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Abstract

The biophysical properties of neurons not only affect how information is processed within cells,

they can also impact the dynamical states of the network. Specifically, the cellular dynamics of

action-potential generation have shown relevance for setting the (de)synchronisation state of

the network. The dynamics of tonically spiking neurons typically fall into one of three qualita-

tively distinct types that arise from distinct mathematical bifurcations of voltage dynamics at

the onset of spiking. Accordingly, changes in ion channel composition or even external factors,

like temperature, have been demonstrated to switch network behaviour via changes in the

spike onset bifurcation and hence its associated dynamical type. A thus far less addressed

modulator of neuronal dynamics is cellular morphology. Based on simplified and anatomically

realistic mathematical neuron models, we show here that the extent of dendritic arborisation

has an influence on the neuronal dynamical spiking type and therefore on the (de)synchronisa-

tion state of the network. Specifically, larger dendritic trees prime neuronal dynamics for in-

phase-synchronised or splayed-out activity in weakly coupled networks, in contrast to cells

with otherwise identical properties yet smaller dendrites. Our biophysical insights hold for

generic multicompartmental classes of spiking neuron models (from ball-and-stick-type to

anatomically reconstructed models) and establish a connection between neuronal morphology

and the susceptibility of neural tissue to synchronisation in health and disease.

Author summary

Cellular morphology varies widely across different cell types and brain areas. In this study,

we provide a mechanistic link between neuronal morphology and the dynamics of electri-

cal activity arising at the network level. Based on mathematical modelling, we demonstrate

that modifications of the size of dendritic arbours alone suffice to switch the behaviour of

otherwise identical networks from synchronised to asynchronous activity. Specifically,

neurons with larger dendritic trees tend to produce more stable phase relations of spiking

across neurons. Given the generality of the approach, we provide a morphology-based

hypothesis that explains the differential sensitivity of tissue to epilepsy in different brain

areas and assigns relevance to cellular morphology in healthy network computation.
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Introduction

Network states are instrumental for neural computation: they correlate with the behavioural

state in healthy animals, such as in central pattern generator circuits for movement [1, 2], and

are also often altered in neuropathologies [3–5]. Recent theoretical and experimental work

highlights that it is not only the connectivity between neurons which plays a role in determin-

ing network behaviour, but that neuron-intrinsic properties also exert an influence [2, 6, 7].

Mechanistically, these influences arise not only from indirect effects on connectivity, such as

plastic changes in synaptic transmission or modulation of plasticity rules, but also from direct

effects on the very core of processing by a single neuron: the qualitative dynamics of action-

potential generation that define a neuron’s excitability class as described by Hodgkin [8].

Along these lines, weakly coupled inhibitory neurons with class 1 cell-intrinsic excitability do

not foster synchronous network states [9], while neurons arranged in the same network topol-

ogy with homoclinic-type action-potential generation favour in-phase synchronisation [7, 10].

Among the parameters that alter the cellular excitability class, we find those that directly affect

ion channel dynamics, including channel composition, extracellular ion concentration, and

modulators such as temperature [6, 7, 10–14]. However, these are not all.

Here, we explore the implications of a neuronal property that has received comparatively

less attention in the context of network dynamics, presumably due to its more inflexible, less

variable nature: neuronal morphology. Although previous work has shown that even passive

dendritic arbours can play an important role in processing inputs [15–18], their effect on the

network state has not yet been explored. We demonstrate that differences in the extent of den-

dritic arborisation alone are sufficient to induce network behaviour that is either synchronised,

with stable phase relationships between neuronal firing, or asynchronous. Differences in neu-

ronal morphology can thus contribute to the differential susceptibility of neuronal tissue to

synchronisation, which is likely to be of relevance also for pathological phenomena such as epi-

leptiform activity or spreading depolarisation.

Our approach exploits the fact that the dynamics of regularly spiking neurons with all-or-

none action potentials come in at least three qualitatively different flavours—hereafter referred

to as dynamical spiking types—corresponding to the three different mathematical bifurcations

that underlie the onset of spiking at threshold. Despite the large diversity of neuronal proper-

ties, including a zoo of ion channels that shape a cell’s conductance portfolio as well as extrin-

sic modulators such as ionic concentrations and temperature, regular spiking in neurons is

initiated by either a saddle-node on an invariant cycle (SNIC) bifurcation, a subcritical Hopf

bifurcation (in conjunction with a fold of limit cycles bifurcation), or a saddle homoclinic

orbit (HOM) bifurcation. The different spike onset dynamics of these dynamical spiking types

have been shown to influence the temporal relationships of spikes across neurons in weakly

connected networks [19–21]. Indeed, it is the combination of synaptic and cellular voltage

dynamics that determines the state of the network, with the influence of cellular voltage

dynamics being particularly pronounced in fast synaptic transmission. In this context, passive

properties such as neuronal morphology also have an influence on the effective dynamics of

spike generation. Larger dendritic branches induce a larger leak, which—as we demonstrate in

this study—is sufficient to alter the dynamical spiking type, and consequently, the network

synchronisation state.

Given the considerable heterogeneity between dendritic arbours—even in neurons of the

same class and layer [22–24]—deciphering their influence on properties of neural computation

and network states is a worthy endeavour. In this study, we methodically demonstrate that the

morphology of dendritic arbours can, via their effect on a cell’s input impedance, be tuned to

promote (de)synchronisation of network activity. Using a neuron model of an active
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conductance-based soma attached to a passive dendrite, we first recapitulate how the input

impedance differs between single-compartment and dendrite-and-soma models. We then

show how to calculate the local bifurcation structure (and hence the dynamical spiking type)

analytically when morphology is included. Of particular interest is the Bogdanov-Takens (BT)

bifurcation, which acts as an organising centre for different spiking onset bifurcations and

hence dynamical types [13, 25]. In the next step, we show that the change in spike onset bifur-

cation from the dendritic load is reflected in the spiking timing response near the onset bifur-

cation. We further verify our results in detailed, anatomically reconstructed neuron models

with varying degrees of dendritic arborisation, demonstrating that our results from the simpli-

fied dendrite-and-soma model are quantitatively precise, generalise and are widely applicable.

Finally, we demonstrate the strong effect dendritic arborisation can have on network synchro-

nisation via network simulations of multicompartment neurons with different dendritic

extents. This exemplifies the potential contribution of cellular morphology to the susceptibility

of neuronal tissue to specific network states.

Results

Passive impedance properties

Network behaviour is influenced by cellular properties of the constituent neurons via the

dynamical spiking type they grant to each neuron. This is because distinct dynamical spiking

types result in distinct timing sensitivities and consequently synchronisation properties of the

network. Bringing neuronal morphology into play in a network environment therefore con-

sists in first understanding how morphology impacts the dynamical spiking type.

Given that varying the speed at which the neuron’s membrane potential changes has been

shown to induce all known dynamical switches for regular spiking [10, 13], we start our inves-

tigation by analysing how dendrites affect temporal filtering of the neuron’s membrane poten-

tial. To differentiate the voltage filtering effects caused by a dendritic arbour versus those

captured by an isopotential point neuron, we first calculate the passive impedance properties

of the single-compartment (S) and dendrite-and-soma models (DS). While the passive input

impedance of an S model neuron is a first-order low-pass filter, spatial neuron models yield

qualitatively different impedance profiles that depend on the dendritic properties [26, 27].

As we show in Fig 1, the DS model has an active soma attached to a passive dendrite which

represents the equivalent cable of a branched dendritic arbour [28, 29]. If the active conduc-

tances in the soma have the same valued parameters and equations as the S model, then the

two models differ only in their passive properties. The passive properties of the dendrite can

be parametrised in terms of its length L, electrotonic length constant λ, passive time constant

τδ, and dendritic dominance factor ρ [29] (the ratio between the characteristic dendritic con-

ductance and the somatic leak conductance).

