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ABSTRACT 
 

Despite significant progress in the field of medicine, cardiovascular illnesses continue to be the 
primary cause of mortality on a global scale. The increasing prevalence of cardiovascular illnesses 
necessitates the exploration of novel and potential therapeutic strategies to address the escalating 
risk associated with CVDs. Stem cell therapy has emerged as the central focus of regenerative 
cardiovascular medicine, surpassing all other treatments and therapies. Multiple clinical trials and 
studies have demonstrated that stem cell therapy, particularly mesenchymal stem cells, is the most 
appealing approach for treating cardiac disorders due to their significant therapeutic potential. 
Recent research have shown that mesenchymal stem cells have a positive impact on several 
cardiac muscle diseases, such as heart failure, problems with blood vessel lining, damage caused 
by lack of blood flow, and high blood pressure in the lungs. This study specifically examines the 
potential, preconditioning techniques, methods of administration, and mechanisms of mesenchymal 
stem cell (MSC) therapy for the treatment of cardiovascular diseases (CVDs). 
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1. INTRODUCTION 

 

With more than 17 million deaths in 2016, 
cardiovascular diseases (CVDs) remain a 
prevalent cause of high mortality worldwide [1] 
and are projected to cross 25 million annual 
deaths till 2030 [2]. Generation of a large number 
of free radicals (ROS) leading to oxidative stress 
in the area of ischemic necrosis in ischemic heart 
failure [3] exacerbates cardiac myopathies due to 
an increase in apoptotic/necrotic death of 
cardiomyocytes [4]. Developed countries 
reportedly have lower CVDs than developing 
Asiatic regions, including Pakistan, which poses 
a threat to their economies with increased 
pressure on human resources and health 
budgets [5,6]. This situation demands novel 
therapeutic approaches for decreasing the CVD 
epidemic. The most promising emerging 
therapies include artificial heart transplant and 
cardiovascular regeneration (biological hearts) 
approaches which have an advantage over 
currently used palliative strategies [7,8]. Now, 
stem cell therapy is a major focus in regenerative 
cardiovascular medicine. Except for embryonic-
derived stem cells, others are isolated from 
patients with the same phenotypic and genotypic 
characteristics useful in transplant rejection 
studies and for developing effective patient-
specific therapies [9].  
 

Recent studies have demonstrated the beneficial 
use of stem cell therapy in various cardiogenic 
myopathies, including heart failure [10], 
pulmonary hypertension [11], endothelial 
dysfunction [12], atherosclerosis [13], and 
peripheral artery disease [14]. Based on origin, 
stem cells are classified as adult stem cells and 
embryonic stem cells [15]. Adult stem cells are 
further divided into tissue-specific and bone 
marrow-specific cells (BMCs). BMCs have 
endothelial progenitor cells, mesenchymal stem 
cells, and hematopoietic stem cells [16]. 
Transplantation of progenitor stem cells through 
infusion or intra-myocardial injection is currently 
used for treating CVDs as it positively influences 
cardiac regeneration and improves heart function 
[17]. Despite this, several shortcomings stills 
exist, including high costs, immune rejection, 
infusional toxicity, ectopic tissue formation, safety 
challenges, ethical concerns of the community in 
clinical practice, poor survival and differentiation 
[18,19]. The cardioprotective effect of stem cells 
is usually achieved by paracrine interaction 

