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ABSTRACT

Aims/ Objectives: This paper examines the dynamics of multiple slip together with thermal
radiation effects on the transport of a magnetohydrodynamic Casson nanofluid passing a nonlinear
porous stretchable sheet in the existence of viscous dissipation and chemical reaction.
Study Design: Cross-sectional study.
Methodology: The outlining equations modeling the transport phenomenon are simplified
into nonlinear ordinary differential equations via the approach of similarity transformations and
subsequently analyzed numerically by shooting techniques alongside Runge-Kutta Fehlberg
scheme.
Results: The outcomes of decisive parameters affecting the flow, heat, and nanoparticle
concentration are graphically deliberated. From the investigation, it is revealed that Brownian
motion, viscous dissipation, and thermophoresis parameters augment the thermal boundary layer
and propel an upward growth in the temperature profile. Furthermore, the slip factor decelerates
the flow and heat dissipation while the fluid movement drags in the existence of the magnetic field.
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Conclusion: The results obtained in this study compared favourably well with existing related
studies in literature under limiting scenarios.

Keywords: Casson nanofluid; multiple slip, porous sheet; Brownian motion; thermophoresis; thermal
radiation.

2010 Mathematics Subject Classification: 53C25; 83C05; 57N16.

1 INTRODUCTION

Newton’s law of viscosity does not govern many
industrial and manufacturing processing fluids
like ceramics, inks, liquid detergents, syrups,
mixed oils, gypsum pastes, polymers, hair colors,
fruit juices, etc. These liquids constantly change
their viscosity under shear tension, which makes
them fall under non-Newtonian fluids category.
Since these fluids have varying thermophysical
attributes, establishing them using a single
constitutive equation is perturbing [1-2]. Thus,
in the literature, various concepts or models of
these fluids have been formulated and discussed.
The values and defects of each non-Newtonian
fluid model are unique. For instance, Karra
et al. [3] explained that the non-Newtonian
Maxwell model tends to predict the results of
fluid relaxation time among the simplest rate
models. Similarly, Ireka and Okoya [4] further
described the second-grade fluid as another
form of non-Newtonian fluids by considering the
impacts of viscous and elastic effects on the fluid
flow. Fatunmbi and Fenuga [5] deliberated on
the transport of micropolar fluid as a branch of
non-Newtonian fluid with non-symmetric stress
tensor.

Furthermore, Casson [6] established the Casson
fluid concept as another form of the non-
Newtonian fluid model. This is a standard
viscoelastic model in many fluids like blood,
tomato sauce, honey, etc. This model displays
yield stress and acts as solid if the shear strength
is far less than the yield stress. Conversely,
it distorts when the shear stress is more
significant than the yield stress in performance
[7-8]. Casson fluid is a more effective cooling
agent than many other fluids and thus has
attracted the interest of many scientists. In
view of various applications, the model of
Casson fluid has been reported by various
authors on different configurations, conditions

and parameters. Shaw et al. [9] explore the
results of various Casson fluid flow emerging
parameter on flat convective surface conditions.
Similarly, Asogwa and Ibe [10] discussed the
transport of magnetodynamics Casson fluid in a
porous sheet with emphasis on the heat-mass
transfer aspect while Shamshuddin et al. [11]
numerically calculated the impact of chemical
reaction on the motion of Casson fluid over an
inclined plate.

Today, nanofluids are used in place of traditional
fluids (such as; water, oil, ethylene-glycol and
so on) because they display soaring thermal
conductivity. The development of nanofluids
provides a high temperature transfer and lessens
heat transfer of energy consumption devices.
The first investigator to develop fluids that include
the nanosize nanofluids suspension is Choi
[12]. Afterward, Lee et al. [13] extended this
study by reporting that the nanofluids have
excellent heat transfer properties relative to the
basic fluids. Many researchers subsequently
suggested improved thermophysical properties
relative to the conventional fluids alongside heat
distribution of nanofluids. Buongiorno [14] also
expanded the rationale for improving the thermal
performance of nanofluids. Correspondingly, the
improvement of thermal conductivity of different
concentrations of nanoparticles was examined
by Aybar et al. [15]. They concluded that
adding nanoparticles to fluids enhances thermal
conductivity in the boundary layer. Similarly,
Okonkwo et al. [16] highlighted an extensive
analysis of nanofluids in different heat transfer
applications. Their results depicted a situation
where the heat transfer of base fluids is lower
than that of nanoparticles. Further analysis of
Brownian movement and thermophoresis effects
on nanofluids was conducted by Abdelmalek
et al. [17]. Additionally, Makinde et al.
[18] numerically studied magnetohydrodynamic
nanofluid convective heat transfer problem along
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a stretched plate characterized by varying
viscosity and radiation effect. Alreshidi et
al. [19] analyzed the nanofluid concept by
integrating the effect of Brownian movement
and thermophoresis using Lie group analysis.
Also, Ashraf [20] studied the effects of a
nanofluids normal convective flow over the
vertical plate with special attention given the
influence of variable liquid properties. Recently,
the motion of Powell-Eyring fluid blended with
nanoparticles characterized by exponential
varying viscosity over a nonlinear vertical Riga
plate was investigated by Fatunmbi and Adeosun
[21]. Nevertheless, the phenomenon of slip at the
wall was not considered in the aforementioned
studies.