In this study, we compare different degrees of neuronal arborisation as captured by the den-

dritic contribution to the passive input conductance (Gδ). Such a comparison can be thought

of either as a means of comparing arbours from different neurons, or as the effect of dynami-

cally changing the dendritic properties of an existing neuron. A neuron with more dendrites

radiating from the soma will have a thicker equivalent cable and thus contribute more to the

total passive input conductance Gin. The passive input conductance is given by the constant

level of external input current Iext required to change the voltage from its steady state value

(when all active conductances are zero) by an amount Δv

Iext ¼ GinDv: ð1Þ
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In the DS model, we apply Iext to the soma and use the voltage change Δv at the soma for

Gin. In each case Gin is the sum of its somatic (Gσ) and dendritic (Gδ) contributions. For a den-

drite of effective length ℓ = L/λ

Gin ¼ Gs þ Gd ¼ Gsð1þ r tanh ‘Þ: ð2Þ

When ℓ� 1, we can treat the dendrite as semi-infinite and the passive input conductance

of the DS model becomes

Gin ¼ Gs þ Gd ¼ Gsð1þ rÞ: ð3Þ

For the S model Gin = GL, the total leak conductance, allowing for a straightforward com-

parison between the two morphologies. The total capacitance of the S model is denoted by Cm.

While it is possible to adjust the dendritic parameters (ρ, λ, L) to match Gin for the S and

DS models, this is not possible for the passive input admittance Yin (the reciprocal of the input

impedance, Yin � Z� 1
in ). Denoting the angular frequency of the input signal as ω, for the S

model Yin is simply given as a first-order filter

YS
inðoÞ ¼ GL þ ioCm; ð4Þ

while for the semi-infinite and finite DS models with somatic capacitance Cσ we have

YF
inðoÞ ¼ Gs þ ioCs þ rGsgðoÞtanhð‘gðoÞÞ; ð5Þ

Y1in ðoÞ ¼ Gs þ ioCs þ rGsgðoÞ; ð6Þ

Fig 1. A comparison of the single-compartment (S) model with a dendrite-and-soma (DS) model with equivalent passive input conductance Gin.

In the DS model, the constant input current Iext is applied to the somatic compartment. In the S model, Gin is equivalent to the lumped leak

conductance GL, while for the DS model, Gin is the sum of the passive somatic (Gσ) and dendritic (Gδ) contributions. When we increase Gin in the DS

model, Gσ is kept constant while Gδ is increased.

https://doi.org/10.1371/journal.pcbi.1011874.g001
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where γ(ω) is defined as

gðoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ iotd

p
: ð7Þ

Here setting Cm = Cσ or choosing any other frequency-independent value of Cm will lead to

YF;1
in and YS

in differing for almost the whole frequency range.

This mismatch in the passive input admittance encapsulates the difference between the S

and DS models, and we will explore the implications that it has on the neuronal dynamical

spiking type. For the semi-infinite DS model, Yin can be fully parametrised by Gin and τδ.

From the form of Yin, we see that τδ is a key parameter for comparing the DS and S models.

When τδ = 0, γ = 1 at all frequencies and hence YF
in and Y1in become equal to YS

in in this limit for

Gin = GL. Thus the voltage dynamics of vσ in the DS model become identical to the dynamics

of v in the S model when τδ = 0.

We illustrate the differences between the passive input admittances of the S and DS models

via its more commonly measured reciprocal, the input impedance Zin. Fig 2A shows that for

any given Gin, |Zin| is higher in the S model than the semi-infinite DS model at all non-zero fre-

quencies. In Fig 2B, we see that |Zin| decreases at all non-zero frequencies when we increase τδ

in the semi-infinite DS model. In the finite DS model, Fig 2C shows that if we hold Gin con-

stant while decreasing ℓ, then |Zin| decreases at all non-zero frequencies.

In our analyses of the DS model, we use Gin and τδ to compare dendritic arbours rather

than the underlying electrophysiological parameters. Gin and τδ are defined in terms of Eqs 3

and 15. We chose these parameters because they can be readily measured experimentally by

looking at the transient and long-term response to a step-current input. However, differences

in these parameters have several biophysical interpretations. Firstly, increasing the dendritic

diameter d increases Gin without affecting τδ. Changing τδ, on the other hand, requires chang-

ing the per-area membrane properties of the arbour. While τδ can be modified without chang-

ing Gin by increasing the dendritic membrane capacitance per unit area cδ, there are

conflicting findings on how much neuronal membrane capacitance per area varies [30, 31].

Hence differences in τδ are more likely to arise from differences in the dendritic per-area con-

ductance gδ. In either case, Gin can change from both the dendritic size and the conductive

membrane properties, while τδ can only change from the per-area membrane properties.

Fig 2. (A) When one fixes the input conductance Gin between the S model and a semi-infinite DS model, the magnitude of the input impedance Zin

will be higher for the S model for non-zero frequencies. τδ = 10 ms. (B) Increasing τδ of the DS model decreases |Zin| at all non-zero frequencies. Gin = 8

nS. (C) Decreasing the effective dendritic length ℓ while maintaining the same Gin also decreases |Zin| at all non-zero frequencies. τδ = 10 ms.

https://doi.org/10.1371/journal.pcbi.1011874.g002
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While the two biophysical changes discussed so far are typically set once the neuron has

developed and will not vary over short time scales, it is important to recognise that Yin can be

changed dynamically. One example of this is that increased synaptic bombardment distributed

across the dendrite will increase the per-area leak conductance of the dendrite gδ. This in turn

will increase both Gin and decrease τδ [32–34]. Increasing d or decreasing gδ also increases the

length constant λ (Eq 15). For short dendrites, this is an important consideration, however for

long dendrites with inputs applied to the soma, λ does not appear in Yin or in any of the calcu-

lations of the local bifurcations as we show in the Methods section.

Bifurcation structure

We now make the DS model active by giving the soma the dynamics of the Morris-Lecar

model [35] while keeping the dendrite passive. Dendritic arbours in general will contain vari-

ous active channels [36, 37], yet we limit ourselves here to passive dendrites throughout this

article for reasons of both mathematical tractability and to focus on the effects of morphologi-

cal extent. The effects of active dendritic arbours are detailed further in the Discussion, and

some simulations with an active dendrite are provided in Supporting information: S1 Text.

The Morris-Lecar model was chosen because it has a single time-dependent gating variable,

making it one of the simpler conductance-based neuron models, and also because it has been

extensively studied for its ability to change the dynamical spiking type upon parameter varia-

tion [12, 13, 19, 38, 39]. We chose the default class I excitability parameter set of the Morris-

Lecar model with Gσ = 2 nS, where details of the model’s dynamics and parameters are stated

in Table A in S1 Text. Other higher-dimensional conductance-based neuron models with class

I excitability, such as the Wang-Buzsáki model [40], could have been chosen and are amenable

to the analysis presented here and would yield similar results. The analyses of these models in

other studies [6, 7, 10, 13], along with our mathematical derivations relying on the general

bifurcation structure in these models (detailed in S1 Text), allow us to claim that the results we

obtain from the lower-dimensional Morris-Lecar model will be transferable to higher-dimen-

sional neuron models.

Given that the DS model differs from the S model in terms of its passive input impedance,

and that the input impedance can be fully described in terms of (Gin, τδ) for the semi-infinite

dendrite, it naturally follows that we should choose (Gin, τδ) as bifurcation parameters along

with Iext in assessing the effect of morphology on the dynamical spiking type. One can inter-

pret variations in the bifurcation parameters as either varying the passive properties of an

existing dendritic arbour or alternatively as a means of comparing dendritic arbours belonging

to different neurons.

