
Citation: Deng, Z.; Qian, D.; Hong, H.;

Song, X.; Kang, Y. Evaluation of Depth

Size Based on Layered Magnetization

by Double-Sided Scanning for

Internal Defects. Sensors 2024, 24, 3689.

https://doi.org/10.3390/s24113689

Academic Editor: Arcady Zhukov

Received: 14 May 2024

Revised: 23 May 2024

Accepted: 4 June 2024

Published: 6 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Evaluation of Depth Size Based on Layered Magnetization by
Double-Sided Scanning for Internal Defects
Zhiyang Deng 1,* , Dingkun Qian 1, Haifei Hong 1, Xiaochun Song 1,* and Yihua Kang 2

1 Key Lab of Modern Manufacture Quality Engineering, Hubei University of Technology, Wuhan 430068, China
2 Huazhong University of Science and Technology, Wuhan 430074, China; yihuakang@hust.edu.cn
* Correspondence: dzy@hust.edu.cn (Z.D.); songxc@mail.hbut.edu.cn (X.S.)

Abstract: The quantitative evaluation of defects is extremely important, as it can avoid harm caused
by underevaluation or losses caused by overestimation, especially for internal defects. The magnetic
permeability perturbation testing (MPPT) method performs well for thick-walled steel pipes, but the
burial depth of the defect is difficult to access directly from a single time-domain signal, which is not
conducive to the evaluation of defects. In this paper, the phenomenon of layering of magnetization
that occurs in ferromagnetic materials under an unsaturated magnetizing field is described. Different
magnetization depths are achieved by applying step magnetization. The relationship curves between
the magnetization characteristic currents and the magnetization depths are established by finite
element simulations. The spatial properties of each layering can be detected by different magneti-
zation layering. The upper and back boundaries of the defect are then localized by a double-sided
scan to finally arrive at the depth size of the defect. Defects with depth size of 2 mm are evaluated
experimentally. The maximum relative error is 5%.

Keywords: stepped magnetization; magnetic permeability perturbation; defect size evaluation;
ferromagnetic material

1. Introduction

Ferromagnetic components such as nuclear power second-loop pipeline boilers are
usually operated under extreme environments such as high temperature and high pressure
for a long period of time and are very prone to corrosion, cracks, and other internal
damage [1–3]. From a practical production point of view, an overestimation of the hazards
of the defective size would lead to unnecessary stoppages for repairs and significant
economic losses. By accurately evaluating the depth size of the defect, we can more
accurately determine the effect of the defect on the overall properties of the material. This
will help us to decide whether there is a need to stop the pile for repairs as well as the scope
and extent of the repairs. Therefore, the accurate detection of internal defects and obtaining
critical size information are extremely important.

In the current research, the common electromagnetic nondestructive evaluation meth-
ods for defect size evaluation include eddy current testing (ECT) [4–7], pulsed eddy current
testing (PECT) [8–12], and magnetic flux leakage (MFL) testing [13–15], alternating current
field measurement (ACFM) [16–18]. MFL [19–23] was limited by wall thickness, while
the signal for evaluating defects in thick-walled components is attenuated with increasing
wall thickness, and some of them [24–30] were often affected by skin effects or magnetic
shielding effects. Nowadays, some scholars [31–34] evaluated defects through signal char-
acterization with algorithmic optimization. Several academics investigated [6,15,35,36]
making defect evaluation possible by optimizing sensors such as array probes. These
required extensive experimental data analysis and mathematical modeling iteration. Some
scholars [7,14,19,23,37] evaluated defects by detecting principle innovations, such as com-
posite magnetic fields, propagation compensation factor (PCF), etc. The aforementioned
evaluation methods facilitate the reduction in data processing at a subsequent stage.
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It was widely accepted by scholars that when magnetization is applied to a ferro-
magnetic material, the density distribution of magnetic lines in the same cross-section of
a ferromagnetic member is uniform if there were no internal defects and no structural
mutations [38–40]. Furthermore, some scholars [41,42] also conducted research into in-
homogeneous magnetic fields. They achieved uniform magnetization in the horizontal
direction of the detection interval by changing the angle between the magnetic poles but
did not take the depth direction into consideration. In the previous study, the magnetic
permeability perturbation testing (MPPT) method based on the nonlinear magnetization
properties of ferromagnetic materials was proposed to detect internal defects and surface
defects in thick-walled steel pipes [43,44], but it cannot directly obtain the defect size
information from the time-domain signal [45]. Based on the non-uniform uneven pene-
tration property of the magnetic field, the magnetized layering is achieved by applying
a magnetic field of varying intensity. Layering information can determine the upper and
lower boundaries of the defect. In the case, the depth size information of the defects can be
obtained by double-sided scanning. The double-sided scanning allows for obtaining more
layers of information than other methods, which makes it easier to evaluate the depth size
of the defects.

