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Abstract: This study addresses the problem of strictly dissipative stabilization for continuous-time
Markovian jump systems (MJSs) with external disturbances and generally uncertain transition rates
that contain completely unknown transition rates and their bound values. A stabilization condition is
obtained to guarantee strict dissipativity for the MJSs with partial knowledge in terms of the transition
rates. To reduce the conservativity of the proposed condition, we used a boundary condition related
to the bounds of the transition rate with slack variables. Finally, two simulation results are presented
to describe the feasibility of the proposed controller.
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1. Introduction

Over the past decades, there has been increasing interest in Markovian jump systems
(MJSs), which effectively represent practical systems with unexpected variations [1–6]. MJSs
have been studied by many researchers using stability analysis [7], controller
synthesis [8–10], and filter design [11–13]. These results have contributed to the extensive
application of MJSs, including power systems [14–16], economic systems [17–20], and man-
ufacturing systems [21]. Because the MJSs are constructed using a group of linear systems
influenced by a Markov process, the knowledge of transition probabilities for the jumping
process is an important challenge. However, it is difficult to accurately determine the
transition probabilities in many practical applications, leading to limitations in modeling
various practical systems.

Recently, to overcome this difficulty, studies on the stabilization of MJSs with transi-
tion probabilities that contain uncertainty have attracted considerable interest concerning
control theory [22,23]. Specifically, because the transition probabilities in continuous-time
MJSs depend on the transition rates, many researchers have focused on how to handle
uncertain transition rates for the stabilization of continuous-time MJSs. Ref. [24] proposed
a state observer for MJSs with time-varying delays, where the transition probabilities were
assumed to change in a polytope with vertices. Refs. [25,26] employed the boundary values
of the transition rates for the controller synthesis of MJSs. Although these approaches con-
sider the uncertainty of the transition rates, it is difficult to precisely estimate their bounds
in practical systems. To address this challenge, the stabilization method of MJSs with state
delays was investigated in [27] based on the partial known and unknown transition rates.
However, similar to other results on the analysis and synthesis of MJSs, Ref. [27] developed
a method assuming that some transition rates are precisely known. More recently, Ref. [28]
introduced a new structure for the transition rates, generally uncertain transition rates
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(GUTRs), which contain bounds of the uncertainties of the known and unknown transi-
tion rates. The method reported in Ref. [28] has piqued the interest of researchers [29,30]
concerning the stabilization problem of MJSs. These results all focus on the uncertainties
of the transition rates, but there is no consideration of external disturbances. Hence, it is
vital to consider the uncertain transition rates and disturbances concerning realistic system
stability analysis and synthesis problems.

In contrast, the dissipativity theory has become an important approach to studying
control systems concerning the stabilization problem [31–34]. Dissipativity is characterized
by the input–output energy concerning the stored energy in the system and supplied energy
from outside the system [35]. Furthermore, the dissipativity performance can be applied
to the H∞ and passivity performance [36]. Based on these properties, many researchers
have focused on the dissipativity problem in the stabilization of interconnected systems,
switched systems, and Markovian jump systems [37–40]. Ref. [37] introduced a framework
for dissipativity for switched systems, employing multiple storage functions and supply
rates. Ref. [38] proposed a stabilization method for Markovian jump fuzzy systems with
asynchronous controllers. Ref. [39] studied dissipative filter design for singular MJSs with
hybrid transition rates. Ref. [40] proposed an asynchronous dissipative controller for semi-
MJSs using distribution of the sojourn time. To the best of our knowledge, the dissipativity
control for continuous-time MJSs with GUTRs has not yet been analyzed, thus forming the
motivation of our study.

This study attempted to design a strictly dissipative controller for MJSs with external
disturbances and GUTRs that can represent all possible cases: (1) known transition rates,
(2) unknown transition rates, and (3) known bounds of the transition rates but unknown
exact transition rates. Following is a list of the specific contributions of this study.

• In practice, it is necessary to consider the uncertainties in the transition rates and
disturbances from outside the system. Therefore, to address this issue, we proposed
a strictly dissipative controller for MJSs with external disturbances and GUTRs that
have not yet been introduced.