Since the passive leak conductance in the soma Gσ = 2 nS, values of Gin above 2 nS denote

the conductance load added to the neuron by the dendrite. As in our analysis of the passive

impedance properties, here Iext is always applied to the soma; analytical treatment of Iext

applied at any dendritic location is described in S1 Text. In short, applying Iext along the den-

drite systematically increases the value of Iext for all bifurcations but leaves the other bifurca-

tion parameters, including Gin, unchanged. Thus all transitions in the spiking onset type have

the same values of Gin and τδ irrespective of the applied current location; only the values of Iext

change by a known amount.

An equivalent approach to varying the input conductance Gin and applied current Iext can

be taken by using the relative dendritic input conductance, ρ = Gδ/Gσ, and the applied poten-

tial, μext = Iext/Gσ, as bifurcation parameters, as detailed in S1 Text. We show the absolute

quantities Gin and Iext here for intuitive clarity, but note that it is the relative size of the
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dendritic input conductance and external input current in comparison to the somatic leak

conductance Gσ that determines the shape of the bifurcation diagram.

In Fig 3, we show several two-dimensional bifurcation diagrams in terms of (Iext, Gin) plot-

ted for various values of the third bifurcation parameter τδ. As discussed earlier in for the anal-

ysis of the input impedance, the case of τδ = 0 is equivalent to the S model where Gin = GL.

There are two saddle-node (SN) bifurcations at lower and higher Iext, which we will hereafter

refer to as “lower” (dashed) and “higher” (solid line) respectively. These two SN bifurcations

converge at the cusp as Gin increases. Three fixed points exist for ISN;lowext < Iext < ISN;highext , one sta-

ble and two unstable. When spiking onset is caused by a SNIC bifurcation, this occurs on the

higher SN bifurcation. These bifurcations do not vary with τδ, and hence occur at exactly the

same values of (Iext, Gin) in the S and DS models.

At a Bogdanov-Takens (BT) bifurcation, a saddle-node, Hopf and homoclinic bifurcation

converge to a single point [41]. Since bifurcations which can produce spiking onset meet at

this bifurcation, we can often find different spiking onset types by varying parameters near the

BT point. Given the multiple conditions required for the bifurcation, two bifurcation parame-

ters are necessary to locate the BT point. For τδ = 0, the BT point is located on the higher SN

bifurcation (solid line) and has a subcritical Hopf bifurcation emerging from it. This Hopf

bifurcation permits class II excitability. Thus the BT point has often been used heuristically as

separating class I and class II excitability. Increasing τδ from zero initially shifts the BT bifurca-

tion to higher Gin until it reaches the cusp at tBTC
d
¼ 12:9 ms (hereafter denoted as the BTC

point). Increasing τδ beyond tBTC
d

moves the BT point onto the lower SN bifurcation curve

(dashed) and GBT
in now decreases as τδ increases. As the BT point passes the cusp as τδ increases,

the criticality of the emerging Hopf bifurcation switches from subcritical to supercritical at the

BTC point. The transfer of the BT point from the higher to lower SN bifurcation with increas-

ing τδ is detailed more clearly in the inset and Fig 4.

When the Hopf bifurcation that emerges from the BT point is subcritical, it can be switched

to supercritical by increasing Gin. This criticality switch moves to lower Gin as τδ increases

towards tBTC
d

. At all τδ, there is a fold of Hopf bifurcations when Gin becomes sufficiently high,

and spiking is no longer possible at any applied current. This is shown as the maxima of the

Hopf bifurcation curves in Fig 3A. The value of Gin for the fold of Hopf bifurcations decreases

as τδ increases. The changes to the BT and Hopf bifurcations with τδ mean that we would

expect the transition between class I and class II excitability to occur at higher Gin in the DS

model for td < tBTC
d

.

As the HOM bifurcation that emerges from the BT point involves an unstable limit cycle

for the ML model, this means that it is not responsible for HOM onset and we do not show it

here (see [42] for mathematical details). Instead, to identify the input conductance for the

SNIC to HOM switch, we must look at the saddle-node-loop (SNL) bifurcation [10, 43–45]. At

the SNL bifurcation, an SN and HOM bifurcation merge as the homoclinic orbit created by

the HOM bifurcation goes through the saddle-node caused by the SN bifurcation. This means

that we can look for the switch from SNIC to HOM by looking along the SN bifurcation curve.

In Fig 4, we show the bifurcation types responsible for dynamical switching as a function

(τδ, Gin). For all τδ, GSNL
in < GBT

in , with SNIC onset for Gin < GSNL
in . The limit cycle formed by the

HOM bifurcation in this case contains all three fixed points of the system (big-HOM). Since

the SNL bifurcation converges to the BTC point, it therefore makes sense that GSNL
in also

increases with τδ when td < tBTC
d

. Indeed, this is what we see in Fig 4, with not only GSNL
in

increasing with τδ but also the conductance difference between the BT and SNL points

decreasing before eventually converging at tBTC
d

. Thus both the SNIC!HOM switch and the

PLOS COMPUTATIONAL BIOLOGY Neuronal morphology impacts neural network synchronisation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011874 March 4, 2024 7 / 27

https://doi.org/10.1371/journal.pcbi.1011874


Fig 3. (A) Two-parameter local bifurcation diagram in terms of (Iext, Gin) of the Morris-Lecar DS model for various dendritic

time constants τδ. At τδ = 0, the DS model is equivalent to an S model with a leak conductance of Gin. Increasing τδ shifts the BT

bifurcation and shrinks the Hopf bifurcation curve. (B) shows that initially increasing τδ moves the BT point to higher Gin until

it reaches the cusp at the BTC point. Increasing τδ beyond tBTC
d

moves the BT point to the lower SN bifurcation curve (dashed)

and thus decreases GBT
in . The Hopf bifurcation emerging from the BT point also switches from subcritical to supercritical when

τδ passes the BTC point. (C) shows the Hopf bifurcation emerging more clearly from a BT point when we measure the external

input current relative to the higher saddle-node value ISN,high, while (D) shows the Hopf bifurcation when we measure the

external input current relative to the lower saddle-node value ISN,low. The saddle-node and cusp bifurcations are depicted in

black because they are unaffected by changes to τδ.

https://doi.org/10.1371/journal.pcbi.1011874.g003
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Gin range for homoclinic onset are affected by the dendritic time constant. For td > tBTC
d

, we

do not find an SNL bifurcation for the range of τδ we test here (up to τδ = 20 ms).

Strictly speaking there can exist another global bifurcation in the region GSNL
in < Gin < GBT

in

for which a fold of limit cycles (FLC) appears with a bifurcation current IFLCext < IHOMext , thus

making the FLC the onset bifurcation [13, 42]. While this bifurcation can determine the

switch between class I and class II excitability, we neglect to show it for the following reasons:

(1) the spike timing perturbation response for FLC onset in this region is extremely similar

to HOM onset; (2) though HOM onset in theory has class I excitability, its f–I curve is

extremely steep at IHOMext , making it hard to distinguish from class II excitability; and (3) the

difference between IFLCext and IHOMext is typically extremely small [46] and thus IHOMext gives an

accurate approximation of the onset current in this region. Thus due to simplicity and the

high degree of functional similarity, we refer to the onset type for the whole of GSNL
in < Gin <

GBT
in as being HOM.

Fig 4. Bifurcation diagram of the Morris-Lecar DS model in terms of (τδ, Gin) focussing on dynamical switches. Here we

have taken Iext as the onset current for every value of (τδ, Gin). Points indicate values of (τδ, Gin) we later use for the spike timing

response. At the saddle-node loop (SNL) bifurcation, the dynamical spiking type switches from SNIC to HOM, while Hopf onset

becomes possible at the BT bifurcation. Increasing τδ above zero increases both GSNL
in and GBT

in until the BT and SNL bifurcations

meet the cusp at the BTC point at tBTC
d

. The difference between GBT
in and GSNL

in decreases as τδ increases, meaning that the range of

Gin for which HOM onset exists becomes smaller. For td > tBTC
d

, the SNL bifurcation no longer exists and GBT
in decreases.

