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Abstract: Sodium-ion batteries (SIBs) have received considerable attention in recent years. Anode
material is one of the key factors that determine SIBs’ electrochemical performance. Current com-
mercial hard carbon anode shows poor rate performance, which greatly limits applications of SIBs.
In this study, a novel vanadium-based material, SrV4O9, was proposed as an anode for SIBs, and
its Na+ storage properties were studied for the first time. To enhance the electrical conductivity
of SrV4O9 material, a microflower structure was designed and reduced graphene oxide (rGO) was
introduced as a host to support SrV4O9 microflowers. The microflower structure effectively reduced
electron diffusion distance, thus enhancing the electrical conductivity of the SrV4O9 material. The
rGO showed excellent flexibility and electrical conductivity, which effectively improved the cycling
life and rate performance of the SrV4O9 composite material. As a result, the SrV4O9@rGO composite
showed excellent electrochemical performance (a stable capacity of 273.4 mAh g−1 after 200 cycles
at 0.2 A g−1 and a high capacity of 120.4 mAh g−1 at 10.0 A g−1), indicating that SrV4O9@rGO
composite can be an ideal anode material for SIBs.

Keywords: SrV4O9; rGO; sodium-ion batteries; anode; electrochemical performance

1. Introduction

The widespread use of fossil fuels has created several energy and environmental issues
that threaten the sustainable development of human society. It is important to develop
renewable energy to overcome environmental problems. However, renewable energy—
solar, tidal, and wind—is generally unstable, and requires the support of energy storage
systems. Among various energy storage systems, lithium-ion batteries (LIBs) are widely
used in consumer electronics and power tools due to their high energy density, environ-
mental friendliness, and no memory effect [1–8]. However, due to required expensive rare
metals, such as lithium and cobalt, LIBs cannot well meet the demand for widespread
energy storage.

In recent years, sodium-ion batteries (SIBs) have received considerable attention from
international researchers due to their many advantages: (1) sodium resources are abundant
and widely distributed [9–11], (2) SIBs have similar working mechanisms to LIBs so they
can be manufactured by the same technologies as LIBs [12], (3) to achieve the same ionic
conductivity, the concentration of sodium salts in electrolytes is lower than that of lithium
salts, resulting in lower cost, (4) aluminum foil can be used as the current collector for the
anode in SIBs because Na+ does not react with aluminum, further reducing the cost, and
(5) SIBs have high safety performance due to higher internal resistance compared to LIBs.
Therefore, SIBs are considered as an alternative to LIBs in some areas.

The anode material is one of the key factors determining the electrochemical perfor-
mance of batteries [13–18]. The main anode materials for SIBs include carbon materials,
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alloy materials, transition metal oxides, and organic compounds. Among them, hard
carbons are the most cost effective, making them promising for industrial application. How-
ever, the rate performance of hard carbons is poor, which limits their applications [19,20].
Therefore, it is essential to develop anode materials with high Na+ diffusion coefficient
for SIBs. Vanadium-based materials have been widely studied as anode materials for
SIBs [21,22] due to several advantages. Firstly, they exhibit high capacity due to the
multivalent nature of vanadium. Secondly, they have a high Na+ diffusion coefficient.
Finally, vanadium resources are abundant and environmentally friendly. To date, a novel
vanadium-based material (SrV4O9) has been prepared and has shown excellent Zn2+ stor-
age performance [23]. However, research into SrV4O9 as an anode material for SIBs has not
been reported.

In this work, the Na+ storage performance of SrV4O9 material was studied to en-
hance the electrical conductivity of SrV4O9 material, and a microflower structure was
designed. Reduced graphene oxide (rGO) was then introduced as a host to support SrV4O9
microflowers. The microflower structure effectively reduced electron diffusion distance,
thus enhancing the electrical conductivity of the SrV4O9 material. In addition, the rGO
showed excellent flexibility and electrical conductivity, which can effectively improve the
cycling life and rate performance of SrV4O9 material. As a result, the SrV4O9@rGO anode
exhibited excellent cycling performance and remarkable rate performance.