The main structure is as follows: Section 2 analyzes the relationship between the
magnetization strength and the magnetization depth. Section 3 investigates the relation-
ship between the magnetization strength, magnetization depth, and defect depth size by
establishing a finite element model. Section 4 builds an experimental platform to verify the
effectiveness of the proposed method. Section 5 discusses the effect of defect width on the
peak value of the detected signal. Finally, brief conclusions are given in Section 6.

2. Layered Magnetization Mechanism

In this section, the magnetization model of a U-shaped magnetizer with a thick-walled
member is established as shown in Figure 1.
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Figure 1. Magnetization model.

Since the magnetic field excited by the U-shaped magnetizer is non-uniform, especially
near the magnetic poles, this non-uniformity is more prominent, and thus the magnetization
of the material is also non-uniform. To calculate the magnetic field distribution inside the
material, it is first necessary to calculate the magnetic field distribution of a U-shaped
magnetizer in a vacuum. The magnetic field strength Equation (1) can be obtained from the
Ampere loop theorem: ∮

l
Hdl = NI (1)

In Equation (1), N is the number of turns, I is the actual current value, and l is the
effective magnetic circuit length.
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In the magnetizing field of a U-shaped magnetizer, the magnetic field strength
→
H at

different points is calculated by the formula:

→
H =

NI
Lex

→
x +

NI
Ley

→
y (2)

In Equation (2),
→
H is the magnetic field intensity, N is the number of turns, I is the

actual current value, Lex is the effective magnetic circuit length in the horizontal direction,
and Ley is the effective magnetic circuit length in the longitudinal direction.

→
x is a unit vec-

tor in the transverse direction in 2D space, and
→
y is the unit vector in the vertical direction

in 2D space. In this article, the symbols
→
x and

→
y are solely utilized to denote directionality,

which is devoid of any inherent physical significance or quantitative representation.
Assuming that the magnetic field intensity decays to H0, H0 is an infinitesimal value,

and the point at this point is identified as the limit point of the magnetic field. When the
magnetized point is on the centerline of the magnetizer (i.e., when the transverse effective
length Lex is unchanged, see the red line in Figure 1), the decay distance required of Ley
increases as the magnetizing current increases and the magnetic field strength decays to H0.

In ferromagnetic material, the magnetic field increases with the applied DC magnetiz-
ing field H. The magnetic permeability gradually increases to a maximum value and then
shows a decreasing trend, as shown in Figure 2.
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Figure 2. Ferromagnetic member B − H and µ − H curves.

The relationship between magnetic field strength and magnetic induction is expressed as

B = µ0µr H = µH (3)

In Equation (3), µ is the magnetic permeability of the component, µ0 is the vacuum
permeability, and µr is the relative magnetic permeability. In Figure 2, µm is the maximum
value of magnetic permeability, and Hµm is the magnetic field intensity at µm.

The static magnetizing field is excited by a DC magnetizer, and a step change in
the magnetic field is achieved by increasing the magnitude of the DC current. Under
the action of the step magnetic field, the magnetic field lines are disturbed by defects,
producing permeability perturbations. These perturbations generate detection signals
through the eddy current field and secondary magnetic field changes. By subtracting the
peak values of the signals under magnetizing currents of stepped intensities, the signal
increment ∆VIn = VIn − VIn−1 is obtained. The signal amplitude increment increases with
the magnetizing current. The maximum ∆VIn occurs when the magnetizing current causes
the magnetization depth to coincide with the defect upper boundary. Subsequently, the
magnetizing current increases as the signal amplitude increment decreases. We recorded the
current corresponding to the maximum value of each signal increment as the “characteristic
current” I∆V . For defects with different burial depths, the I∆V is different. The localization
of defects can be achieved by establishing a relationship between I∆V and defect burial



Sensors 2024, 24, 3689 4 of 19

depth h. By applying double-sided step magnetization with double-sided scanning, it is
possible to determine the characteristic current is I∆V1 when the defect is swept from the
upper surface and the characteristic current is I∆V2 when the defect is swept from the back
surface. Then, the spatial information of each magnetization layering above and below can
be determined. The distance h1 to the upper surface of the defect is obtained by substituting
the value I∆V1 into the characteristic current curve, and the distance h2 to the under surface
of the defect is obtained by substituting the value I∆V2 into the characteristic current curve.
The depth size hd of the defect is obtained by subtracting the distance h1 and h2 from the
wall thickness (Figure 3).
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3. Simulation
3.1. Three-Dimensional (3D) FEM Model

In this section, a finite element model of the MPPT method is built by COMSOL
Multiphysics 5.6, as shown in Figure 4. Figure 4a shows the schematic diagram of the sizes
of the magnetizer and the specimen, Figure 4b shows the internal defect of the specimen,
and Figure 4c shows the differential probe. The detection probe contains an excitation
coil and two detection coils. The excitation coil is in the center and the detection coils
are on both sides, and the spacing between coils is 0.1 mm. The analysis explores the
distribution of magnetic permeability perturbation (MPP) inside the material under step
magnetization. A set of defects with different burial depths is detected by the probe, and the
signals are used to corroborate the relationship between the magnetizing current and the
magnetization depth of the measured steel plate. The specific parameters in the simulation
are shown in Table 1. The Figure 4a presents an overall schematic of the simulation model,
Figure 4b shows the detailed view of the probes and the defect, and Figure 4c depicts a
cross-sectional view y of the defect portion in the xoz plane.
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Table 1. Simulation parameter settings.