Furthermore, the Hopf onset for Gin > GBT
in switches from subcritical to supercritical. Gin for subcritical Hopf onset increases with

τδ until tBTC
d

, while Gin for supercritical Hopf onset decreases with τδ throughout the whole range.

https://doi.org/10.1371/journal.pcbi.1011874.g004
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We see that some bifurcations are affected by τδ while others are not. Both the SN and cusp

bifurcations are calculated from the existence of fixed points alone, and so the timescale of the

dynamics (such as from τδ) will not affect them. On the other hand, the Hopf and BT bifurca-

tions involve the stability switch of fixed points, for which knowledge of the timescale of the

dynamics is necessary. For the SNL bifurcation, one can extend the reasoning in [10] to show

that changing the timescale of the dynamics will break any existing homoclinic orbits at a

given Gin. As a result, one would expect that changing τδ changes the value of GSNL
in .

The switching in dynamical spiking type from SNIC to HOM to Hopf with increasing den-

dritic load is a pattern that is expected to be found in all conductance-based neuron models

which start from a SNIC onset soma and have the BT point on the higher SN bifurcation

branch. This follows from the analysis of two-dimensional conductanced-based models by

Hesse et al [10], in which it was shown that a SNIC bifurcation is always enclosed by two SNL

bifurcations when a timescale parameter (such as τδ or Gin) is varied, and that the big SNL

bifurcation is reached first when the timescale is shortened (e.g. increasing Gin or decreasing

τδ), followed by the BT bifurcation. Taken together, this means that GSNIC
in < GSNL

in < GBT
in for

the two-dimensional conductance-based neuron model, and hence the switching between

dynamic spiking types of SNIC!HOM! subcritical Hopf with increasing Gin (and equiva-

lently, with decreasing τδ). A related explanation using the properties of the BTC bifurcation is

also given by Kirst [13, 46]. Since this explanation is valid for conductance-based neuron mod-

els with an arbitrary number of dimensions, we anticipate that the argument by Hesse et al

[10] could be suitably extended to apply to all conductance-base neuron models.

Our bifurcation analysis indicates that switching between dynamical spiking types can be

induced by increasing the dendritic arborisation as parametrised by Gin. The switching

between dynamical spiking types is qualitatively similar to increasing GL in the single-com-

partment model, however the Gin values for the SNIC!HOM switch and subcritical Hopf

onset increase with τδ, whilst the value of Gin for supercritical Hopf onset decreases with τδ.

Phase-response curves

The dynamics of a neuronal spike affects how the neuron responds to external perturbations,

which can come from chemical synapses, gap junction coupling, local field potentials, or exter-

nally applied currents. This has been found in both experimental [47, 48] and in modelling

studies [19, 49]. The change in spike time caused by a perturbation to a tonically spiking neu-

ron is described by the phase-response curve (PRC). In many cases, such as when neurons are

weakly coupled or subject to weakly correlated inputs, one can use an individual neuron’s PRC

to infer synchronisation conditions and the overall network state [19–21]. To see how the dif-

ferent dynamical spiking types affect the neuron’s spiking response, we calculated the PRCs

for the S and DS models for a range of (Gin, τδ). We chose the (Gin, τδ) values to be in the

neighbourhood of the SNL, BT, and cusp bifurcations, as shown by the coloured points in Fig

4.

At Gin = 3 nS, the Morris-Lecar neuron has SNIC spiking onset for all τδ. Hence Fig 5A

shows symmetric positive-valued at this input conductance. At Gin = 4.7 nS (Fig 5B), the neu-

ron is operating in the HOM regime for lower τδ and thus we see asymmetric positively-

skewed PRCs associated with HOM onset [10, 50, 51], while for higher τδ the SNL bifurcation

has not yet been reached and we still have symmetric SNIC PRCs. Further increasing Gin (Fig

5C) causes the neuron with τδ = 10 ms to pass its SNL point, inducing an asymmetric HOM

PRC, while the PRC for τδ = 20 ms has negative regions after passing its BT bifurcation and

adopting supercritical Hopf onset. Finally when Gin is above the cusp value (Fig 5D), all the

neurons have Hopf onset with negative regions in their PRCs. However, the neuron with
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τδ > 20 ms has a far more sinusoidal PRC with a greater negative region due to its onset being

via a supercritical rather than subcritical Hopf bifurcation.

Thus the procession of PRCs of the DS model as Gin is similar to the S model when

td < tBTC
d

. For td > tBTC
d

, the asymmetric positive-valued PRC associated with HOM onset is

Fig 5. Phase-response curves (PRCs) of the Morris-Lecar DS model for various τδ and Gin. Values of Gin and τδ have been chosen to be around the

dynamical switches in the Morris-Lecar DS model. For example at τδ = 0, GBT
in ¼ 4:77 nS and for all τδ the cusp bifurcation lies at GC

in ¼ 5:53 nS.

When td < tBTC
d

(tBTC
d
¼ 12:9 ms), increasing Gin switches the onset PRC shape first from a symmetric SNIC PRC (A) to an asymmetric HOM PRC

(B-C), and later to a Hopf-like PRC (D). Increasing τδ increases the value of Gin at which the SNIC!HOM transition occurs and also decreases the Gin

value of the HOM!Hopf transition. For td > tBTC
d

, the PRC transitions straight from SNIC to Hopf-like. DS parameters used ℓ = 5.

https://doi.org/10.1371/journal.pcbi.1011874.g005
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not found, as predicted from the disappearance of the SNL bifurcation in the previous section.

The Gin bifurcation values found earlier are thus useful predictors of the neuron’s spiking

response in the dendrite-and-soma model.

Full morphology test

To demonstrate that switches in the dynamical spiking type from increased input conductance

are applicable to more complex and realistic neuronal morphologies, we calculated the PRCs

from simulations of reconstructed dendritic arbours. In this case, we used the reconstructed

dendritic arbour of a real Purkinje cell from NeuroMorpho.Org [52, 53]. We kept the somatic

properties the same as the DS model investigated earlier and set all the dendritic compart-

ments to have passive dynamics with τδ = 2.5 ms.

Starting with only the soma (representing the S model with default class I parameters), we

increased Gin by adding dendritic compartments to reconstruct the full dendritic arbour in

stages, as shown in the top row of Fig 6. At each stage of arborisation, we found the somatic

onset current and measured the PRC. If we choose the Gin of the full dendritic arbour to be

what would be in the subcritical Hopf regime of the DS model, then we can find different

PRCs representing their respective dynamical spiking types by tuning the extent of dendritic

arborisation. For instance, at the small arborisation in Fig 6A, Gin is low and we have a sym-

metric PRC indicative of SNIC onset. Increasing Gin first gives rise to an asymmetric HOM-

like PRC (Fig 6B and 6C) before eventually yielding a PRC with substantial negative regions

representing Hopf onset (Fig 6D).

Fig 6. The PRCs obtained by simulating detailed multicompartment Purnkinje cell neuron show that the results of the simplified DS morphology

are applicable to complicated and realistic dendritic arbours. Here we increase the input conductance of the multicompartment model by “growing”

the dendritic arbour. We can see this switches the PRC shape from SNIC (A) to HOM (B-C) to Hopf (D) as in the DS model earlier. PRCs obtained

from the equivalent DS model closely agree with the full morphology at each of the morphological stages.

https://doi.org/10.1371/journal.pcbi.1011874.g006
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We then compared the detailed-morphology PRCs with PRCs obtained from an equivalent

DS model. For this DS model, the dendritic length L and length constant λ were extracted for

each stage of the Purkinje cell by reducing the arbour to an equivalent cable [28, 54]. Due to

the different number of compartments between the detailed arbours and their DS equivalent

models, we normalised the PRCs when comparing them by setting each PRC peak value to

one. Fig 6 shows that the relative PRCs of the equivalent DS model in each stage agree very

closely with the PRCs obtained from the full morphology, with small deviations of PRC peak

location in the HOM region being the only noticeable difference.