between donor and recipient stem cells. 
(Paracrine mechanisms in adult stem cell 
signaling and therapy Massimiliano Gnecchi1). 
Mesenchymal stem cells (MSCs), first isolated in 
1970 [20], are pluripotent progenitor stem cells 
with the ability of self-renewing as defined by the 
International Society for Cellular Therapy and 
can be differentiated into various mesodermal 
origin cell types like chondrocytes, osteocytes, 
and adipocytes [21]. They are also named as 
signaling cells, stromal stem cells, and adult 
progenitor multipotent cells [22]. Under optimum 
culture conditions, MSCs demonstrate plastic 
adherence capability with the expression of 
CD105, CD90, CD73 surface molecules in 
absence of HLA-DR, CD79a, CD45, CD34, 
CD19, and CD14 [23,24]. MSCs have been 
isolated from amniotic fluid [25], placenta [26], 
umbilical cord blood [27], human urine [28], the 
dental pulp [29], adipose tissue [30], and synovial 
fluid [31]. MSCs of multiple origins show 
variations in organ morphology, isolation 
protocols, and growth conditions on cell culture 
[32]. They have been investigated as an 
alternative therapeutic substance in different 
injury and disease models such as Alzheimer’s 
disease, myocardial infarction, acute renal 
failure, hepatic injuries, orthopedic injuries, acute 
lung injury, autoimmune diseases, corneal 
damage, cerebral ischemia, and cardiovascular 
diseases [33-37].The use ofMSCs in medical 
therapies have several advantages over other 
stem cells including their encouraging anti-
inflammatory properties, low immunogenicity, 
easy in vitro cultivation and expansion [38]. 
MSCs are strong mediators of cardiogenic tissue 
regeneration in damaged heart and effects 
fibrosis, cardiac remodeling, and proliferation of 
cardiogenic stem cells. Moreover, ease of 
systemic administration of MSCs through IV 
injections (intramayocardial) without heart 
catheterization and their ability to differentiate in 
to smooth muscle cells, cardiomyocytes, and 
endothelial cells make them a promising 
candidate in heart regeneration therapies since 
their first use incardiomyoplasty by Tomita and 
co-workers in 1999 [39,40].  
 

2. PATHOPHYSIOLOGY OF 
CARDIOVASCULAR DISEASES 
(CVDS) 

 

CVDs has a wide range of clinical manifestations 
such as restenosis, cardiomyopathy, aortic 
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aneurysms, valvular heart disease, coronary 
heart disease and hypertensive heart failure 
[41,42]. CVDs has multiple pathogeneses such 
as natriuretic peptide ligand-receptor complex- 
guanylyl cyclase (cGMP) [43], endothelial 
senescence mediated production of altered 
extracellular vesicles [44], defective redox status 
with enhanced superoxide stress leading to 
atherosclerosi, hypertension [45], altered 
microRNAs associated with defective proteolysis, 
lipid metabolism, cell mitosis, and dysregulated 
inflammatory mediators generation [46], low 
concentrations of Adiponectin [47] and cell injury 
associated with inappropriate activation of 
mineralocorticoid receptors through Rac1-
signaling pathways [48]. Recently reported risk 
factors of CVDs in humans to include age, 
gender, alcohol consumption, physical inactivity, 
familial prevalence, depression, nutrient 
deficiency, hypertension, obesity, diet, and high 
blood pressure [49-54]. Congenital-based 
secondary hypertension increases the risk of 
myocardial infarction (MI), stroke, and heart 
failure [55]. Similarly, Vitamin D deficiency leads 
to derangements in cardiac myocyte contraction, 
abnormal cardiac relaxation with ultimate heart 
failure [56,57]. Among cardiovascular disorders, 
ischemic heart disease is the most common type 
and is the leading cause of death worldwide with 
estimated 9 million deaths in 2016 [58]. The 
Problem in cardiovascular diseases is related to 
severally limited repair capacity after injury. Heart 
transplantation is the only ultimate approach to 
cope with end-stage cardiac failure. But it has 
limitations of being costly and there are limited 
organs for transplantation [59]. Therefore, 
researchers look forward to determining the best 
and minimally invasive cure for CVDs. For this 
purpose, stem cells gained special interest due 
to their unique self-renewal properties, varied 
potency, and ability to differentiate into 
multilineage [60]. 

 
3. INTERACTION WITH IMMUNE SYSTEM 
 
Human MSCs lack expression of MHC-II and 
costimulatory molecules such as CD40 ligand 
and B7 [61,62]. Immunogenic tolerance of MSCs 
is attributed to their specific immunophenotype 
and strong immunosuppressive properties [63]. 
They positively influence both humoral and cell-
mediated immune responses. However, their 
interaction with cells of the immune system is 
under investigation. From 2001 to 2014, PubMed 
and ScienceDirect data showed 149 and 495 
peer-reviewed research publications based on 
animal models to study MSCs directed immune-

modulation with promising results [64]. MSCs 
interact with adaptive (dendritic cells, T & B 
lymphocytes) and innate (natural killer cells) 
immune components. Cells of innate immunity 
(natural killer cells, mast cells, neutrophils, 
eosinophils, macrophages, and dendritic cells) 
modulate the nonspecific immune response to 
infections and most of these cells are 
suppressed by MSCs. Neutrophils are the first 
line of defense against microbial infections with 
the production of respiratory bursts [65]. MSCs 
release IL-6 which suppress respiratory burst 
[66]. Reversible inhibition of monocytes 
differentiation into dendritic cells (DCs) with 
upregulation of HLA-DR, CD86, CD80, CD40, 
and CD1a surface molecules cause suppression 
of their antigen-presenting ability [67-69]. PD-
L1/PD-1 mediated contact between B-
lymphocytes and MSCs causes inhibition of B-
cell proliferation, largely depending on culture 
conditions [70,71]. Differentiation activity of 
MSCs is mainly controlled by the TGF-β 
superfamily and Wnt canonical pathways [72]. 
 