Simulation Module AC/DC

Magnetizing coil 1000 turns.

Probe (the size parameters of the excitation coil
and the detection coil are the same)

100 turns,
Frequency = 100 kHz,

Voltage = 1 V,
Inner diameter 2.5 mm,
Outer diameter 4 mm.

Specimen
w1 = 200 mm,
l1 = 100 mm,
t1 = 20 mm.

Magnetic yoke

w2 = 20 mm,
l2 = 50 mm,
t2 = 80 mm,
d = 100 mm.

This model is solved in two stages. In the first step, the magnetization field distribution
in the workpiece is obtained by a steady-state solver. The variable intensity DC magnetiza-
tion is generated by adjusting the magnetizing current. In the second step, the results of the
steady-state solver are called in the frequency domain to calculate the relationship between
the permeability and the output of the probe. The material properties of the U-shaped yoke
and the steel plate are set to No. 45 steel, which is shown in Table 2.

Table 2. Magnetization curve data of No. 45 steel.

H (A/m) B (T)

0 0
245.8 0.089
414.6 0.185
550.5 0.287
673.6 0.402
818.6 0.571
996.4 0.748

1239.6 0.897
1723.8 1.091
2375 1.259

3078.8 1.378
4245.2 1.497
6495.1 1.632
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Table 2. Cont.

H (A/m) B (T)

9429.7 1.747
11,910.6 1.813
16,018.6 1.866
19,201.7 1.87

3.2. Magnetization Depth of Different Magnetizing Current

When there are no defects in the steel plate, the magnetization cloud map of the local
region of the xoz chapter(20 mm × 20 mm) at the center of the steel plate is extracted, as
shown in Figure 5. The internal magnetic field of the ferromagnetic component changes
unevenly with the increase in the applied magnetic field strength. The magnetic field pene-
trates downwards from the surface, and the magnetic field strength gradually decreases,
but the range of magnetization inside the steel plate increases along the depth direction.
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Figure 5. Effect of magnetizing current on magnetization depth.

From Figure 6, under the influence of magnetization, the perturbation of the magnetic
permeability of the defects inside the component spreads not only to the upper surface but
likewise to the back surface. Because the upper and the lower boundaries of the defects
are at different distances from the surface, the values of permeability perturbation signals
are different.
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The MPP of the surface layer is considered due to the skin effect. For defects with
different burial depths, the differential probe signals on the surface of the specimen are
extracted, and the extraction path is shown in Figure 7. For each burial depth, a magnetic
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field with a step change in intensity is applied to the defects. The MPP at each magnetizing
current is extracted.
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In the simulation process, the magnetizer is subjected to a current that varies in steps
of 0.1 A. The lift-off distance of the differential probe is 0.05 mm, and the defect depth is
10 mm. Due to the large amount of data, the following display is part of the results that can
show the relationship of ∆VIn between I∆v. The detection signals at magnetizing currents
of 7.6 to 8.6 A are obtained by the scanning method in Figure 7, as shown in Figure 8. Based
on the method described in Section 2, the signal amplitude increment ∆VIn is extracted as
shown in Figure 9. The peak increment ∆VIn of the detected signal firstly increases with
the increase in the current and starts to decrease when the magnetizing current reaches
8 A. Therefore, 8 A is the characteristic current corresponding to the maximum value of the
∆VIn . Because when the magnetization reaches exactly the upper boundary of the defect,
the permeability perturbation signal change is from metal permeability to air permeability.
Consequently, any further increase in the signal can be attributed to a growing proportion
of air within the defect, resulting in a relatively smaller incremental change.
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Figure 8. Signals of defects buried at 10 mm depth under different magnetizing currents.