• To design the proposed controller, stabilization conditions were formulated using
linear matrix inequalities (LMIs) with various matrix variables. Considering the strict
dissipativity and GUTRs, these conditions may be conservative because of the lack of
information about the transition rates. Therefore, this study introduced an appropriate
weighting approach to reduce the conservatism of the stabilization condition using
the known bounds of the transition rates with slack variables.

Two simulation results show the effectiveness of the proposed stabilization condition.
This paper is divided into five sections. Section 2 describes the proposed MJSs and

their preliminaries. The design process of the strictly dissipative controller for MJSs with
external disturbances and GUTRs is shown in Section 3. Simulation examples are presented
in Section 4 to demonstrate the feasibility of the proposed method. Finally, Section 5
presents the conclusions of this study.

Notation: The notation A > B indicates that A − B is a positive definite for any matrix.
Rn represents the n-dimensional Euclidean space. (∗) denotes an ellipsis for symmetry-
induced terms in symmetric block matrices. Furthermore, He(A) = A + AT for any matrix
A. E[A] is the expectation of A. L2[0, ∞) means the space of square-summable sequences
over [0, ∞).

2. System Description

Let us consider a continuous-time MJS:

ẋ(t) = A(r(t))x(t) + B(r(t))u(t) + G(r(t))ω(t),

z(t) = E(r(t))x(t) + F(r(t))u(t) + J(r(t))ω(t),
(1)

where x(t) ∈ Rn denotes the state, u(t) ∈ Rm denotes the input, ω(t) ∈ Rnω denotes the
external disturbance belonging to L2[0, ∞), and z(t) ∈ Rnz denotes the performance output.



Mathematics 2024, 12, 639 3 of 14

Here, r(t) ∈ D = {1, 2, · · · ,M} represents a continuous-time Markov jump. To represent
the Markov jump from mode i to j at time t + h, the transition probability is defined as:

P(r(t + h) = j|r(t) = i) =

{
πijh + o(h) if i ̸= j
1 + πiih + o(h) if i = j,

(2)

where πij is the transition rate with πij ≥ 0, i ̸= j; πii = −∑j∈D,i ̸=j πij, h > 0 is the

transition time interval; and lim
h→0

o(h)
h

= 0.

Then, the transition rate matrix Π, which has unknown or bounded transition rates,
can be described as:

Π =


[πmin

11 , πmax
11 ] × · · · [πmin

1M, πmax
1M ]

× × · · ·
...

...
...

. . .
...

[πmin
M1, πmax

M1 ] × · · · [πmin
MM, πmax

MM]

, (3)

where πmin
ij and πmax

ij denote the minimum and maximum bounds of πij; × is the com-

pletely unknown transition rate; and the notation
. . . signifies that the diagonal terms of

the matrix are successively populated with the values πmin
ij and πmax

ij , where the indices
i and j increase simultaneously by 1. The above transition rate matrix can represent all
possible transition rates that can contain unknown, bounded, or known transition rates for
πmin

ij = πmax
ij . This is called a GUTR. Therefore, the transition rate can be rewritten as:

πij = π̃ij + δπij, (4)

where π̃ij = (πmax
ij + πmin

ij )/2, δπij ∈ [−∆ij, ∆ij], ∆ij = (πmax
ij − πmin

ij )/2.
Subsequently, depending on the transition rates, we can define the following two

mode sets:

Di = {j|πij ∈ [πmin
ij , πmax

ij ] are unknown but bounded for i}, (5)

D̃i = {j|πij are completely unknown for i}, (6)

where D = Di ∪ D̃i. Di refers to the collection of column indices in the ith row of matrix
Π, where the transition rates have known bounds, while D̃i denotes the collection of
column indices with unknown transition rates. Here, an element of D̃i is given by κl , where
1 ≤ l ≤ L and 1 ≤ L ≤ M.