They cause immunoregulation through cellular 
contacts via the PD-1 pathway [73] and secretion 
of various chemokines [74], cytokines [75], 
growth factors [76], and biologically active agents 
[77]. They contribute to immune response 
homeostasis by creating a tolerogenic 
environment and preventing untimely T-
lymphocytes activation, especially during wound 
repair or healing [78]. T-cell activation is 
characterized by secretion and expression of 
surface molecules such as tumor necrosis factor 
(TNFα), CD69, CD25, CD38, IL2, HLA-DR, and 
CTLA-4 [79]. Some studies reported inhibition of 
CD69 and CD25 expression by bone marrow-
derived MSCs in T-lymphocytes treated with 
phytohemagglutinin [80], while some revealed no 
direct effect on the expression of surface 
molecules [81]. This contraindication may be due 
to the difference in the T-lymphocytes population 
studied in each experiment. Some studies 
revealed that activated T-cells can reduce [82] or 
increase [79] IFNγ secretion in the presence of 
MSCs; however, this effect depends on the 
source of the T-cells population under 
investigation [83]. CD3/CD28 mediated activation 
of CD3+ T-cells in MSCs presence from 
adipocytes stimulates IFNγ secretion. MSCs 
interfere with the antigen-presenting property of 
T-cells by suppressing CD34+ progenitor cells 
[84]. 
  

Recent studies have demonstrated that MSCs 
can survive and differentiate in 
immunocompatibility‐mismatchedxenogeneic or 



 
 
 
 

Manteghian et al.; Cardiol. Angiol. Int. J., vol. 13, no. 2, pp. 73-85, 2024; Article no.CA.116300 
 
 

 
76 

 

allogeneic transplant recipients [85] with reported 
ability to induce immunological tolerance in 
immunocompetent xenotrans plant or 
allotransplant recipients [86]. This unique 
immunotolerance mechanism is under intensive 
research and three possible interrelated 
mechanisms have been proposed. MSCs           
evade host immune defense by (a) 
immunosuppression of local environment, (b) 
modulating T‐cell phenotype, and (c) being 
immune privileged (hypoimmunogenic) [87]. 
Being hypoimmunogenic enables transplantation 
of mesenchymal stem cells across 
histocompatibility barriers and devising 
therapeutic approaches based on MSCs growth 
in culture [88].  
 

4. MSCs IN CARDIOVASCULAR 
REGENERATIVE THERAPY 

 

Recently, stem cell therapy gave new insights 
into cardiovascular disease treatment and clinical 
operations. MSCs are now considered an 
attractive candidate for MI treatment; because 
MSCs can transdifferentiate into cardiomyocytes 
with complete replacement of damaged 
cardiomyocytes [89]. Various studies have 
demonstrated MSCs differentiation into 
cardiomyocytes and engrafting to host tissue 
after directly injecting into the myocardium 
(Mesenchymal Stem Cell-Based Therapy for 
Cardiovascular Disease: Progress and 
Challenges LuizaBagno). In vitro and in vivo 
treatment of MSCs with 5-azacytidine stimulate 
their differentiation into beating cardiomyocytes. 
Directly injected MSCs into infarcted heart induce 
myocardial regeneration and improve cardiac 
function. The cardiac function improvement in the 
rat model of DCM through MSC transplantation 
was due to myogenesis or angiogenesis and 
inhibition of myocardial fibrosis. The clinically 
beneficial effect of MSCs might not be due to 
their differentiation into cardiomyocytes but             
also due to their ability to provide a large  

number of angiogenic, anti-apoptotic, and 
mitogenic factors [90]. In a study, Konstantinos 
and coworkers concluded that MSC derived from 
bone marrow (BM-MSCs) facilitates substantial 
cardiac recovery and engraftment and 
differentiation when injected into the porcine 
heart. Differentiation actually occurs after 
transplantation [91].  