Further, the burial depth of the defects is varied, and the defects are set up sequentially
from the surface to the bottom at intervals of 1 mm. A set of signals at different currents
for each defect with different burial depths is extracted. After five simulation experiments,
the relationship between the characteristic currents I∆v and the magnetization depth of the
signal is shown in Figure 10. The maximum relative error of the curves of 3% occurs near
the burial depths of 11 and 12 mm.
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3.3. Measurement Signal and Error Analysis

The detection methods for double-sided scanning are specified as follows (Figure 11):
different layering information on the upper and back surfaces is obtained by applying
double-sided step magnetization with double-sided scanning. By applying double-sided
step magnetization with double-sided scanning, it is possible to determine the characteristic
current I∆V1 when the defect is swept from the upper surface and the characteristic current
I∆V2 when the defect is swept from the back surface. In turn, the spatial information of each
magnetization layering above and below can be determined. The distance h1 to the upper
surface of the defect is obtained by substituting the value I∆V1 into the characteristic current
curve. The distance h2 to the under surface of the defect is obtained by substituting the
value I∆V2 into the characteristic current curve. The depth size hd of the defect is obtained
by subtracting the distance h1 and h2 from the wall thickness.
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When the defect depth is 2 mm, the defect scanning signals of different depth sizes
are shown in Figure 12. Figure 12a,b illustrate the upper scanning characteristic current
value of the first group of defects, which is 2.0 A. Substituting the characteristic current
into the curve gives the distance. The distance of the defect upper boundary from the
upper surface of the specimen is 2.2 mm. The characteristic current value of the back
scanning is 9.1 A, and distance of the defect lower boundary from the back surface of the
specimen is 15.9 mm. The defect depth size is calculated to be 1.9 mm. In Figure 12a,c, the
double-sided scanning generated characteristic currents of 2 A and 9 A. The distance of the
defect upper boundary from the upper surface of the specimen is 2.2 mm, and the distance
of the defect lower boundary from the back surface of the specimen is 14.9 mm. The defect
depth size is calculated to be 2.9 mm. In Figure 12a,d, the double-sided scanning generated
characteristic currents of 2 A and 8.9 A. The distance of the defect upper boundary from
the upper surface of the specimen is 2.2 mm, and the distance of the defect lower boundary
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from the back surface of the specimen is 14.1 mm. The defect depth size is calculated to be
3.7 mm. Figure 12e–h represents the change ∆V of the signal from Figure 12a–d.

Figure 14. Detection signal for defects with a burial depth of 10 mm.

When the defect depth is 5 mm, the defect scanning signals of different depth sizes are
shown in Figure 13. In Figure 13a,b, the double-sided scanning generated characteristic
currents of 4 A and 8.7 A. The distance of the defect upper boundary from the upper
surface of the specimen is 5 mm and the distance of the defect lower boundary from the
back surface of the specimen is 13.1 mm. The defect depth size is calculated to be 1.9 mm. In
Figure 13a,c, the double-sided scanning generated characteristic currents of 4 A and 8.5 A.
The distance of the defect upper boundary from the upper surface of the specimen is 5 mm,
and the distance of the defect lower boundary from the back surface of the specimen is
12.1 mm. The defect depth size is calculated to be 2.9 mm. In Figure 13a,d, the double-sided
scanning generated characteristic currents of 2 A and 8.3 A. The distance of the defect
upper boundary from the upper surface of the specimen is 5 mm, and the distance of the
defect lower boundary from the back surface of the specimen is 11 mm. The defect depth
size is calculated to be 4 mm. Figure 13e–h represents the change ∆V of the signal from
Figure 13a–d.

When the defect depth is 10 mm, the defect scanning signals of different depth sizes
are shown in Figure 14. In Figure 14a,b, the double-sided scanning generated characteristic
currents of 8 A and 6.4 A. The distance of the defect upper boundary from the upper
surface of the specimen is 10 mm, and the distance of the defect lower boundary from
the back surface of the specimen is 8 mm. The defect depth size is calculated to be 2 mm.
In Figure 14a,c, the double-sided scanning generated characteristic currents of 8 A and
5.7 A. The distance of the defect upper boundary from the upper surface of the specimen
is 10 mm, and the distance of the defect lower boundary from the back surface of the
specimen is 7 mm. The defect depth size is calculated to be 3 mm. In Figure 14a,b, the
double-sided scanning generated characteristic currents of 8 A and 5 A. The distance of the
defect upper boundary from the upper surface of the specimen is 10 mm, and the distance
of the defect lower boundary from the back surface of the specimen is 6.0 mm. The defect
depth size is calculated to be 4.0 mm. Figure 14e–h represents the change ∆V of the signal
from Figure 14a–d.

In Figure 15, the actual sizes of the defects are represented as the horizontal coordinates,
while the inspection sizes derived from the experimental measurements are plotted along
the vertical axis. This graphical representation serves to analyze and visualize the potential
errors in the detection process. Table 3 provides a comprehensive list of the actual sizes of
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the defects along with the evaluated sizes obtained at various burial depths. It also includes
the relative errors, which indicate the deviation between the measured and actual sizes
expressed as a percentage of the true value.
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Table 3. Evaluation error.