2. Results and Discussion

The preparation scheme for SrV4O9@rGO is shown in Figure 1. The SrV4O9@rGO
shows a microflower structure. The mechanism of formation of the SrV4O9 flower-like
structure involved a combination of factors, including precursor and growth conditions.
First, Sr(OH)2·8H2O and V2O5 were dissolved in a solvent and heated at 200 ◦C for 48 h to
form a precursor cluster. The precursor was then heated to 450 ◦C under argon and held
for 5 h. During this process, many branches were formed on the cluster and then grew to
eventually form hierarchical structures with intricate morphologies resembling flowers.
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Figure 1. The preparation scheme for SrV4O9 and the SrV4O9@rGO composite.

The structure of the SrV4O9@rGO composite was investigated by XRD. As shown in
Figure 2a, peaks at 16.8◦, 29.2◦, 33.8◦, 35.8◦, 48.7◦, 52.5◦, 57.7◦, and 71.1◦ can be assigned to
the (001), (121), (310), (102), (240), (322), (501), and (620) planes of SrV4O9 (JCPDS No. 70-
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4468) [23], respectively. Note that rGO diffraction peaks were observed at 26.8◦ and 42.4◦.
However, the intensity of the rGO diffraction peaks was weak due to the dense coating
of SrV4O9 on the rGO. To probe the structure of the SrV4O9@rGO composite, Raman
spectroscopy experiments were performed. As seen in Figure 2b, peaks at 148, 292, 380, 524,
682, and 992 cm−1 can be attributed to SrV4O9 [23]. For the SrV4O9@rGO composite, two
additional broad peaks at 1348 and 1578 cm−1 corresponded to the D-band and G-band of
the rGO, respectively [24,25]. The SrV4O9@rGO composite was further tested by nitrogen
adsorption–desorption experiments to characterize its porosity and specific surface area
(Figure 2c,d). The SrV4O9@rGO composite exhibited a Type I isotherm, indicating abundant
micro/mesopores in its structure [26,27]. The specific surface area of the SrV4O9@rGO
composite was 41.4 m2 g−1. Figure 2d reveals that the average pore size of the SrV4O9@rGO
composite was 17.2 nm, further confirming its porous structure.
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Figure 2. (a) XRD pattern of the SrV4O9@rGO composite. (b) Raman spectra of SrV4O9 and
SrV4O9@rGO. (c) N2 adsorption–desorption isotherms of SrV4O9@rGO. (d) Pore size distribution of
SrV4O9@rGO.

To study its morphology, the SrV4O9@rGO composite was characterized using
SEM and TEM. As shown in Figure 3a,b, the SrV4O9@rGO composite exhibited a three-
dimensional porous spherical structure with a diameter of ~6 µm in which flexible rGO
coated SrV4O9 microflowers. Figure 3c shows that SrV4O9 had a regular micrometer-scale
flower-like structure with an average diameter of ~1 µm consisting of porous ultrathin
nanosheets with a thickness of ~50 nm (Figure 3d). TEM images (Figure 3e,f) confirmed
the three-dimensional porous structure of the SrV4O9@rGO composite. The porous
nanostructure increases the contact area between the active material and the electrolyte
and effectively reduces the ion diffusion distance, thus improving ion transport effi-
ciency [28–32]. In addition, the porous nanostructure provides sufficient buffering space for
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volume expansion during cycling processes, effectively enhancing cycling stability [33–38].
As shown in Figure 3g–j, Sr, V, O, and C were uniformly dispersed in the SrV4O9@rGO
composite, indicating that SrV4O9 was uniformly loaded in rGO.
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Figure 3. (a–d) SEM images of the SrV4O9@rGO composite. (e,f) TEM images of the SrV4O9@rGO
composite. (g–j) EDS elemental mapping of Sr, V, O, and C.