Slip effects have drawn the attention of scientists
over the last decade due to their consequential
usage in diverse engineering processes. In many
industrial processes, namely: microscale and
nanoscale devices, both velocity slip and the wall
temperature jump have many influences. Navier
[22] investigated the slip boundary condition
and prescribed the speed aligns with the shear
stress on the wall. Thereafter, several scientists
have studied the slip effects in speed and a
wall temperature jump in various geometries
containing viscous fluids and nanofluids in depth.
Rashad [23] incorporated the finite-difference
technique to examine significance of slip on
unsteady three-dimensional flow. The findings
suggested that raising the velocity slip variable
significantly reduced the shear stress as well
as heat transfer. Similarly, the impact of slip
with heat transfer characteristics in a permeable
enclosure was considered by Afifys et al. [24]
using Lie symmetry analysis. Additionally, Uddin
et al. [25] recently applied temperature and
mass convective boundary conditions to obtain
practical effects of slip condition. The analysis
demonstrated that expanded hydrodynamic slip
lightens skin tension and enhances the local
Nusselt number. Fatunmbi and Fenuga [26]
analyzed such a problem on the flow of magneto-
micropolar fluid over an exponentially stretched
plate. The authors reported a decreased heat
transfer as a result of thermal slip in the heat
dissipation equation. Also, slip influence on
chemically reactive micropolar fluid flow was
investigated by Fatunmbi and Adeniyan [27] with

the report that a boost in the strength of the slip
factor decelerates the locomotion of the fluid.

Thermal radiation effects contribute to many
practical applications in physics and engineering
during heat transfer. In space exploration and
high heating systems, radiation is a form of
heat transfer for many industrial and radiological
products. For instance, thermal radiation can
be critical in controlling thermal performance for
polymer processing industries. Consequently,
the performance of a production process in this
state is bent on heat control factors. High-
temperature plasma, cooling nuclear power
plants, metallic gases, and electric-generating
devices are practical applications for radiative
heating transfer from a vertical surface through
conductive grey fluids [28]. However, the impact
of radiation as heat transfer on the thermal
boundary layer is still yet to be fully explored.
Jamaluddin et al. [29] evaluated the impact
of radiation on the heat performance features
of ferrofluid in the stagnation field using the
collocation method. Likewise, Zaidi et al. [30]
explored such a problem on a vertical plate of
electroconductive couple force fluid.

In several fields related to engineering science,
the impacts of a chemical reaction are an
essential consideration in studying heat-mass
transfer problems. Bhandari [31] numerically
studied the time-independent problem of a
reactive micropolar nanofluid transport confined
in two-dimensional enclosure with particle
rotation. According to the report, fluid
temperature advances as the chemical reaction
rate improves. Similarly, this report was verified
by Abd El-Aziz [32] by employing a transport
model of time-dependent chemical reaction
on two-dimensional nanofluid flow caused by
the time-dependent surface temperature and
concentration. Furthermore, Fatunmbi and
Adeniyan [33] numerically solved such a problem
on the motion of electroconductive micropolar
fluid near a stagnation point while Eid [34]
investigated Sherwood number as a growing
feature of a reaction rate in the study of chemical
reaction effect on the magnetohydrodynamic
nanofluid flow over a stretching surface. More so,
Afify and Elgazery [35] analyzed the influence
of chemical reaction on MHD nanoparticle
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fluids physical processes. It was observed
that destructive chemical reactions enhance
multiphase flow rates and weaken them in the
nanofluid concentration.