While we have not attempted to accurately capture the complex active dynamics of Purkinje

cells (whether in the soma or in the dendrites), we have used its highly branched and complex

dendritic arbour to demonstrate that our modelling of a single equivalent dendrite and soma

is adequate to approximately capture the affect on neuronal dynamical spiking type of realistic

dendritic arbours. Our analysis is thus not limited to the equivalent dendrite morphology in

the DS model, but is applicable to realistic morphologies with highly bifurcated arbours with

tapering dendrites.

Network simulations

We now illustrate how the dendritic conductance load can affect the network synchronisation

states of a small population of these neurons via a switch in dynamical spiking type. To show

most clearly how the PRC affects the network state, we first examine pairs of coupled neurons.

For a pair of weakly coupled, spiking neurons, a phase-reduction of the model leads to the

phase difference ψ evolving in time as [9, 19, 55, 56]

dc
dt
¼ Doþ HðcÞ; ð8Þ

where Δω is the difference in the uncoupled neuronal spiking frequencies between the two

neurons and H(ψ) is the coupling function. The phase locked states ψ* occur when dψ/dt = 0

and for neurons with identical uncoupled spiking frequencies (Δω = 0), this means H(ψ) = 0.

Phase-locked states are stable when the gradient of the coupling function at ψ* is negative H0

(ψ*)< 0. Furthermore, when the synapses are instantaneous and current-based, H(ψ) is equal

to twice the odd part of the PRC

HðcÞ ¼ PRCðcÞ � PRCð� cÞ: ð9Þ

We simulate one pair of neurons with low dendritic load (Gin = 3.45 nS), placing them in

the region of SNIC onset, and another pair of neurons with higher dendritic load in the region

of HOM onset (Gin = 4.53 nS). Each pair of coupled neurons was connected to the other with

excitatory, instantaneous current-based synapses. The synapses were connected to the soma of

each neuron with zero transmission delay. The synaptic strengths were chosen such that the

maximum phase advance from a single synaptic input as predicted by the PRC is *0.1, as

shown in Fig 7C. The firing rate of each uncoupled neuron in both networks was set at 1 Hz.

Thus the two pairs differ in their dynamical spiking type and not the spiking frequency or the

effective synaptic strength.

Starting the initial phase difference at ψ0 = 0.3, Fig 7A shows that the SNIC pair converges

to a phase locked state close to in-phase synchrony, while the HOM pair in Fig 7B converges

to clear anti-phase synchronisation. The coupling functions of the two pairs in Fig 7D reveal

why these different phase-locked states are achieved: while H(ψ = 1/2) = 0 for both pairs with

H0(ψ) < 0, the zero-crossing at HHOM(1/2) is much further from its other crossings than the

zero-crossings of HSNIC are from 1/2. This gives the HOM case a larger basin of attraction.
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Furthermore, HSNIC has lower amplitude across the phase range than HHOM, meaning that any

phase-locked states from the SNIC pair will be achieved more slowly.

We next expand this analysis by looking at networks each with 5 neurons with all-to-all

connectivity and maintaining the excitatory, instantaneous current-based synapses as in the

neuronal pairs. As before, all neurons in a given network have identical properties. For a

group of neurons where each member has a similar spiking frequency, we measure the syn-

chronicity of the network by the standard deviation of the phase differences ψi between the N
neurons scaled by

ffiffiffiffi
N
p

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N � 1

XN

i¼1

ðci � hciÞ
2

s

: ð10Þ

Fig 7. A comparison of two pairs of neurons with excitatory coupling between, one in which the neurons have SNIC onset and the other in which

the neurons have HOM onset. Both pairs had the same initial phase relation of ψ0 = 0.3 with the final network states shown in (A-B). (A) The SNIC

pair almost achieves a synchronous network state, though this is weakly stable due to the near-symmetry of the PRC. (B) The HOM network robustly

achieves an anti-phase state in which the neurons are phase-locked to fire half a cycle apart. (C) The PRCs of each neuron in the SNIC and HOM

networks. (D) Coupling functions of the SNIC and HOM pairs. Phase-locked states in a pair of neurons exist where the coupling function is zero. In

panels (A-B), time is measured in terms of the number of interspike-intervals (ISIs) of the network spiking rate.

https://doi.org/10.1371/journal.pcbi.1011874.g007
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This expression can be simplified by noting that ∑i ψi = 1 and hψi = 1/N:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
N � 1

XN

i¼1

c
2

i �
1

N

 !v
u
u
t : ð11Þ

For N neurons all synchronised in-phase, R = 1, while in the splayed-out state with ψi = 1/N
for all i, R = 0.

We see in Fig 8A that the phase relations between neurons approaches a synchronous state

but Fig 8C shows that this network does not settle to stable in-phase synchrony. As in the pair-

wise coupling case, the lack of a strongly attractive stable network spiking state for this network

arises from the near-perfect symmetry of the SNIC PRC [9].

Fig 8B shows that the HOM network converges to a splayed-out network spiking state

which is approached rapidly as shown in Fig 8C. This splay state is made stable by the fact that

the HOM PRC is asymmetric with a peak at a phase less than 1/N = 0.2 [57].

Thus we have demonstrated how changes to the neuronal dynamics conferred by a more

extensive neuronal morphology can affect the network behaviour. While these network states

will be altered further by synaptic dynamics, transmission delays, and heterogeneities in neu-

ronal properties, in the weak-coupling regime the neuron’s PRC will remain an essential com-

ponent in determining the stable network states. Inclusion of synaptic dynamics, for example,

involves integrating the time course of the synaptic conductance with the PRC [19, 58]. Het-

erogeneity in neuronal properties complicates the network state as the PRC and uncoupled fir-

ing rate of each neuron can then differ. Whether the splayed state (or any other synchronous

state) is preserved in this case, can in principle be assessed by considering the difference

between all the firing rates [7, 9], with greater differences typically leading to a reduction in

phase-locked states.

Finally expanding the size of the neuronal network to higher N (while tuning the synaptic

strength such that we remain in the weakly coupled regime) would mean that the full splay

state with phase differences 1/N is no longer stable for the HOM network [57], but subsets of

Fig 8. A comparison of two all-to-all networks with excitatory coupling between 5 neurons, one in which all the neurons have SNIC onset and the

other in which all the neurons have HOM onset. Both networks had the same initial phase relations with the final network states shown in (A-B). (A)

The SNIC network almost achieves a synchronous network state, though this is weakly stable due to the near-symmetry of the PRC. (B) The HOM

network robustly achieves a splay state in which the neurons are phase-locked in which neuron i has a constant phase difference of 1/5 with neuron i
+ 1. (C) The synchrony measure over time shows that the SNIC network gradually and non-monotonically approaches the synchronous state while the

HOM network converges to the splay state far more rapidly. In panels (A-C), time is measured in terms of the number of interspike-intervals (ISIs) of

the network spiking rate.

https://doi.org/10.1371/journal.pcbi.1011874.g008
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the network in phase-locked neurons in splay or anti-phase synchrony could exist. In addition,

the anti-phase state shown in Fig 7B, in which some neurons are locked 1/2 out-of-phase from

the rest, will remain stable irrespective of the size of the network if the gradient of the PRC at θ
= 0 and θ = 1/2 is negative [56, 59]. The basin of attraction for the anti-phase state, along with

all other phase-locked states, will tend to decrease as N increases however, making it less robust

to perturbations.

Discussion

In this article we have shown that not only can passive dendrites be included in the analysis of

conductance-based neuron models, but also that the addition of a dendrite switches the

dynamical spiking type of the neuron. In particular, we find that the reduction in input imped-

ance caused by the dendrite can induce the SNIC!HOM dynamical switch, changing the

onset PRC from symmetric to asymmetric. This dynamical spiking switch not only affects how

information is processed within the individual neurons, it also implies that alterations in den-

dritic arborisation allow the network dynamics to achieve stable (de)synchronisation states.