Actual Size of
Defect

Depth of Burial
2 mm

Depth of Burial
5 mm

Depth of Burial
10 mm

Depth of Burial
12 mm

Maximum
Relative Error

2.0 mm 1.9 mm 1.9 mm 2.0 mm 2.0 mm 5%

3.0 mm 2.9 mm 2.9 mm 3.0 mm 2.9 mm 3.3%

4.0 mm 3.7 mm 4.0 mm 4.1 mm 3.9 mm 7.5%

Based on the analysis of the results from the four simulation groups, the maximum
relative error is calculated to be 7.5%. This figure highlights the precision and accuracy of
the detection method, despite the inevitable presence of some error. The simulation results
further support this conclusion. Specifically, the double-sided scanning technique is shown
to be effective in determining the upper and lower boundaries of the defects based on the
characteristic current curves. This approach allows for a more accurate evaluation of the
defect depth sizes. The analysis of the relative error associated with this method reveals
that it is also within an acceptable range with a maximum of 7.5%. This demonstrates
the reliability and accuracy of the double-sided scanning technique in defect detection
and sizing.

4. Experimental Results and Analysis
4.1. The Testing System and Specimen

The experimental platform consists of a DC magnetization power, a signal generator, a
signal amplification-conditioning module, a U-shaped magnetizer, a probe, and a specimen,
as shown in Figure 16. The magnetizing coil is loaded with a DC current of the step change
in intensity to produce different magnetic fields. The magnetizing coil is 989 turns with a
wire diameter of 1 mm, and the yoke size is the same as the simulation model. The probe
consists of three coils with an outer diameter of 4 mm, an inner diameter of 2.5 mm, and
a height of 0.85 mm. The excitation coil is in the middle, and the other two coils are the
receiving coils. All of them are 100 turns, and their wire diameters are 0.05 mm. The signal
generator provides the excitation coil with an alternating current at a frequency of 100 kHz
and a voltage of 1 V, as shown in Figure 17.
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Figure 17. Probe and filter circuitry.

The specimens are No. 45 steel plates with sizes of 400 mm × 100 mm × 20 mm. Blind
holes of 2 mm, 3 mm, 4 mm depth lengths are machined on the side of the specimen to
simulate internal defects. The burial depths of them are 3, 9, and 12 mm from the positive
side of the plate, as shown in Figure 18.
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For defects with different burial depths, the magnetizing current is increased in
steps of 1 A from 0 to 12 A. At each current, the probe swept over the surface of the
specimen at a uniform speed (the direction of scanning is shown in Figure 11). The
detection signal is acquired by an oscilloscope after passing through the amplification and
conditioning module.

4.2. Experimental Results

To replicate the method used in this paper, place the specimen on the platform, place
the DC magnetizer on the upper surface of the specimen, connect the DC power supply to
the DC magnetizer, and apply the step magnetizing current. The excitation coil in the probe
is then connected to a sine wave signal generator, and the receiver coil is connected to the
input port of the phase-sensitive detector board. The output port of the phase-sensitive
detector board is connected to an oscilloscope. Scanning the upper surface of the specimen
by the probe yields a defect signal scanning signal, as shown in Figure 19a. The plate is
then placed in reverse, and the back of the plate is swept to reveal the defect signals shown
in Figure 19b–d.
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In Figure 19a, the up-sided scanning generated a characteristic current of 2.5 A. The 
defect distance from the up surfaces is 3.0 mm. In Figure 19b, the back-sided scanning 
generated a characteristic current of 9.0 A. The defect distance from the back surfaces is 
14.9 mm. The defect depth size is calculated to be 2.1 mm. In Figure 19c, the back-sided 
scanning generated a characteristic current of 8.9 A. The defect distance from the back 
surfaces is 14.1 mm. The defect depth size is calculated to be 2.9 mm. Figure 19d shows 
that the back-sided scanning generated a characteristic current of 8.7 A. The defect dis-
tance from the back surfaces is 13.1 mm. The defect depth size is calculated to be 3.9 mm. 
Figure 19e–h represents the change VΔ  of the signal from Figure 19a–d. 

In Figure 20, the horizontal coordinates represent the actual sizes of the defects, while 
the vertical coordinates depict the inspection sizes obtained through the measurement 
process. The purpose of this graphical representation is to analyze and visualize the errors 
associated with defect detection. Notably, the graph reveals a relative error of up to 5% 
when detecting a defect with a depth size of 2 mm. 
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Figure 20. Depth size measurement charts for different burial depths. 

To provide a more detailed overview, Table 4 lists the actual sizes of the defects along 
with the evaluated sizes at various burial depths and the corresponding relative errors. 

Figure 19. Detection signals for different depth sizes (depth of buried = 3 mm).