XPS is a powerful analytical technique for characterizing the chemical composition
and oxidation state of materials. The importance of XPS lies in its ability to provide
detailed information about the chemical composition of the SrV4O9@rGO composite at the
atomic level. Figure 4a shows the XPS survey spectrum of the SrV4O9@rGO composite,
which shows the photoemission characteristics of Sr, V, O, and C. The high-resolution
spectrum of Sr 3d (Figure 4b) can be deconvoluted into Sr2+ 3d5/2 (135.6 eV) and Sr2+ 3d3/2
(133.2 eV) [23]. The V 2p high-resolution spectrum (Figure 4c) can be deconvoluted into
V4+ 2p1/2 (523.6 eV) and V4+ 2p3/2 (516.6 eV) [39,40]. The high-resolution spectrum of O 1s
(Figure 4d) exhibits two peaks, at 531.6 eV and 530.4 eV; the peak at 530.4 eV corresponds
to the bonding of adsorbed oxygen on the surface of the SrV4O9@rGO composite with Sr
and V, denoted as Sr–O–V [23], while the peak at 531.8 eV was likely due to the presence of
H2O. As shown in Figure 4e, the high-resolution spectrum of C 1s reveals distinct peaks at
285.6 eV and 284.8 eV, corresponding to C–O and C–C bonds, respectively [41,42].
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Figure 4. (a) The XPS survey spectrum of the SrV4O9@rGO composite. (b) The high-resolution
spectrum of Sr 3d. (c) The high-resolution spectrum of V 2p. (d) The high-resolution spectrum of O
1s. (e) The high-resolution spectrum of C 1s.

Figure 5a,b compare the CV curves of SrV4O9-based and SrV4O9@rGO-based elec-
trodes for the first three cycles between 0.01 and 3.0 V at a scan rate of 0.1 mV s−1. All
CV curves exhibited two reduction peaks and one oxidation peak. Two reduction peaks
appeared at ~0.75 V and ~0.45 V, representing the penetration of sodium ions into SrV4O9.
A weak and broad oxidation peak at around 1.48 V might correspond to the oxidation
reaction of V. And the CV curves of the second and third cycles showed a high degree of
overlap, indicating good reversibility of the electrochemical reactions. It is worth noting
that the peak current densities of the oxidation–reduction peaks of the SrV4O9@rGO-based
electrode (Figure 5b) were higher than those of the SrV4O9-based electrode (Figure 5a),
indicating the improved electron/ion transport kinetics of the SrV4O9@rGO composite facil-
itated by rGO and more dispersed SrV4O9. The cycling performances of the SrV4O9-based
and SrV4O9@rGO-based electrodes at 0.2 A g−1 are shown in Figure 5c. The SrV4O9@rGO
composite showed a high initial reversible capacity of 284.4 mAh g−1 and maintained a
stable capacity of 273.4 mAh g−1 after 200 cycles, with an ultra-high capacity retention
of 96.1%. For the SrV4O9 electrode, the capacity after 200 cycles was only 142.5 mAh g−1.
The excellent cycling performance can be attributed to the super aspect ratio of the porous
microflower structure, which facilitated ion transfer. The introduction of rGO increased
the specific surface area involved in the reaction, providing more reaction sites. The gal-
vanostatic charge–discharge (GCD) curves of the SrV4O9@rGO electrode are shown in
Figure 5d. These GCD curves show a high degree of overlap, indicating excellent cycling
performance of the SrV4O9@rGO electrode. To characterize the positive effect of rGO
on SrV4O9, an EIS test was performed. Figure S1 shows Nyquist plots for SrV4O9 and
SrV4O9@rGO electrodes in the initial state and the SrV4O9@rGO electrode after 200 cycles.
The SrV4O9@rGO electrode exhibited a smaller charge transfer resistance than the SrV4O9
electrode in the initial state, indicating that rGO improved the rate of Na+ transfer. A
comparison between the initial and cycled electrodes revealed a significant decrease in
impedance for the SrV4O9@rGO electrode after 200 cycles at 0.2 A g−1 due to the con-
siderably enhanced ion and electron transfer in the electrode. The SEM image of the
SrV4O9@rGO electrode after 200 cycles (Figure S2) revealed that the SrV4O9@rGO electrode
had good structural stability after electrochemical testing. The SrV4O9@rGO electrode
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also demonstrated excellent rate performance (Figure 5e). At 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, and
10.0 A g−1, the specific capacities of the SrV4O9@rGO electrode remained at 287.1, 268.5,
250.4, 228.7, 209.6, 168.2, and 120.4 mAh g−1, respectively, which were significantly higher
than those of the SrV4O9 electrode (149.4, 119.0, 85.6, 69.2, 47.3, 23.1, and 7.7 mAh g−1,
respectively). The cycling performance of the SrV4O9@rGO composite at a high rate
(1 A g−1) was also tested, and results are shown in Figure S3. The SrV4O9@rGO com-
posite delivered an initial reversible discharge capacity of 278.3 mAh g−1 at 1.0 A g−1.
The capacity decreased slightly to 265.7 mAh g−1 after 310 cycles, demonstrating good
cycling performance at a high rate. The improved electrochemical performance of the
SrV4O9@rGO composite can be attributed to the large aspect ratio of the composite and
improved electrical conductivity [43,44] (Figure 5f).
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Figure 5. (a) CV curves of the SrV4O9-based electrode for the initial three cycles between 0.01 and
3.0 V at a scan rate of 0.1 mV s−1. (b) CV curves of SrV4O9@rGO-based electrodes for the initial
three cycles between 0.01 and 3.0 V at a scan rate of 0.1 mV s−1. (c) Cycling performance of the
SrV4O9-based electrode and the SrV4O9@rGO-based electrode at 0.2 A g−1. (d) Voltage profiles of
the SrV4O9@rGO-based electrode at 0.2 A g−1. (e) Rate performance of the SrV4O9-based electrode
and the SrV4O9@rGO-based electrode. (f) Schematic illustration of the reaction mechanism of the
SrV4O9@rGO-based electrode.