Specifically, our network simulations show that neurons with greater dendritic load (i.e. more

extensive dendritic arbours) can achieve splay states for excitatory coupling due to their HOM

onset. In contrast, these splay states could not be achieved by neurons with lower dendritic

load (i.e. smaller dendritic arbours) which had SNIC onset. Different network (de)synchroni-

sation states can thus be achieved by tuning the passive dendritic properties common to all

neurons. Moreover, our findings establish a direct relationship between the susceptibility of

neural tissue to synchronous network states and the morphology of the cells involved, helping

us to better understand principles of neural design as well as the effect of deviations thereof in

neuropathologies.

Dendritic modelling studies of conductance-based models have been performed previously.

These include investigation of the effect of dendritic load on the firing frequency [60] and

burst firing [15, 61], the effect of dendritic perturbations on spike timing [62, 63], and the

effect of dendritic coupling between spike-generating zones in the same neuron [64]. However,

the work presented here shows via bifurcation analysis how morphology alters the dynamical

spiking type and ultimately the (de)synchronisation state of the network.

The differential effect on the local bifurcations and PRCs when comparing the single-com-

partment and dendrite-and-soma models has utility for reducing the number of compart-

ments in neuronal models for larger network simulations. If the input conductance is in the

SNIC onset regime and far from the BT point, then a single-compartment model with leak

conductance equal to the input conductance of the morphology is appropriate. However, if Gin

is close to GBT
in , then one must use more sophisticated approximations of the input impedance

(for example [65–67]). Our method showing how to calculate GBT
in in spatially extended models

thus informs one when these more sophisticated approximations are required.

Our results also prompt the hypothesis that neuronal morphology may contribute to the

differential susceptibility of brain areas to pathological network states like epileptiform activity

or spreading depolarisation [5, 68]. This could occur in two related ways. Firstly, pathological

spiking patterns have been produced in modelling studies of single cells by changing the spik-

ing dynamics [68, 69]. Because we have shown that the dendritic impedance alters spiking

dynamics, changing the dendritic arborisation could therefore move the dynamical state of the

neuron to a pathological region (via a switch in its neuronal dynamical spiking type) where

network synchrony is changed. Second, pathological behaviour is often associated with either

surplus or insufficient synchronous activity [3–5]. Since we have shown that the dynamical

spiking switches resulting from added dendritic leak affect (de)synchronisation states, it
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follows that dendritic arborisation may help move the degree of network synchrony to or from

a pathological state.

Presently there is much research interest in how dendrites contribute to neuronal computa-

tion. This has largely focused on how either the nonlinear active dendritic channels [70–72] or

nonlinear dendritic synapses in conjunction with passive dendritic compartments [73] affect

the voltage or firing rate at the soma (i.e. voltage or rate coding). In demonstrating how the

passive dendritic contribution changes the dynamical spiking type generated by the spiking

compartment, we have added insights on one additional mechanism how dendrites can affect

the temporal encoding of neuronal networks.

Methodologically, bifurcation analysis allowed us to calculate important local bifurcations

of the system from a model consisting of an active soma attached to a spatially continuous pas-

sive dendrite. This approach is not restricted to the Morris-Lecar model examined in this arti-

cle, but to any conductance-based neuron model with independent voltage-activated ion

channels (e.g. the Wang-Buzsáki model [40]). In addition, the reasoning in [10, 42, 46] for

related parameters that change the input conductance and the neuronal timescale implies that

the bifurcation structure found is general across the whole class of conductance-based neuron

models. The calculation of the BT and BTC bifurcations enabled us to predict how the dendrite

affects the dynamical type, as these bifurcations act as organising centres for different dynam-

ical types and different switches between dynamical types respectively.

Specifically, using the external input current, passive input conductance and dendritic time

constant as bifurcation parameters, we found that the dendrite differentially affects the local

bifurcations of the system. The saddle-node and cusp bifurcations are unaffected by the den-

dritic time constant of the system, meaning that all dendrite-and-soma models have the same

saddle-node bifurcation locations as their corresponding single-compartment model with

equivalent leak conductance. In contrast, the BT bifurcation moves in an “anticlockwise”

direction about the cusp as the dendritic time constant increases, with the emerging Hopf

bifurcation switching from subcritical to supercritcal at the BTC bifurcation. This change in

the BT bifurcation with the dendritic time constant demonstrated that the effect of passive

dendritic load on the dynamical spiking type cannot be fully replicated with a single-compart-

ment model with an increased leak conductance.

On a mathematical note, the “anticlockwise” shift in the BT bifurcation with increasing τδ

meant that the switch between class I and class II excitability occurs at higher input conduc-

tances for td < tBTC
d

. Furthermore, it means that the switch between SNIC and HOM onset at

the SNL bifurcation occurs at higher input conductances, and that the input conductance

region of HOM onset is smaller. Examining the PRCs confirmed the predicted spiking onset

types from the bifurcation analysis: the SNIC!HOM switch is shifted to higher Gin when τδ

is increased in the Morris-Lecar model. When τδ is above the BTC value, the HOM PRC region

was eliminated.

Interestingly, the temporal sensitivity of neurons, as captured by the PRCs obtained from

the morphologically detailed Purkinje cell reconstruction and its simplified DS model demon-

strated the quantitative validity of our reduction approach in the earlier part of the analysis:

PRCs of reconstructed neurons and those from the reduction of the dendritic arbour to a sin-

gle equivalent cylinder were in excellent agreement. This demonstrates that the dynamical

spiking type of a morphologically detailed neuron with passive dendrites can be predicted by

knowing just its equivalent dendrite reduction and its active spike-generating currents. Fur-

thermore, the equivalent dendrite reduction implies that an arbour that has more dendrites

branching off the soma and thicker dendrites will have a greater impact on the neuron’s

dynamical spiking type.

PLOS COMPUTATIONAL BIOLOGY Neuronal morphology impacts neural network synchronisation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011874 March 4, 2024 17 / 27

https://doi.org/10.1371/journal.pcbi.1011874


We note that this work also establishes a framework from which other influences of the

dendritic arbour on a neuron’s spiking dynamics can be explored. As a first example, it allows

us to analyse the effect of inputs applied to the dendrites. For a steady external current applied

at an arbitrary location, our approach to calculating the local bifurcation structure can still be

applied, as detailed in S1 Text.

Meanwhile for transient dendritic perturbations, the PRCs from dendritic input have been

simulated and observed experimentally in previous studies [17, 62, 63], where it is found that

the amplitude of the PRC decreases with the distance of the perturbation from the soma. On

the other hand, the PRC shape is unchanged for class I excitability PRCs and is shifted for class

II excitability PRCs. Our work is thus complementary to studies on PRCs measured from den-

dritic perturbations, as it explores the question of how morphological size and membrane

properties affect the PRC. In principle, our approach can be combined with the research in

[17, 62, 63] which focuses on how synaptic position affects the PRC.

Furthermore, background synaptic activity targeting the dendritic arbour also affects inte-

grative properties of the neuron [32–34, 74–76]. This can be accommodated in our analysis via

changes to the dendritic leak conductance and time constant.

