of Pakistan. The forecasting model is constructed
for inflation (INF). For this model, a long list of predictor variables is selected. All the
variables are transformed in order to make them stationary prior to empirical analysis.
Generally, logarithmic transformation is performed for all non-negative time series that
are not already in rates [5]. A complete list of variables is given in Appendix A. Table A1
(given in Appendix A) contains information on the variables utilized in the analysis.

Out-of-Sample Inflation Forecasting

The time series is divided into two parts (shown by dashed line) in order to facilitate
out-of-sample forecast accuracy, as shown in Figure 4. For model estimation, we utilize the
data from January 2013 to February 2019 and March 2019 to December 2020 to assess the
models’ post-sample prediction accuracy multiple steps ahead.
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Figure 5a,b present the forecasting experiment across different forecasting methods
for one of the core macroeconomic variables of interest (inflation). The forecasting accuracy
is given as the RMSE and MAE, represented in our case by a bar chart showing the results
of different methods. The smaller the length of a bar, the better the forecast attained by
the model, comparatively. By observing the length of a bar given in Figure 5a,b, we can
infer that the PLS-based factor model was more superior to its rival counterparts in the
post-sample forecast. In contrast, the autometrics produced a good forecast, but it was not
as satisfactory as that provided by the PLS-based factor model.
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5. Discussion, Implications, and Limitations

In this section, we provide a discussion and explore the implications and limitations of
the study. We evaluate the prediction capacities of several statistical models and machine
learning technologies in time series forecasting scenarios using both theoretical examination
and empirical research.
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5.1. Discussion

This article explores the predictive power of widely used statistical models against
classical and sophisticated machine learning tools theoretically as well as empirically. To
be more specific, our core aim was to discover how well the most popular models in the
context of time series forecasting, that is, factor models, performed against classical and
shrinkage methods. Different sample sizes and predictor variables were used to evaluate
each technique under the conditions of multicollinearity, heteroscedasticity, and autocor-
relation. Across the simulation exercises, it was found that all methods were consistent.
In the presence of low and moderate multicollinearity, based on RMSE and MAE values,
autometrics outperformed the other competitive counterparts. Considering the extreme
case of multicollinearity, the PLS-based factor approach beat the rival counterparts, as it
had the lowest forecast error. Considering different levels of heteroscedasticity, the lowest
RMSE and MAE values were attained by autometrics, which indicates its dominance over
all other methods in post-sample forecasting. Across low and moderate levels of autocorre-
lation, autometrics produced a better forecast, but in contrast, the E-SCAD provided the
lowest RMSE and MAE values for extreme autocorrelation.

5.2. Implication

Complementing the simulation exercise, we carried out an empirical application on a
well-known Pakistan macroeconomic dataset. The dataset entailed 79 time series observed
at a monthly frequency from January 2013 to December 2020, and was collected from
the state bank of Pakistan. For model estimation, we utilized data from January 2013 to
February 2019 and March 2019 to December 2020 for evaluating the models’ post-sample
forecasting accuracy multiple steps ahead. The statistical accuracy measures, namely,
RMSE and MAE, were used in order to compare the post-sample predictive ability of the
factor models against autometrics and ML techniques. Based on both statistical measures,
the factor approach derived from PLS produced a better forecast than the competing
counterparts. These results are consistent with the findings of [59].

5.3. Limitations and Future Avenue

There are several limitations of this study. First, it concentrated merely on linear
models and was confined to monthly data. Moreover, the simulation exercise was confined
to normally distributed errors, but in general, this would not be the case in a real-world
phenomenon. Hence, future work can be carried out to fill the preceding research’s gaps.
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Appendix A

Table A1. Details of variables.

Sr. no Name of the Variables

Real Sector (Output)

1 Production of Sugar (SA)

2 Production of Vegetable (SA)

3 Production of Cigarettes (SA)
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Table A1. Cont.

Sr. no Name of the Variables

4 Production of Cotton yarn (SA)

5 Production of Cotton Cloth (SA)

6 Production of Paper (SA)

7 Production of Paper Board (SA)

8 Production of Soda Ash (SA)

9 Production of Caustic Soda (SA)

10 Production of Sulfuric Acid (SA)

11 Production of Chlorine Gas (SA)

12 Production of Urea (SA)

13 Production of Super Phosphate (SA)

14 Production of Ammonium Nitrate (SA)

15 Production of Nitro Phosphate (SA)

16 Production of Cycle Tyres and Tubes (SA)

17 Production of Motor Tyres and Tubes (SA)

18 Production of Cement (SA)

19 Production of Tractors (SA)

20 Production of Bicycle (SA)

21 Production of Silica Sand (SA)

22 Production of Gypsum (SA)

23 Production of Limestone (SA)

24 Production of Rock Salt (SA)

25 Production of Coal (SA)

26 Production of Chromate (SA)

27 Production of Crude Oil (SA)

28 Production of Natural Gas (SA)

29 Production of Electricity (SA)

Monetary Sector (Money, Reserves and Banking System)
Money

30 Currency in circulation

31 Bank Deposit with State Bank of Pakistan

32 Other Deposit with State Bank of Pakistan

33 Currency in Tills of Scheduled Banks

34 Demand Deposits

35 Time Deposits

36 Resident Foreign Currency Deposits

37 Government Sector Borrowing (net)

38 Budgetary Support

39 Commodity Operations

40 Credit to Private Sector

41 Credit to Public Sector Enterprises

42 Net Foreign (Domestic) Assets of State Bank of Pakistan

43 Net Foreign Assets of the Scheduled Banks in Pakistan
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Table A1. Cont.

Sr. no Name of the Variables

Prices

44 Consumer Price Index

45 Consumer Price Index (Food)

46 Wholesale Price Index

47 Sensitive Price Index

Exchange Rates

48 Nominal Effective Exchange Rate

49 Real Effective Exchange Rate

50 Saudi Arabian Riyal (Monthly Average)

51 UAE Dirham (Monthly Average)

52 US Dollar (Monthly Average)

53 Canadian Dollar (Monthly Average)

54 UK Pound Sterling (Monthly Average)

55 Euro (Monthly Average)

56 Japanese Yen (Monthly Average)

Interest Rates

57 Lending Weighted Average Rates

58 Deposits Weighted Average Rates

59 Call Money Rate

60 Overnight Weighted Average Repo Rate (all data)

61 Karachi Interbank Offered Rate 1 Week

62 Karachi Interbank Offered Rate 2 Weeks

63 Karachi Interbank Offered Rate 1 Month

64 Karachi Interbank Offered Rate 3 Months

65 Karachi Interbank Offered Rate 6 Months

66 Karachi Interbank Offered Rate 9 Months

67 Karachi Interbank Offered Rate 12 Months

External Sector

68 Exports

69 Imports

70 Workers Remittances

71 Gold Reserves

72 Foreign Exchange Reserves with State Bank of Pakistan

73 Foreign Exchange Reserves with Scheduled Banks in Pakistan

74 Old Foreign Currency Accounts

75 New Foreign Currency Accounts (FE-25)

Fiscal Sector

76 Federal Government Direct Tax Collection

77 Federal Government Indirect Tax (Sales Tax)

78 Federal Government Indirect Tax (Excise Tax)

79 Federal Government Indirect Tax (Customs)
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