The aforementioned studies have however
been conducted over a linearly stretchable
surface without considering a nonlinear
surface. For practical purposes such as in
wire drawing, the stretching velocity assumes
nonlinearity. Hence, the current study intends
to investigate the dynamics of multiple slips
and thermal radiation on the transport of an
electroconductive nanofluid past a nonlinear
permeable stretching surface. The physical
model incorporates the influence of chemical
reaction together with viscous dissipation
associated with heat generation/absorption.
Numerical results of the emerging physical
terms on the dimensionless quantities, namely:
velocity, temperature, and concentration fields
are described graphically and discussed. This
study has verified the numerous practical
uses of nanoparticles embedded in a Casson
fluid, predominantly in biomedical, chemical
manufacturing, microelectronics, and nuclear
reactors processes.

2 PROBLEM FORMULATION
AND ANALYSIS

The Casson-nanofluid transport is assumed to
be steady, incompressible and configured in
a two-dimensional porous nonlinear stretchable
surface. The flow is characterized by multiple
slip properties, heat dissipation, homogeneous
chemical reaction, thermophoresis and Brownian
movement of the nanoparticles. The flow occurs
at region y ≥ 0, with y being the coordinate
measured to the stretching surface. Also,
perpendicular to the surface is a variable external
magnetic field B(x) = B0

x(1−n)/2 ([36-38]) while
ignoring the impact of the induced magnetic field.
The momentum equation also contains a non-
uniform porous medium permeability expressed
as kp(x) = K0x

(1−n) ([37, 39]). The stretching
sheet generates the fluid flow at (x = y = 0).
It is supposed that the sheet varies in nonlinear
manner with range x from the direction of flow
(uw = axn as indicated in Fig. 1), where a and
n respectively symbolize a positive constant and
nonlinear stretching term. A prescribed surface
mass flux vw = v0

x(1−n)/2 ([40-41]) is applied to
the permeable sheet, vw > 0 indicates injection
while vw < 0 denotes suction and v0 is a constant
(see Yazdi).
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2.1 The Governing Equations

The rheological equation for flow of Casson fluid is expressed as follows (see Gbadeyan et al. [42],
and Animasaun et al. [43]):

τij = 2(µB + py/
√
2π)eij , π > πc (1)

τij = 2(µB + py/
√
2π)eij , π > πc (2)

From equations (1-2), π = eij , where eij indicates the (i, j) − th deformation rate constituent, π
denotes the product of the deformation rate with itself, πc denotes the critical value of the product,
µB and py correspondingly define dynamic plastic viscosity and the yield stress. With the above-
listed assumptions together with the Oberbeck-Boussinesq approximation, the transport equations
are communicated as (Raza et al [44]):

∂u

∂x
+

∂v

∂x
= 0, (3)

u
∂u

∂x
+ v

∂u

∂y
= ν

(
1 +

1

β

)
∂2u

∂y2
− σB2(x)

ρ
u− ν

kp(x)
u+ gβT (T − T∞) + gβc(C − C∞), (4)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+ τ

[
DB

∂C

∂y

∂T

∂y
+

DT

T∞

(
∂T

∂y

)2
]
+

µ

ρcp

(
1 +

1

β

)(
∂u

∂y

)2

− 1

ρcp

∂qr
∂y

+

σB2(x)

ρcp
u2 +

ν

cpkp(x)
u2 +

Qo

ρcp
(T − T∞),

(5)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

DT

T∞

∂2T

∂y2
−Kr(C − C∞). (6)

The controlling equations are constraint at the wall by:

u = uw + S1
∂u

∂y
, v = ±vw, T = Tw + S2

∂T

∂y
, C = Cw + S3

∂C

∂y
at y = 0,

u → 0, T → T∞, C → C∞ as y → ∞.

(7)

In Eqs (3-7), x, y depicts cartesian coordinates alongside with u, v as respective velocity components.
Likewise, the symbols ρ, ν, B0 and σ are the fluid density, kinematic viscosity, magnetic field
strength, and the electrical conductivity respectively. Also, βT (βc), β, α, T (C), T∞(C∞) and g denote
coefficient of thermal(solutal) expansion, Casson fluid term, thermal diffusivity, fluid temperature
(concentration), ambient fluid temperature(concentration) and gravitational acceleration. Furthermore,
kp defines permeability of the porous medium, qr is the radiative factor, Qo = Q1x

n−1. indicates
variable volumetric heat generation/absorption. The Brownian diffusion, thermophoretic diffusion
as well as heat capacity of the fluid are denoted by DB , DT , (cp). Similarly, S1 = S4x

(1−n)/2,
S2 =S5x

(1−n)/2 and S3 = S6x
(1−n)/2 respectively indicates the velocity, temperature and concentration

slip factor sequentially. Besides, vw implies the suction whereas Tw(Cw) typifies temperature (concentra-
tion) at the sheet.