The effect of some dendritic active currents can also, in principle, be included in our model-

ling approach. If the currents are linearisable under the quasi-active approximation [77], then

the effect of the active currents can included in the filtering properties of the dendrite [64, 78–

80]. Weakly active dendritic currents, such as Ih and small-conductance Ca2+-activated potas-

sium current ISK, have been found to change the PRCs from being positive-valued everywhere

to having negative regions [63, 81], and thus may change the network synchronisation state. If

the active currents are strong enough to elicit dendritic spikes [37], then this falls outside of

the framework described in our work, firstly because there are now multiple spiking compart-

ments, and second because the interaction between strong dendritic nonlinearities (e.g. spikes,

plateau potentials) and axosomatic action potentials can induce bursting behaviour outside of

the regular spiking regime [82–84]. However, some aspects of our work may still be used if

one considers the strongly active dendritic region to be another oscillator coupled dendritically

to the axosomatic compartment [64, 85]. In S1 Text, we extract simulated PRCs from an active

dendrite-and-soma model and show that changes in morphology affect the PRC apart the case

where the dendrite and soma have identically valued active properties (Fig A in S1 Text). This

is because increasing the relative size of the dendrite in comparison to the soma shifts the over-

all dynamics of the system to be more like that of the dendrite in isolation. Furthermore, it is

physiologically unexpected that both the channel types and densities would be identical

throughout the neuron, with, for example, Na+ channels being typically found in much higher

densities in the AIS than the dendrites [86].

Lastly, there has been much interest in how the geometry of the axonal initial segment

(AIS) affects spike threshold and spike shape [87–89] and encoding of time-varying input [16,

90]. Extending our framework to include features of the axon, such as the spatial separation

between the soma and the spike-initiation point on the AIS, would allow exploration of how

the geometry of the system affects the dynamical spiking type. Changes in the dynamical type

would in turn give further insight into how axonal geometry affects the neuron’s temporal

encoding of input.

In summary, we demonstrate that neuronal morphology can significantly influence the

state of neuronal networks. Moreover, our results describe a method by which one can directly

assess the impact of a dendritic arbour on neuronal excitability. Our approach is flexible in

allowing for any conductance-based neuron model and external input currents applied to any

location. Thus, the proposed approach enables further exploration of how dendritic arbour

impacts the tuning of temporal encoding via changes to the network (de)synchronisation

PLOS COMPUTATIONAL BIOLOGY Neuronal morphology impacts neural network synchronisation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011874 March 4, 2024 18 / 27

https://doi.org/10.1371/journal.pcbi.1011874


state. Our work highlights neuronal morphology as a contributor to neural function via

changes to network synchrony, making it therefore likely that morphology is relevant for the

differential sensitivity of neuronal tissue to synchronisation in health and disease.

Model and methods

Active soma and passive dendrite model

A single-compartment (S) conductance-based neuron model consists of a leak current, B volt-

age-activated currents Ia,j and an externally applied current Iext

Cs

dv
dt
¼ GLðEL � vÞ þ

XB

j¼1

Ia;jðaj; vÞ þ Iext ¼ CsfSða; vÞ; ð12Þ

where each voltage-activated current depends on a set of activation/inactivation gating vari-

ables (hereafter termed “active variables”), aj ¼ ðaj1; :::; ajbjÞ. Altogether this gives K active var-

iables indexed ai from i = 1, . . ., K. As in prior research regarding conductance-based models

[6, 13, 51], we assume that the active variables are independent of each other and that their

steady state distributions ai,1(v) saturate as v! ±1. Each active current has a reversal poten-

tial Ej, a maximal conductance Gj, and depends on the product of its active variables

Ia;jðaj; vÞ ¼ GjðEj � vÞ
Y

i2aj

aiðvÞ
pi ;

ð13Þ

where pi is the gating exponent associated with active variable ai. Finally, the each active vari-

able evolves in time with a voltage-dependent time constant τi(v)

dai
dt
¼
ai;1ðvÞ � ai

tiðvÞ
¼ fa;iðai; vÞ: ð14Þ

Using Rall’s principle of an equivalent cylinder, a passive dendritic arbour emanating from

the soma can be simplified to a single equivalent dendrite [28, 29]. We therefore modify the

above model to include the dendritic morphology by attaching a passive equivalent dendrite to

a conductance-based active soma. The dendrite is spatially continuous, with the coordinate x
denoting the distance away from the soma and vδ(x) denoting the dendritic potential at loca-

tion x.

The dendrite is parametrised by its electrotonic length constant λ, its passive time constant

τδ and the dendritic dominance factor ρ (the ratio between the characteristic dendritic conduc-

tance and the somatic leak conductance) [29]. These are each defined in terms of electrophysi-

ological parameters

td ¼
cd
gd
; l ¼

ffiffiffiffiffiffiffiffiffiffi
d

4ragd

s

; r ¼
pdgdl
Gs

; ð15Þ

where cδ is the dendritic membrane capacitance per unit area, gδ is the leak membrane conduc-

tance per unit area, ra is the axial resistivity, d is the dendritic diameter and Gσ is the leak con-

ductance of the soma.
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Recalling that we denoted dv/dt in Eq 12 as fS, this means that the somatic voltage vσ evolves

as

dvs
dt
¼ fSða; vsÞ þ

rGsl

Cs

@vd
@x

�
�
�
x¼0

; ð16Þ

where the last term represents the axial current flowing from the dendrite to the soma.

The dendritic potential obeys the passive cable equation

td
@vd
@t
¼ EL � vd þ l

2 @
2vd
@x2

; 0 < x < L; ð17Þ

where for simplicity we have assumed that the leak reversal potential is the same in the den-

drite as the soma. The dendritic potential is subject to continuity of potential at x = 0 so

vδ(x = 0) = vσ, and a sealed-end boundary condition at x = L

@vd
@x

�
�
�
x¼L
¼ 0: ð18Þ

Defining the electrotonically normalised length as ℓ = L/λ, when ℓ� 1, the distal dendritic

end is too far away to be influenced by somatic activity, and we can simplify the model by mak-

ing the dendrite semi-infinite in extent.

Calculation of local bifurcations

Here we will describe how the local bifurcations of the DS system can be calculated for any

conductance-based soma model with (Iext, Gin, τδ) as the bifurcation parameters. Although we

primarily focus on the semi-infinite dendrite in this article, the method we outline here can be

adapted for the finite dendrite, as given in S1 Text. The equations we derive for each bifurca-

tion are applicable to a spatially continuous dendrite rather than for a specific finite number of

dendritic compartments.

Fixed points. Since local bifurcations are defined by the properties of a fixed point, we

first outline how to calculate fixed points of the DS system. The fixed points are defined as the

values (a*, v*) for which all time derivatives of the system (Eqs 14, 16 and 17) are equal to zero.

From Eq 14, each of the active variables satisfies a∗i ¼ ai;1ðvsÞ at equilibrium. The cable equa-

tion of Eq 17 at equilibrium becomes the second-order ODE

0 ¼ EL � v∗
d
þ l

2 d
2v∗

d

dx2
; v∗

d
ð0Þ ¼ v∗

s
;

dv∗
d

dx

�
�
�
x¼L
¼ 0: ð19Þ

This has the following solution in terms of vσ

v∗
d
ðxÞ ¼ EL þ ðv∗s � ELÞ

cosh½ðL � xÞ=l�
coshðL=lÞ

; ð20Þ

which in the semi-infinite limit reduces to

v∗
d
ðxÞ ¼ EL þ ðv∗s � ELÞe� x=l: ð21Þ

Thus all the active variables and the dendritic potential for all x at equilibrium are given in

terms of the somatic resting potential v∗
s
. Defining the steady-state current as

I1ðv∗sÞ ¼ CsfSða1ðv∗sÞ; v
∗
s
Þ þ rGsl

dv∗
d

dx

�
�
�
�
�
x¼0

; ð22Þ

PLOS COMPUTATIONAL BIOLOGY Neuronal morphology impacts neural network synchronisation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011874 March 4, 2024 20 / 27

https://doi.org/10.1371/journal.pcbi.1011874


we can substitute in the dendritic voltage derivative at x = 0 to give in the semi-infinite case

I1ðv∗sÞ ¼ CsfSða1ðv∗sÞ; v
∗
s
Þ þ rGsðEL � v∗

s
Þ: ð23Þ

The somatic equilibrium potential v∗
s

is obtained by numerically solving I1 = 0. We note

that the steady-state current equation (Eq 23) is the same as what we would find for the S

model if GL = Gσ(1 + ρ) as τδ is not present.