Different sets of defect size detection signals are plotted in Figure 19.
In Figure 19a, the up-sided scanning generated a characteristic current of 2.5 A. The

defect distance from the up surfaces is 3.0 mm. In Figure 19b, the back-sided scanning
generated a characteristic current of 9.0 A. The defect distance from the back surfaces is
14.9 mm. The defect depth size is calculated to be 2.1 mm. In Figure 19c, the back-sided
scanning generated a characteristic current of 8.9 A. The defect distance from the back
surfaces is 14.1 mm. The defect depth size is calculated to be 2.9 mm. Figure 19d shows that
the back-sided scanning generated a characteristic current of 8.7 A. The defect distance from
the back surfaces is 13.1 mm. The defect depth size is calculated to be 3.9 mm. Figure 19e–h
represents the change ∆V of the signal from Figure 19a–d.

In Figure 20, the horizontal coordinates represent the actual sizes of the defects, while
the vertical coordinates depict the inspection sizes obtained through the measurement
process. The purpose of this graphical representation is to analyze and visualize the errors
associated with defect detection. Notably, the graph reveals a relative error of up to 5%
when detecting a defect with a depth size of 2 mm.
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14.9 mm. The defect depth size is calculated to be 2.1 mm. In Figure 19c, the back-sided 
scanning generated a characteristic current of 8.9 A. The defect distance from the back 
surfaces is 14.1 mm. The defect depth size is calculated to be 2.9 mm. Figure 19d shows 
that the back-sided scanning generated a characteristic current of 8.7 A. The defect dis-
tance from the back surfaces is 13.1 mm. The defect depth size is calculated to be 3.9 mm. 
Figure 19e–h represents the change VΔ  of the signal from Figure 19a–d. 
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To provide a more detailed overview, Table 4 lists the actual sizes of the defects along
with the evaluated sizes at various burial depths and the corresponding relative errors.
This table serves as a quantitative reference, allowing us to compare the measured sizes
against the true values and calculate the accuracy of our detection method. The relative
error indicates the deviation of the measured size from the actual size, which is expressed
as a percentage of the actual size.

Table 4. Evaluation error.

Actual Size of
Defect

Depth of Burial
3 mm

Depth of Burial
9 mm

Depth of Burial
12 mm

Maximum
Relative Error

2.0 mm 2.1 mm 2.0 mm 2.1 mm 5%

3.0 mm 2.9 mm 3.0 mm 3.0 mm 3.3%

4.0 mm 3.9 mm 3.9 mm 4.0 mm 2.5%

5.0 mm 5.0 mm 5.0 mm 5.0 mm 0%

5. Discussion

Through simulation and experiment, we can find that the maximum relative error of
this evaluation of the depth size is 7.5%. The reason for these errors may be the nonlinear
variation in the characteristic current curve. In order to avoid the characteristic current
curve being affected by other defect sizes such as width, this section focuses on the effect of
defect width on the characteristic current curve.

In the actual inspection, defects may extend not only in the direction of depth but also
in the direction of width. Therefore, the detection signal will not only contain information
about the depth of the defect but also about the width of the defect (In Figure 21). The
cloud diagram of magnetic permeability perturbation with different defect widths is shown
in Figure 22.

In Figure 21, there is no discernible change in permeability perturbations as a function
of defect width. The range of magnetic permeability perturbations has expanded. Figure 22
shows the scanning signal at a consistent burial depth for defects of varying widths.

As can be seen in Figure 22, the signal peaks do not increase significantly with the
increasing defect width. The size of the defect width has little effect on the peak increment
of the detected signal. The distance between the peaks of the defect signal increases as the
defect width increases.



Sensors 2024, 24, 3689 15 of 19

Sensors 2024, 24, x FOR PEER REVIEW 15 of 20 
 

 

This table serves as a quantitative reference, allowing us to compare the measured sizes 
against the true values and calculate the accuracy of our detection method. The relative 
error indicates the deviation of the measured size from the actual size, which is expressed 
as a percentage of the actual size. 

Table 4. Evaluation error. 

Actual Size of Defect Depth of Burial 3 mm Depth of Burial 9 mm 
Depth of Burial 12 

mm Maximum Relative Error 

2.0 mm 2.1 mm 2.0 mm 2.1 mm 5% 
3.0 mm 2.9 mm 3.0 mm 3.0 mm 3.3% 
4.0 mm 3.9 mm 3.9 mm 4.0 mm 2.5%. 
5.0 mm 5.0 mm 5.0 mm 5.0 mm 0% 

5. Discussion 
Through simulation and experiment, we can find that the maximum relative error of 

this evaluation of the depth size is 7.5%. The reason for these errors may be the nonlinear 
variation in the characteristic current curve. In order to avoid the characteristic current 
curve being affected by other defect sizes such as width, this section focuses on the effect 
of defect width on the characteristic current curve. 