3. Experimental Section
3.1. Materials

All reagents were directly used after purchase. Sr(OH)2·8H2O, C3H8O3, V2O5, and
H2O2 were purchased from Sigma-Aldrich (St. Louis, MO, USA). GO was provided by
Nanjing XFNANO Materials Tech Co., Ltd. (Nanjing, China).

3.2. Synthesis of SrV4O9@rGO Composite and SrV4O9

The SrV4O9@rGO composite was prepared using the hydrothermal annealing method.
First, 1 mmol of Sr(OH)2·8H2O was dissolved in a mixed solution consisting of 10 mL
of deionized water and 10 mL of C3H8O3. Next, 2 mmol (0.364 g) of V2O5 and 0.05 g of
GO were added to a mixed solution consisting of 10 mL of deionized water and 5 mL of
H2O2 (30%) and stirred for 1 h, and was then slowly added to the Sr(OH)2·8H2O solution,
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followed by stirring for 2 h. The mixed solution was transferred to a hydrothermal reactor
and heated in an oven at 200 ◦C for 48 h. After cooling to room temperature, the precipitate
was collected after several washes with deionized water and ethanol. The collected material
was then dried in a vacuum oven at 80 ◦C for 24 h. Finally, the collected material was
heated to 450 ◦C at a heating rate of 5 ◦C min−1 in a tube furnace under argon and then
held for 5 h to obtain SrV4O9@rGO. For comparison, SrV4O9 was prepared using the same
procedures without the addition of GO.