For convenience, when r(t) = i, System (1) can be deduced as

ẋ(t) = Aix(t) + Biu(t) + Giω(t),

z(t) = Eix(t) + Fiu(t) + Jiω(t).
(7)

Definition 1 ([41]). The system is stochastically stable when ω(t) ≡ 0 if the following holds:

lim
t→∞

E
[∫ t

0
∥x(τ)∥2dτ

]
< ∞. (8)

Definition 2 ([42]). Based on dissipativity theory, the quadratic energy supply rate can be described as:

R(z(t), ω(t)) =
[

z(t)
ω(t)

]T[Q S
ST R

][
z(t)
ω(t)

]
, (9)
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where Q = −Q̃TQ̃ < 0, S, and R = RT are known real matrices. For a scalar β > 0 and T > 0,
the following condition holds when x(0) = 0:∫ T

0
E[R(z(t), ω(t))]dt > β

∫ T

0
ωT(t)ω(t)dt. (10)

Then, (1) is a strictly (Q, S, R)-β-dissipative system, where β represents the dissipative
performance.

This study attempted to design a controller that guarantees stochastic stability for
System (1) when ω(t) ≡ 0 and strictly (Q, S, R)-β-dissipativity when x(0) = 0.

3. Main Result

This section focuses on the design of the dissipative stabilization condition for System (7)
with GUTRs. First, we introduce the stability and strictly dissipative conditions for the
open-loop system of System (7) with fully known transition rates. Then, the stabilization
condition is introduced for strictly (Q, S, R)-β-dissipativity with GUTRs.

3.1. Stability Analysis for the Open-Loop System with Known Transition Rates

The following lemma provides the stochastic stability condition for the open-loop
condition of System (7) based on Definition 1.

Lemma 1 ([43]). The MJS is stochastically stable when u(t) = 0 and ω(t) = 0 iff there exists
matrix Pi > 0 ∀ i ∈ D, such that

He(Pi Ai) +
M
∑
j=1

πijPj < 0. (11)

The following lemma gives the strict (Q, S, R)-β-dissipativity condition for the open-
loop system of (7).

Lemma 2. The continuous-time MJS is strictly (Q, S, R)-β-dissipative when u(t) = 0 if matrix
Pi > 0 for all i ∈ D and a given scalar β exists, such that

He(Pi Ai) +
M
∑
j=1

πijPi (∗) (∗)

GT
i Pi + STEi −He(ST Ji)− R + βI (∗)

Q̃Ei Q̃Ji −I

 < 0. (12)

Proof. Based on the proof of Lemma 1, we consider a Lyapunov function, V(t) = xT(t)P(r(t))x(t)
= V(x(t), r(t)), where P(r(t)) > 0. The infinitesimal operator A of V(x(t)) is then obtained
as follows:

AV(t) = lim
h→0

E[V(x(t + h), r(t + h) = j)|x(t), r(t) = i]− V(x(t), r(t) = i)
h

.

Using the definition of transition probability in (2), AV(t) is derived as follows:

AV(t) = lim
h→0

(
M
∑
j=1

πijV(x(t + h), j) +
V(x(t + h), i)− V(x(t), i)

h

)

= lim
h→0

V(x(t + h), i)− V(x(t), i)
h

+
M
∑
j=1

πijV(x(t + h), j)

= xT(t){He(Pi Ai) +
M
∑
j=1

πijPj}x(t). (13)
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Therefore, (11) ensures that

AV(t) = xT(t)Ψix(t) = ηT(t)Ψ̂iη(t) < 0, (14)

where

Ψi = He(Pi Ai) +
M
∑
j=1

πijPj, η(t) =
[
x(t) ω(t)

]T, Ψ̂i = He(P̂i Âi) +
M
∑
j=1

πij P̂j,

Âi =

[
Ai Gi
0 0

]
, P̂i =

[
Pi 0
0 0

]
.