Saddle-node (SN) bifurcation. At a saddle-node bifurcation, a saddle and node fixed-

point meet. Therefore we have a repeated root vSN
s

of I1 = 0, which means at the saddle-node

dI1
dvs
ðvSN

s
Þ ¼ 0: ð24Þ

For codimension one bifurcations such as the saddle-node bifurcation, we choose Iext as the

bifurcation parameter as we are interested in the onset current for spiking. Hence we can

numerically solve Eq 24 to obtain vSN
s

as it does not contain Iext. ISNext is obtained by rearranging

I1 = 0. Note that for the same Gin, Eq 24 is also identical for both S and DS models.

Cusp bifurcation. At the cusp, two saddle-node bifurcations meet. Thus, the cusp bifurca-

tion satisfies the condition

d2I1
dv2

s

ðvC
s
Þ ¼ 0: ð25Þ

For codimension-two bifurcations such as the cusp, we will use (Iext, Gin) as our bifurcation

parameters. This is analogous to the prior use of (Iext, GL) in point-neuron models [13]. Since

I00extðvsÞ does not depend on Gin or Iext, we numerically solve Eq 25 to obtain vC
s
. GC

in and ICext are

obtained from rearranging Eqs 23 and 24 respectively. As with the saddle-node bifurcation,

the cusp bifurcation condition does not depend on τδ, thus the cusp bifurcation values

ðICext;G
C
inÞ will be the same for the S and DS models.

Hopf bifurcation. At a Hopf bifurcation, a fixed-point changes stability and a limit cycle

appears. The criticality of the Hopf bifurcation determines the stability of the limit cycle

involved; at a subcritical Hopf bifurcation we have the transition: stable FP + unstable LC!

unstable FP, whilst at a supercritical Hopf bifurcation we have: stable FP! unstable FP + sta-

ble LC.

The Jacobian evaluated at a Hopf bifurcation has two purely imaginary conjugate eigenval-

ues ±iωH. Denoting the corresponding right-eigenvector as q and its complex conjugate as �q,

this means that we have

Jq ¼ ioHq; J�q ¼ � ioH�q: ð26Þ

From this pair of equations, we can derive two simultaneous nonlinear equations in terms of

ðvH
s
;oHÞ for the discretised system. Then we take the continuum limit to obtain two nonlinear

equations for the continuous dendrite for which further details are found in S1 Text, Eqs BH

and BI. These equations can be obtained to find vH
s

and then IHext is obtained from from I1 = 0.

Unlike all the previous bifurcations listed, the Hopf bifurcation depends on τδ. Therefore,

we should expect the bifurcation values of the Hopf bifurcation to differ between the S and DS

models. The criticality of the Hopf bifurcation can be calculated using the approach outlined

in [41], as detailed in S1 Text, Eq (BO).

Bogdanov-takens (BT) bifurcation. At the BT point, a saddle-node, Hopf and saddle-

node homoclinic orbit (HOM) bifurcations meet. Since the global HOM bifurcation can also

determine the spiking onset type of the neuron [10, 13, 25, 45], the BT point acts as an
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organising centre in two parameter dimensions for different spiking onset types. Varying the

bifurcation parameters (Iext, Gin) in the vicinity of the BT point can therefore induce spiking

onsets associated with the three codimension one bifurcations that meet here.

The Jacobian of the system has two zero eigenvalues at the BT point. This means that J will

have orthogonal left, l, and right, r, eigenvectors satisfying

lJ ¼ 0; Jr ¼ 0; lr ¼ 0: ð27Þ

These equations can be reduced to a single equation

XK

i¼1

a0td þ tið Þ
@fS
@ai

dai;1
dvs
þ 1þ a0td

@fS
@vs
¼ 0; ð28Þ

where for the semi-infinite dendrite α0 = 1/2. Since Eq 28 has no dependence on our bifurca-

tion parameters (Iext, Gin), we can numerically solve it to find the equilibrium potential vBT
s

.

GBT
in can then be obtained by rearranging the saddle-node condition (Eq 24) and IBText from the

equilibrium condition I1 = 0. We again see that the BT bifurcation depends on τδ and thus we

should expect the location of the BT bifurcation to change with τδ.

Bogdanov-takens-cusp (BTC) bifurcation. Finally, we outline how to find the BTC

point. The BTC point is of particular interest because bifurcations associated with spike onset

transitions coincide at this point. At a spiking onset transition, the spiking changes from one

type to another. We should distinguish this from the lower codimension BT point by stating

that the BT point organises bifurcations responsible for spiking onsets, while the BTC point

organises bifurcations responsible for transitions of spiking onsets. The bifurcations that meet

at the BTC point include the Bautin (where a Hopf bifurcation changes stability), neutral sad-

dle-node (where a homoclinic bifurcation and a fold of limit cycles meet), saddle-node loop

(where saddle-node and homoclinic bifurcations meet), and BT bifurcations [13, 25, 41].

Since the BTC point acts as an organising centre for spiking onset transitions, deviations in

the bifurcation parameters around it will lead to variations in the spiking onset structure in two

parameter dimensions. The BTC point also has the advantage of being easier to calculate than

the global bifurcations which coalesce at it, as it is calculable from the properties of fixed-points.

The BTC point has codimension 3, meaning that its location must be expressed in terms of

three bifurcation parameters. In the work of Kirst et al [13], an equation for the BTC point for

point-neuron conductance-based models is given with (Iext, GL, Cm) as the bifurcation parame-

ters, while in [6], Al-Darabsah and Campbell use the M-current conductance instead of Cm.

Here we use the bifurcation parameters (Iext, Gin, τδ) as they are common to all conductance-

based neuron models and it includes two dendritic parameters. Furthermore, τδ behaves simi-

larly to Cm, in that increasing it slows the response of the dendrite to somatic activity.

As the BTC point is where a cusp and BT bifurcation coincide, one can use the cusp condi-

tion (Eq 25) to obtain the equilibrium voltage vBTC
s

, the saddle-node condition (Eq 24) to give

GBTC
in , and the BT condition (Eq 28) to yield tBTC

d
.

Simulation details

To simulate the DS models, a cable of length L = 1000 μm was discretised into M = 50 evenly

spaced spatial compartments with step size Δx = 20 μm. The soma occupied a separate com-

partment at x = 0. All simulations utilised the DifferentialEquations.jl package [91] in the Julia

programming language [92], from which the Tsitouras 5/4 Runge-Kutta method was used.

For the SNL bifurcation and PRCs, we required an estimate of the onset current at which

stable spiking begins. Here we used the value of Iext which produced regular spiking at the
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lowest possible frequency above 1 Hz. This means that for class I onset the spiking frequency

was approximately 1 Hz, while for class II onset this was typically greater.

At this onset current, PRCs were obtained by increasing the somatic potential by an amount

Δv at a single time tk corresponding to a phase θk. To ensure that the phase shift is approxi-

mately in the linear regime, Δv was chosen for each neuron such that the PRC maximum was

never greater than 0.1. This procedure was repeated for input phases corresponding to θk =

0.01k − 0.005, k = 1, . . ., 100.

Code used to run all simulations, along with that used to calculate the local and global bifur-

cations, is available in the “morph-excite-code” GitHub repository we created [93].

Supporting information

S1 Text. Document containing the equations and parameters of the Morris-Lecar model

(Table A); an alternative, relative conductance formulation of the model; active dendrite

simulations (Fig A); mathematical derivations of how to find the local bifurcations; proce-

dures for finding the global bifurcations; and the approach and parameters used to calcu-

late the PRCs for reconstructed neuronal morphologies (Table B).

(PDF)
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