 
Preconditioning of MSCs: Convenient isolation 
and ex-vivo expansion, along with the greater 
potential of differentiation into myocardial cells 
with low rejection rates, have made bone 
marrow-derived stem cells (BMSCs) a preferred 
choice for cardiac regenerative therapy [92,93]. 
Despite of initial hype and promising results, 
stem cell therapy is of little clinical usage due to 
low retention, differentiation, and survival of 
transplanted MSCs in hostile tissue 
surroundings. In diseased myocardium, low pH, 
overexpression of inflammatory mediators, 
deprivation of oxygen and nutrients cause poor 
post-transplant survival of MSCs. Aggregation of 
macrophages and neutrophils in response to 
myocardial insult leads to reactive oxygen 
species (ROS) and cytokines, which intensify cell 
death. This emphasizes the importance of 
identifying new methods for improving post-
transplantation survival and differentiation of 
MSCs. Optimizing, pre-treating, reprogramming, 
or preconditioning stem cells by genetic 
manipulation, pharmacological, 
environmental/physical, or using cytokines can 
help transplanted cells to withstand the hostile 
microenvironment of injured tissue. [94, 95]. 
Preconditioning of stem and progenitor cells 
before transplantation with various 
preconditioning triggers is an emerging research 
area with established promising results. 
Preconditioning of MSCs results in increased cell 
survival by reducing immune responses, 
enhanced homing to target tissue, and improved 
neuronal differentiation [96]. 

 

 
 

Fig. 1. Direct reprogramming of cells into cardiomyctes 
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Heat shock treatment is one of the several 
physical preconditioning treatments. Thermal 
exposure of cardiomyocytes to high temperature 
(39°C-45°C) triggers HSP70 expression, 
protecting MSCs from in vivo and in vitro oxidant 
stress [97]. Thermal treatment of MSCs to 43°C 
results in HSP70 and HSP27 secretion, which 
are associated with increased cell survival [98]. 
Oxygen tension is crucial for stem cell survival 
and differentiation in both in vivo and ex vivo 
environments. In vivo, hypoxia can cause 
apoptosis, but it can be reduced with MSCs 
hypoxic preconditioning and overexpression of 
some important pro-survival genes like Akt. In 
cell culture, hypoxia can enhance proliferation 
and differentiation of stem cell lineages by 
modulating their paracrine activity, resulting in 
upregulation of IL-6 and angiogenic factors. 
Hypoxia-induced overexpression of stromal cell–
derived factor-1 plays an important role in 
homing of MSCs [99,100]. Autophagy is 
promoted in BMSCs after hypoxic 
preconditioning and it serves as a protector for 
MSCs apoptosis under H/SD [101]. 
Transplantation of hypoxic preconditioned stem 
cells shows the improved expression of 
angiopoietin-1, hypoxia-inducible factor 1, and 
vascular endothelial growth factors along with its 
receptors i.eBcl-xL, Flk-1, Bcl-2, and 
erythropoietin. Preconditioned stem cells also 
show decreased caspase-3 activation and 
increased angiogenesis after myocardial 
infarction (MI) [102]. The protective effect of 
hypoxic preconditioning on cultured cells remains 
approximately for six days [103].  
 
Pharmacologically active substances also cause 
increased cell survival. Conditioning mimetics 
triggers the release of cytokines and growth 
factors (IGF, VEGF, HGF, Ang-1, and SDF-1α) 
with angiogenic effects [104]. Priming stem cells 
with Pitocin (a synthetic analog of Oxytocin) 
enhances differentiation into vascular cells and 
cardiomyocytes with increased protection against 
oxidative stress [105,106]. Oxytocin treatment 
cause upregulation of HSP70, HSP27, VEGF, 
MMPs, TIMPs, and HSP32 with cardiac anti-
apoptotic and anti-remodeling properties [107]. In 
recent years, the protective role of hydrogen 
sulfide signaling in cardiac myopathies in 
mammals is under investigation [108]. H2S plays 
a critical role in vasorelaxation, angiogenesis, 
cardioprotection, atherosclerosis inhibition, and 
lowering of blood pressure [109,110]. 
Transplantation of H2S-treated MSCs improves 
left ventricular heart function (LVHF), reduces the 
infarct size, and enhanced cell survival 4-days 

post-transplantation in the myocardium of MI 
patient [111]. Nitric oxide is an essential factor of 
chemical signaling for cardiovascular 
homeostasis. NO can be generated from a family 
NO synthase (NOS). The endothelial NOS (e-
NOS) produces nitric oxide from L-arginine 
amino acid. A study showed that overexpression 
of NOS could improve the therapeutic potential of 
MSCs in cardiac repair [112]. 
 