In the actual inspection, defects may extend not only in the direction of depth but 
also in the direction of width. Therefore, the detection signal will not only contain infor-
mation about the depth of the defect but also about the width of the defect( In Figure 21). 
The cloud diagram of magnetic permeability perturbation with different defect widths is 
shown in Figure 22. 

In Figure 21, there is no discernible change in permeability perturbations as a func-
tion of defect width. The range of magnetic permeability perturbations has expanded. Fig-
ure 22 shows the scanning signal at a consistent burial depth for defects of varying widths. 

1mm 2mm 3mm

4mm 5mm 6mm

μrWidth of perturbation 
μr=103

μr=101 μr=101

μr=103

μr=103

μr =104

 
Figure 21. Different defect widths. Figure 21. Different defect widths.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 20 
 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13
-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

0.002

Pr
ob

e 
Si

gn
al

(V
)

Probe displacement(mm)

 2mm
 3mm
 4mm
 5mm

 
Figure 22. Different width detection signals. 

As can be seen in Figure 22, the signal peaks do not increase significantly with the 
increasing defect width. The size of the defect width has little effect on the peak increment 
of the detected signal. The distance between the peaks of the defect signal increases as the 
defect width increases. 

Figure 23 presents a compelling case that the width of a defect does not exert a sub-
stantial influence on the characteristic current. This observation signifies that the distance 
between the scanning surface and the defect can be accurately determined based solely on 
the analysis of the characteristic current curve. In other words, regardless of the width 
variation in the defect, the characteristic current remains relatively stable, making it a re-
liable indicator for distance measurement. 

0 2 4 6 8 10 12 14 16 18 20
0
1
2
3
4
5
6
7
8
9

10

C
ha

ra
ct

er
ist

ic
 C

ur
re

nt
 (A

)

Magnetization depth(mm)

 Width 2mm
 Width 3mm
 Width 4mm
 Width 5mm

 
Figure 23. Curves of magnetization depth as a function of the characteristic current for different 
defect widths. 

In Figure 24, it is observed that the majority of the signal peaks are clustered closely 
together with a notable exception of length 1 mm. The underlying cause for this disparity 
in signals could be attributed to the fact that the defect length is significantly shorter than 
the diameter of the probe being used. This disparity leads to the detection of smaller peaks 
in the signal corresponding to the defective area. The probe’s diameter determines the 
region it can effectively sense, and if the defect is smaller than this diameter, the detected 
signal may not be as strong or as distinct as one would expect from a larger defect. 

Figure 22. Different width detection signals.

Figure 23 presents a compelling case that the width of a defect does not exert a
substantial influence on the characteristic current. This observation signifies that the
distance between the scanning surface and the defect can be accurately determined based
solely on the analysis of the characteristic current curve. In other words, regardless of the
width variation in the defect, the characteristic current remains relatively stable, making it
a reliable indicator for distance measurement.

In Figure 24, it is observed that the majority of the signal peaks are clustered closely
together with a notable exception of length 1 mm. The underlying cause for this disparity
in signals could be attributed to the fact that the defect length is significantly shorter than
the diameter of the probe being used. This disparity leads to the detection of smaller peaks
in the signal corresponding to the defective area. The probe’s diameter determines the
region it can effectively sense, and if the defect is smaller than this diameter, the detected
signal may not be as strong or as distinct as one would expect from a larger defect.



Sensors 2024, 24, 3689 16 of 19

Sensors 2024, 24, x FOR PEER REVIEW 16 of 20 
 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13
-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

0.002

Pr
ob

e 
Si

gn
al

(V
)

Probe displacement(mm)

 2mm
 3mm
 4mm
 5mm

 
Figure 22. Different width detection signals. 

As can be seen in Figure 22, the signal peaks do not increase significantly with the 
increasing defect width. The size of the defect width has little effect on the peak increment 
of the detected signal. The distance between the peaks of the defect signal increases as the 
defect width increases. 

Figure 23 presents a compelling case that the width of a defect does not exert a sub-
stantial influence on the characteristic current. This observation signifies that the distance 
between the scanning surface and the defect can be accurately determined based solely on 
the analysis of the characteristic current curve. In other words, regardless of the width 
variation in the defect, the characteristic current remains relatively stable, making it a re-
liable indicator for distance measurement. 

0 2 4 6 8 10 12 14 16 18 20
0
1
2
3
4
5
6
7
8
9

10

C
ha

ra
ct

er
ist

ic
 C

ur
re

nt
 (A

)

Magnetization depth(mm)

 Width 2mm
 Width 3mm
 Width 4mm
 Width 5mm

 
Figure 23. Curves of magnetization depth as a function of the characteristic current for different 
defect widths. 

In Figure 24, it is observed that the majority of the signal peaks are clustered closely 
together with a notable exception of length 1 mm. The underlying cause for this disparity 
in signals could be attributed to the fact that the defect length is significantly shorter than 
the diameter of the probe being used. This disparity leads to the detection of smaller peaks 
in the signal corresponding to the defective area. The probe’s diameter determines the 
region it can effectively sense, and if the defect is smaller than this diameter, the detected 
signal may not be as strong or as distinct as one would expect from a larger defect. 