Using the Rosseland approximation,

qr = −
(
4σ∗

3k∗

)
∂T 4

∂y
, (8)

with σ∗ and k∗ representing the Stefan-Boltzmann constant and mean absorption coefficient. Expanding
T 4 in Taylor’s series under the assumption that the flow temperature difference is low, then

T 4 ≈ 4T 3
∞ − 3T 4

∞. (9)
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2.2 The Transfomed Equations
The following dimensionless quantities are introduced [44]

u = axnf ′(η), v = −ax
n−1
2

(ν
a

) 1
2

(
n+ 1

2
f(η) +

n− 1

2
ηf ′(η)

)
, η =

(a

ν

) 1
2
x

n−1
2 y,

T = (Tw − T∞)θ(η) + T∞, C = (Cw − C∞)ϕ(η) + C∞.

(10)

Imposing Eq. (10) into the main equations, Eq. (3) is satisfied while Eqs. (4-6) together with boundary
conditions (7) yield the underlisted ordinary differential equations (11-14):(

1 +
1

β

)
f
′′′

+
n + 1

2
ff

′′ − nf
′2 − (H + Da)f

′
+ Grθ + Gcϕ = 0, (11)

(1 + Nr)θ
′′

+
n + 1

2
Prfθ

′
+

(
1 +

1

β

)
EcPrf

′′2
+ PrHEcf

′2
+ Pr(Nbθ

′
ϕ
′
+ Ntθ

′2
)+

+ DaEcPrf
′2

+ PrQθ = 0,

(12)

ϕ
′′

+
n + 1

2
Lefϕ

′
+

Nt

Nb

θ
′′ − Krϕ = 0, (13)

f(0) = fw, f
′
(0) = 1 + G1f

′′
(0), θ(0) = 1 + G2θ

′
(0), ϕ(0) = 1 + G3ϕ

′
(0),

f
′ −→ 0, θ → 0, ϕ → 0 as η → ∞.

(14)

In the above equation, Kr defines the chemical reaction parameter, Da implies Darcy parameter,
G1, G2, G3 orderly symbolizes the velocity, temperature and concentration slip parameter, H represent
magnetic field parameter, Q describes the dimensionless heat source/sink, Le is the Lewis number,
Gr denotes the Grashof number, Nb defines Brownian motion, Nt symbolizes thermophoresis term,
Gc stands for solutal Grashof number, Ec signifies Eckert number, fw symbolizes suction/injection
parameter, Pr denotes the Prandtl number. Eq. (15) gives the details description of these parameters:

Pr =
ν

α
, H =

σB2
0

ρa
, Le =

ν

DB
, Nb =

(ρc)pDBC∞

(ρc)fν
, Gc =

gβc(cw − c∞)

a2x2n−1
,

Nt =
(ρc)pDT (Tf − T∞)

(ρc)fT∞ν
, fw = − 2v0

n+ 1

√(
1

aν

)
, G1 = S4

√
a(n+ 1)

2ν
,

Q =
Q1

aρcp
, Ec =

u2
w

cp(Tw − T∞)
, Gr =

gβT (Tw − T∞)

a2x2n−1
, Da =

ν

ak0
,

Nr =
16σ∗T 3

∞

3k∗k
, G2 = S5

√
a(n+ 1)

2ν
, G3 = S6

√
a(n+ 1)

2ν
.