MSCs regenerative therapy can be made more 
effective by genetic modifications. There are four 
main strategies adopted for genetic modification, 
including gene editing (CRISPR/Cas9), gene 
silencing (RNAi), protein overexpression through 
DNA delivery, and miRNA-based modifications 
[113]. Currently, viral transduction is a widely 
used method for DNA delivery. However, it has 
several reported safety issues like tumorigenesis 
and mutagenesis [114]. CRISPR/Cas9 gene-
editing tool is a novel technique for the precise 
insertion of required genes without activation of 
an oncogene [115].CRISPER/CAS9 technology 
derives from the adaptive immunity of bacteria 
and archaea against invading nucleic acids by 
using CRISPER RNAs which guides the 
silencing of invading nucleic acids [116].CAS 9 is 
an enzyme produced in bacteria naturally which 
initiates anti-phage activity by combining with 
CRISPER loci which are short repetitive 
sequences of about 30 to 40bp. These loci are 
transcribed into long RNAs, which are broken 
down into small CRISPER RNA (crRNA) by the 
activity of CRISPR-associated nucleases. Cas-
RNA complex is formed by these crRNAs, which 
helps recognize invading nucleic acids and 
cleaves them. The crisper cas9 technology is 
applied to develop mouse models of 
cardiomyopathy in a shorter time than traditional 
techniques [117,118]. CRISPER technology 
helps to generate the genetically modified cells 
and model organisms to study CVDs more 
efficiently [119]. Some gene modifications are 
reported till now which includes AkT and Bcl-2 
(apoptosis-regulating protein) modifications. Bcl-
2 gene is involved in apoptosis. It reduces 
apoptosis and promotes cardiac regeneration. A 
study showed the effect of exosomes derived 
from Akt on MSC’s role in CVDs. They use 
human umbilical cord stem cells and AKt genes 
were transfected into hucMSCs and extracted 
exosomes from control (hucMSCs) and Akt 
(hucMSC). They studied the effect in MI rat 
model and demonstrated that platelet-                    
derived growth factor D was upregulated in                  
Akt-exo which increased cardiac repair 
[120,121]. 
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5. MODES OF MSCs DELIVERY TO 
CARDIAC TISSUES 

 

Different methods are used to successfully 
implant mesenchymal stem cells to the infected 
or injured area. Following are some methods 
which are commonly used nowadays. 
 

5.1 Direct Surgical Inframyocardial (IM) 
Injection 

 

This procedure is the most precise, direct, and 
authentic approach for injecting mesenchymal 
stem cells into damaged/infracted regions of the 
heart [122]. It can be done either during 
thoracotomies for open-heart surgeries or as a 
separate method without cardiac arrest 
[123,124]. Infra-myocardial infraction involves the 
injection of therapeutic agents directly into the 
myocardium into LV either directly or by using a 
catheter-based approach [125]. The location for 
IM method can be identified by using RCG or 
nuclear imaging. It offers an extra advantage of 
targeting localized myocardium without 
perturbing neighboring tissues [126]. Wang et al 
performed experiments in which Mesenchymal 
stem cell sheet fragments injected by direct IM 
method shows increased vascular density, more 
cell retention in infected zone and increased 
graft/host cell communication, thus improving left 
ventricle functions [127]. Such direct IM 
techniques of stem cells have been used when 
trans-vascular cell delivery becomes limited due 

to occluded coronary artery in cardiomyopathy 
patients [128]. 
 

5.2 Intracoronary Delivery 
 

This approach includes the infusion of MSCs 
inside the coronary artery. In this procedure, cells 
can be injected while maintaining coronary flow 
or following flow interruption with balloon 
occlusion to minimize rapid cell washout. An 
intracoronary approach allows for selective 
delivery of cells to the myocardial area of interest 
and theoretically limits risks of systemic 
administration [128]. This procedure has some 
advantages in that there is no need for special 
equipments for injecting cells and the injected 
cells are uniformly distributed in the infracted 
region. Some disadvantages are also associated 
with this technique and among them, the most 
important is the low immediate retention of cells 
which may cause microvascular occlusion 
[129,130].  
 