3.3. Characterization

X-ray diffraction (XRD, Rigaku MiniFlexll, Rigaku Corporation, Tokyo, Japan) patterns
were collected from 10◦ to 80◦ using Cu Kα radiation (λ = 1.5408 Å). X-ray photoelectron
spectra (XPS, Thermo Scientific K-Alpha, Waltham, MA, USA) surveys and specific patterns
were obtained with an Al Kα X-ray source. The structures of SrV4O9 and SrV4O9@rGO
were further examined by Raman spectroscopy (Thermo Fisher DXR2xi). Morphologies of
SrV4O9 and the SrV4O9@rGO composite were analyzed by scanning electron microscopy
(SEM, JEOL JSM-7800F Field Emission, Manufacturer JEOL Ltd., Tokyo, Japan) with EDS
mapping (JEOL JSM-7100F, Manufacturer JEOL Ltd., Tokyo, Japan) and transmission
electron microscopy (TEM, JEOL JEM, 1011, Manufacturer JEOL Ltd., Tokyo, Japan). N2
adsorption–desorption isotherms were measured on an Autosorb-iQ instrument (Quan-
tachrome, Anton Paar acquired Quantachrome Instruments, Inc., Boynton Beach, FL, USA).

3.4. Electrochemical Measurements

To prepare the working electrode, SrV4O9 or the SrV4O9@rGO composite (70 wt%)
was combined with acetylene black (20 wt%) and polyvinylidene difluoride (10 wt%) in
1-methyl-2-pyrrolidone to form a uniform slurry. The slurry was then coated onto copper
foil and dried at 80 ◦C for 12 h. The loading density of the active materials was about
1.2–1.5 mg cm−2. For electrochemical performance testing, a CR2025 coin cell was assem-
bled with SrV4O9 or the SrV4O9@rGO composite as the working electrode, Na foil as the
counter electrode, and glass fiber membrane (Whatman GF/A) as the separator. The elec-
trolyte was 1 M NaClO4 dissolved in ethylene carbonate/dimethyl carbonate (EC/DMC,
1:1 by volume) with 5 wt% of fluorodimethylene carbonate (FEC) as an additive. Galvanos-
tatic charge–discharge curves and cycling performance evaluations were performed on a
LAND battery test system in the range of 0.01–3.0 V. Cyclic voltammetry (CV) tests were
performed using the CHI660e electrochemical workstation.

4. Conclusions

In summary, an rGO-supported SrV4O9 composite was synthesized as an anode mate-
rial for SIBs. The SrV4O9 had a regular micrometer-scale flower-like structure consisting of
porous ultrathin nanosheets with a thickness of ~50 nm, which was coated with rGO to
form a three-dimensional porous spherical structure. The porous nanostructure increased
the contact area between SrV4O9@rGO and the electrolyte and effectively reduced the
ion diffusion distance, thus improving ion transport efficiency. In addition, the porous
nanostructure reduced SrV4O9 aggregation and provided sufficient buffering space for vol-
ume expansion during cycling processes, effectively improving cycling stability. Therefore,
the SrV4O9@rGO composite showed a high initial reversible capacity of 284.4 mAh g−1 at
0.2 A g−1 and retained a stable capacity of 273.4 mAh g−1 after 200 cycles with an ultra-
high capacity retention of 96.1%. At 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, and 10.0 A g−1, the specific
capacities of the SrV4O9@rGO electrode remained at 287.1, 268.5, 250.4, 228.7, 209.6, 168.2,
and 120.4 mAh g−1, respectively, demonstrating excellent rate performance.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules29112704/s1, Figure S1: Nyquist plots of the SrV4O9
and SrV4O9@rGO electrodes in the initial state and the SrV4O9@rGO electrode after 200 cycles;
Figure S2: SEM image of the SrV4O9@rGO electrode after 200 cycles at 0.2 A g−1; Figure S3: Cycling
performance of the SrV4O9@rGO composite after 200 cycles at 1 A g−1.

https://www.mdpi.com/article/10.3390/molecules29112704/s1
https://www.mdpi.com/article/10.3390/molecules29112704/s1
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