(15)

2.3 Quantities of Engineering Interest
The quantities of interest in this study for engineering purposes are sequentially presented in Eq.
(16), the first being the skin friction coefficient (Cfx), the second indicates the Nusselt number (Nux)
while the third connotes the Sherwood number (Shx):

Cfx =
τw

ρ(uw)2
, Nux =

xqw
k(Tw − T∞)

, Nux =
xqm

DB(Cw − C∞)
(16)

where

τw = µ

(
1 +

1

β

)
∂u

∂y

∣∣∣∣
y=0

, qw = −
(
k +

16σ∗T 3
∞

3k∗

)
∂T

∂y

∣∣∣∣
y=0

, qm = −DB
∂C

∂y

∣∣∣∣
y=0

(17)

The non-dimensional physical quantities are:

Re
1
2Cfx =

(
1 +

1

β

)
f

′′
(0), Re−

1
2Nux = − (1 +Nr) θ

′(0), Re−
1
2 Shx = −ϕ′(0). (18)
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3 NUMERICAL SOLUTION
AND RESULTS VALIDATION

The solution to the set of Eqs. (11-13)
together with boundary condition (14) was
sought numerically due to the nonlinearity of the
problem. The popular shooting technique cum
Runge-Kutta Fehlberg method was employed for
the numerical integration. We did not publicize
the technique here due to its popularity, however,
the details of this technique can be found in Refs
[45-47]. Except otherwise stated in the respective
graphs, the following values have been fixed for
the emerging parameters in the current study;
Nr = fw = Kr = 0.3, Nb = Nt = Da = K =
H = 0.5, Gr = 0.70 = Gc,Q = 0.3 = β, n =
0.7, Ec = 0.1, P r = 0.72, Le = 1.0, G1 = 0.3 =
G2 = G3. Table 1 records the comparison of the
present results with the published data of Gorla
and Sidawi [48] and Megahed [49] under limiting
conditions. From the table, it is clearly shown that
there is a good agreement between the current
results and those existing data in the absence
of the concentration field, thermophoresis and
Brownian motion, no slip condition and other
limiting situations as described in the table.

4 RESULTS AND DISCUSSION

This section also highlights the reactions
of different physical parameters, namely:
thermophoresis parameter Nt, nonlinear
stretching parameter n, chemical reaction Kr,
Darcy parameter Da, momentum slip parameter

G1, solutal Grashof number Gc, concentration
slip parameter G3, Radiation term Nr, Brownian
motion term Nb, Casson parameter β, magnetic
field parameter H, Grashof number Gr, heat
slip parameter G2, heat source/sink Q on
the non-dimensional velocity, temperature and
concentration fields.

Fig. 2 depicts the attributes of β and H with
respect to the velocity when other emerging
parameters are fixed. The plot reveals that a
rise in β produces a steady decrease in the
velocity. It is noted that as β improves, a kind
of resistive force in created in the flow region
leading to a fall in the hydrodynamic boundary
layer thickness and thereby a decelerated flow.
With a rise in β, there is enhancement in the
dynamic viscosity and consequently a decrease
in the yield stress. This rise in the dynamic
viscosity creates a resistance to the locomotion
of the fluid as shown in the figure. Similarly,
a resistive force named Lorentz force which
opposes the fluid motion is induced by a rise
in H due to the electroconductive nature of
the Casson fluid. Thereby, the fluid motion
decreases as the magnitude of H improves. In
this scenario, the Lorentz force is generated
when the magnetic field is normal to the flow
of an electroconductive fluid. This gives the
force an appropriate tendency to oppose the
flow. The impact of nonlinear stretching term
n and temperature slip parameter G2 on the
velocity profile is showcased in Fig. 3. Here an,
enhancement in both n and G2 decelerate fluid
motion and the hydrodynamic boundary layer
structure.

Table 1. Comparative analysis of Re−
1
2Nux for variation in Pr with published studies when

Ec = Nr = H = Da = G2 = Nt = Q = 0, β → ∞, n = 1

Pr Gorla & Sidawi [48] Megahed [49] Present
2.0 0.91142 0.911358 0.911357
7.0 1.89046 1.895453 1.895403
10.0 2.30350 - 2.308003
20.0 3.35391 3.353902 3.353904
50.0 5.42474 - 5.424305
70.0 6.46221 - 6.462199
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Fig. 2. Behaviour of β and H on f ′(η) Fig. 3. Reaction of n and G2 on f ′(η)

Fig. 4. Influence of Da and Ec on f ′(η) Fig. 5. Influence of G1 and Gr on f ′(η)

Fig. 4 describes the impact Darcy term Da
in the presence of Ec on the flow field. The
graph depicts increasing the magnitude of Da
lowers the motion of the fluid. Consequently,
permeability strengthens the resilience of the
porous medium which mitigates fluid velocity.
However, Ec exhibits the opposite pattern in this
case as a rise in Ec reduces the fluid viscosity
and thereby favours the speed of the fluid. The
impacts of the momentum slip parameter G1

and Grashof number Gr are displayed in Fig.