5.3 Mechanism of Action 
 

For the development and improvement of MSC 
therapy, it is utterly important to know the 
mechanism of action of MSC in cardiac tissue 
regeneration and repair. MSCs follow two main 
mechanisms known as Direct and 
Indirect/paracrine. Numerous in-vitro/in-vivo 
studies showed that paracrine signaling is the 
major and fundamental mechanism of action of 
MSCs [131]. 

 

 
 

Fig. 2. MSCs applications in CVDs 
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5.3.1 Direct pathway (direct trans-
differentiation of MSCs into cardiac 
cells) 

 

Despite the fact that MSCs can differentiate into 
different cell types e.g cardiomyocytes and 
endothelial cells, it is not the primary mechanism 
of action of cardiovascular regeneration [132]. 
Direct trans-differentiation of MSCs into cardiac 
tissue is still a major controversy in cardiac 
regeneration. Some studies suggest that MSCs 
transdifferentiate into functional cardiomyocytes 
and some studies suggest a fusion of MSCs with 
host cardiomyocytes as a prevalent mechanism 
[133]. 
 

5.3.2 Paracrine pathway (secretion of 
complex biological compounds) 

 

Recent studies suggested that the ability of 
MSCs to regenerate or repair cardiac tissues is 
mediated by paracrine factors secreted by MSCs 
[134]. In paracrine signaling, MSCs positively 
influence the surroundings of cardiovascular 
tissue by the activation of several other signaling 
pathways. MSCs secrete biological active 
molecules like cytokines, remolding factors, and 
differentiation signals such as interleukine-6, a 
granulocyte, and macrophage colony-stimulating 
factors. These molecules secrete anti-apoptotic 
and angiogenic factors to inhibit cardiomytic 
apoptosis around the area of administration and 
induce cardioprotection. The release of various 
cytokines e.g. transforming growth factor β, 
vascular endothelial growth factor (VEGF), 
stromal cell-derived factor (SDF)-1, and 
epidermal growth factor (EGF) promotes various 
processes e.g. neovascularization, activation of 
tissue intrinsic progenitor cells, etc. 
Neovascularization which is referred to as the 
formation of new blood vessels is an important 
factor of the healing process as it re-supplies 
nutrients and oxygen to the damaged tissue. 
Studies showed 20% enhanced 
neovascularization in the MI mouse model due to 
the release of paracrine factors [135]. MSCs not 
only secret cytokines but they are also able to 
secrete exosomes. Exosomes are small 
extracellular vesicles containing important 
bioactive constituents with a diameter ranging 
from approximately about 40 to 160 nm 
containing microRNAs and they induce biological 
effects even at distant locations. Exosomes work 
by decreasing infarct size in a mouse model of 
myocardial ischemia. MSC-derived exosomes 
have growingly proved their cardiac repair effects 
through stimulating cardiomyocyte proliferation, 
vascular angiogenesis, immune-regulation, and 

inhibiting the progression of scar formation 
[136,137]. Exosomes plays important role in 
regulating CVD progression and act as a 
bioactive ingredient that stimulates repairing of 
cardiac injury via transpose and exchange of 
signal molecules. Exosomes delivered via 
intravenous route prove to effectively alleviate 
myocardial ischemia/reperfusion injury [138,139]. 
 

6. CONCLUSION 
 

Cardiovascular diseases remain the leading 
cause of death worldwide, despite tremendous 
advancements in medical science. The rising 
incidence of cardiovascular diseases requires the 
investigation of new and promising treatment 
approaches to manage the rising risk of CVDs. 
Regenerative cardiovascular medicine now 
centres around stem cell therapy, superseding all 
other forms of therapy and treatment. Because 
mesenchymal stem cells have such a large 
therapeutic potential, numerous clinical trials and 
studies have shown that stem cell therapy—and 
especially mesenchymal stem cells—is the most 
promising treatment option for cardiac diseases. 
Recent studies have demonstrated the beneficial 
effects of mesenchymal stem cells on a number 
of cardiac muscle disorders, including heart 
failure, vascular lining issues, damage from 
blood flow restriction, and elevated blood 
pressure in the lungs. The potential, 
preconditioning strategies, administration 
approaches, and processes of mesenchymal 
stem cell (MSC) therapy for the treatment of 
cardiovascular diseases (CVDs) are specifically 
examined in this work. 
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