Figure 23. Curves of magnetization depth as a function of the characteristic current for different
defect widths.

Sensors 2024, 24, x FOR PEER REVIEW 17 of 20 
 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

Pr
ob

e 
Si

gn
al

(m
m

)

Probe sweep displacement(mm)

 Length 1mm
 Length 2mm
 Length 3mm
 Length 4mm
 Length 5mm

 
Figure 24. Different length detection signals. 

Furthermore, the same logic applies to the length of the defect. The figure also shows 
that the effect on the characteristic current is not significant for defect lengths larger than 
the probe diameter. This indicates that when assessing material surface defects using cur-
rent detection techniques, precise knowledge of the defect’s length may not be as crucial 
as understanding the variations in the characteristic current curve. In summary, Figures 
23 and 25 underscores the fact that when utilizing characteristic current measurements to 
detect and evaluate surface defects, the distance between the scanning surface and the 
defect can be accurately determined by analyzing the characteristic current curve, while 
the specific sizes of the defect, such as width and length, have a relatively minor impact 
on the current curve. This insight can significantly enhance the efficiency and accuracy of 
defect detection methods. 

0 2 4 6 8 10 12 14 16 18 20
0
1
2
3
4
5
6
7
8
9

10

C
ha

ra
ct

er
ist

ic
 C

ur
re

nt
 (A

)

Magnetization depth(mm)

 Length 1mm
 Length 2mm
 Length 3mm
 Length 4mm
 Length 5mm

 
Figure 25. Curves of magnetization depth as a function of the characteristic current for different 
defect lengths. 

6. Conclusions 
In this paper, a defect depth size evaluation method based on layered magnetization 

by double-sided scanning is proposed, which can effectively detect the defect depth size. 
The changes in magnetic field intensity under the excitation of different magnetizing cur-
rents are investigated. The phenomenon of internal magnetization depth stratification is 
revealed when the specimen is subjected to different magnetic field intensities. The char-
acteristic current values are determined from the signal incremental change information. 
The relationship between the characteristic current and the magnetization depth is estab-
lished. The distance between the defect boundary and the surface of the component can 

Figure 24. Different length detection signals.

Furthermore, the same logic applies to the length of the defect. The figure also shows
that the effect on the characteristic current is not significant for defect lengths larger than the
probe diameter. This indicates that when assessing material surface defects using current
detection techniques, precise knowledge of the defect’s length may not be as crucial as
understanding the variations in the characteristic current curve. In summary, Figures 23
and 25 underscores the fact that when utilizing characteristic current measurements to
detect and evaluate surface defects, the distance between the scanning surface and the
defect can be accurately determined by analyzing the characteristic current curve, while
the specific sizes of the defect, such as width and length, have a relatively minor impact
on the current curve. This insight can significantly enhance the efficiency and accuracy of
defect detection methods.
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6. Conclusions

In this paper, a defect depth size evaluation method based on layered magnetization
by double-sided scanning is proposed, which can effectively detect the defect depth size.
The changes in magnetic field intensity under the excitation of different magnetizing cur-
rents are investigated. The phenomenon of internal magnetization depth stratification
is revealed when the specimen is subjected to different magnetic field intensities. The
characteristic current values are determined from the signal incremental change informa-
tion. The relationship between the characteristic current and the magnetization depth is
established. The distance between the defect boundary and the surface of the component
can be effectively localized by using the characteristic current. Then, the upper and back
boundary positions of the defects are determined by double-sided step magnetization with
double-sided scanning.

In the simulation phase, the relationship curve between the magnetization depth and
magnetization current was determined by setting defects with different embedded depths.
Additionally, the simulation employed the double-sided scanning to evaluate defects with
various depth sizes. The results indicated that the maximum relative error occurred when
the depth size was 4 mm, reaching 7.5%. In the experimental section, three sets of defects
with different embedded depths and depth sizes were evaluated. The experimental data
showed that the maximum relative error was 5% when detecting a depth size of 2 mm.
During the discussion, the influence of defect width and length sizes on the characteristic
current was investigated. After comparative analysis, it was found that the defect width
and length had minimal effects on the characteristic current. In conclusion, the double-
sided scanning evaluation method by step magnetization can effectively evaluate the depth
size of defects.

It is worth noting that when the characteristic current increases, the ability of the
characteristic current to characterize the depth size of the defect will decrease, which makes
an inaccurate evaluation of the distance between the defect boundary and the surface
of the specimen. As a result, it affects the evaluation of the depth of the defect by the
double-scanning method. In order to reduce the error, methods to improve the accuracy of
the characteristic current will be discussed in future work.
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