5. With escalating values of G1, the velocity
profile decreases. Here, the momentum supplied
by the nonlinear stretchable surface is partially
transferred to the fluid such that there is a
decrease in the fluid motion. In the presence
of Gr however, there is enhancement in the
fluid motion as growth Gr boosts buoyancy force
boosts while decreasing the viscous force. From
Fig. 6, the impacts of Gc on the velocity field is
similar to that of Gr in the flow field.

8
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Fig. 6. Impact of Gc and Da on f ′(η) Fig. 7. Plot of Nr and Pr on θ(η)

The combined impacts of Nr and Pr with
respect to temperature field clearly informs that
an improvement in Pr significantly reduces
temperature as described in Fig. 7. The thermal
boundary layer structure diminishes as Pr rises
in magnitude due to a fall in thermal conduction
of the fluid. Hence, the temperature significantly
falls as depicted in the figure. On the contrary, the
rising values of Nr displays upward movement

on the dimensionless temperature profile. Here,
increasing the radiation parameter triggers a
spike in temperature due to reduction in the mean
absorption coefficient in the radiative heat flux.
The plot of temperature distribution versus η for
diverse values of heat source term Q in the
presence of nonlinear stretching parameter n is
illustrated in Fig. 8.

Fig. 8. Effects of Q and n on θ(η) Fig. 9. Impacts of Nb and M on θ(η)

9
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This plot signifies that enhancing Q raises
the temperature profile due to additional heat
generated to the stretching sheet by the
imposition of Q. It is shown in Fig. 9 that a hike in
the magnitude of Nb enhances the thermal field.
The trend for the magnetic field parameter H on
the temperature behaves similarly to that of Nb.

Magnetic field impact offers additional heating to
the fluid due to the resistance to the fluid motion
created by the Lorentz force.

Fig. 10 illustrates the influence of thermal slip
parameter G2 and thermophoresis Nt on the
temperature profile.

Fig. 10. Impact of Nt and G2 on θ(η) Fig. 11. Influence of Da and Ec on θ(η)

Fig. 12. Impact of Le and n on ϕ(η) Fig. 13. Influence of Kr and Nb on ϕ(η)

10
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It can be observed that the temperature field
lowers significantly with a rise in the magnitude of
G1 whereas with an increase in Nt, the thermal
field expands. An increase in the Da also
facilitates a growth in the temperature profile as
displayed in Fig. 11. The resistance created
to the fluid flow by the permeability of the
porous medium then leads to the generation of
heat which triggers a growth in the temperature.
Furthermore, in Fig. 11, viscous dissipation
effect depicted by Eckert number Ec raises the
temperature distribution owing to the extra heat
generated by the drag between the sheet and
the fluid particles. The impact of Lewis number
Le and nonlinear stretching n parameter on the
concentration of nanoparticles is depicted in Fig.
12. This graph indicated that increasing values of
Le act to reduce the nanoparticle concentration.
In Fig. 13, a rise in the chemical reaction term Kr

as well as that of Brownian motion Nb leads to a
decline in the concentration.

5 CONCLUSIONS

A numerical investigation of hydromagnetic
radiative Casson nanofluid transport is
investigated over a nonlinear vertically
stretchable surface confined in a porous medium.
The flow is characterized by multiple slip
properties with heat source together with viscous
dissipation and homogeneous chemical reaction.
The dimensionless equations describing the
problem are solved numerically via shooting
techniques in conjunction with the Runge-Kutta
Fehlberg integration scheme. At the same time,
the impact of the emerging physical terms relative
to the problem are graphically described and
deliberated. Besides, the underlisted facts are
deduced from the analysis.

• An upsurge in the value of Grashof
number Gr, Eckert Ec as well as Gc

generates a significant rise in the motion
of the fluid. In contrast, a rise in Casson
material term β, nonlinear stretching term
n and velocity slip factor G1 decelerate the
fluid motion.

• The thermal field is raised with growth
in the magnitude of radiation parameter
Nr, Eckert number Ec, thermophoresis
term Nt, Brownian movement Nb, heat

source Q and magnetic field H whereas
it decreases with a rise temperature slip
term G2.

• Rising values of chemical reaction Kr,
Brownian movement Nb as well as
Lewis number Le lowers the field of
concentration together with concentration
boundary structure.
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