From (9) and (14), it follows that

AV(t)−R(t) + βωT(t)ω(t)

= ηT(t)
(

Ψ̂i −
[

ET
i QEi (∗)

JT
i QEi + STEi JT

i QJi + He(ST Ji) + R + βI

])
η(t)

= ηT(t)
(

Ψ̂i −
[

0 (∗)
STEi +He(ST Ji) + R + βI

]
+

[
(Q̃Ei)

T

(Q̃Ji)
T

][
Q̃Ei Q̃Ji

])
η(t). (15)

Applying the Schur complement to (12), we obtain the following condition:

Ψ̂i −
[

0 (∗)
STEi +He(ST Ji) + R + βI

]
+

[
(Q̃Ei)

T

(Q̃Ji)
T

][
Q̃Ei Q̃Ji

]
< 0.

Accordingly, if condition (12) is satisfied, then

E[AV(t)−R(t) + βωT(t)ω(t)] < 0. (16)

By integral transformation, (16) leads to

E
[∫ T

0
AV(t)dt

]
−
∫ T

0
E[R(t)]dt +

∫ T

0
βωT(t)ω(t)dt < 0. (17)

By Dynkin’s formula [44], the above inequality is rewritten as

E[V(T)]− V(0)−
∫ T

0
E[R(t)]dt +

∫ T

0
βωT(t)ω(t)dt < 0. (18)

When x(0) = 0, we have∫ T

0
βωT(t)ω(t)dt −

∫ T

0
E[R(t)]dt < −E[V(T)] < 0. (19)

Therefore, Condition (10) is satisfied by (19), which means that the open-loop system
of (7) is strictly (Q, S, R)-β-dissipative based on Definition 2.

3.2. Controller Synthesis with GUTRs

Let us consider the following mode-dependent controller:

u(t) = K(rt)x(t), (20)

where K(rt) ∈ Rn×m denotes the mode-dependent control gain. The proposed controller
is designed to ensure stability in systems modeled as continuous-time MJSs even in the
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presence of uncertain transition rates. It also minimizes the impact of external disturbances
on the output. Subsequently, the closed-loop system in (7) with (20) is given as follows:

ẋ(t) = Ac
i x(t) + Giω(t),

z(t) = Ec
i x(t) + Jiω(t),

(21)

where Ac
i = Ai + BiKi and Ec

i = Ei + FiKi.
The following theorem provides the stabilization condition for strictly (Q, S, R)-β-

dissipativity, and the condition is formulated in the form of LMIs.

Theorem 1. For a given positive scalar β and i ∈ D, if matrices P̄i > 0, S̄i > 0 and Ūij > 0, and
Λij exist such that

Λij + ΛT
ij > 0, j ∈ Di (22)

P̄i − S̄i > 0, j ∈ D̃i, i = j (23)[
S̄i (∗)
P̄i P̄j

]
> 0, j ∈ D̃i, i ̸= j (24)[

S̄i + Ūij (∗)
P̄i P̄j

]
> 0, j ∈ Di (25)[

Mc
i + ϵiπ

max
ii P̄i (∗)

Ni −P̄

]
< 0, (26)[

M̃c
i (∗)

NiE −P̄

]
< 0, (27)

where

Mc
i = He(Ai P̄i + BiK̄i)− ∑

j∈Di

πmax
ij S̄i + ∑

j∈Di

2∆ij(Ūij + He(Λi)),

K̄i = Ki P̄i,

Ni =
[√

πmax
iκ1

P̄i · · ·
√

πmax
iκL

P̄i

]T
,

P̄ = diag
{

P̄κ1 , · · · , P̄κL

}
,

M̃c
i =

 (1, 1)c (∗) (∗)
GT

i − ST(Ei P̄i + FiK̄i) −He(ST Ji)− R + βI (∗)
Q̃(Ei P̄i + FiK̄i) Q̃Ji −I

,

(1, 1)c = He(Ai P̄i + BiK̄i) + ∑
j∈Di

2∆ijŪij − ∑
j∈Di

πmax
ij S̄i + ϵπmax

ii P̄i,

ϵi =

{
0 if i /∈ Di

1 if i ∈ Di
,

I =
[
I 0 0

]
∈ Rn×(n+nω+nz),

then the closed-loop system is stochastically stable and strictly (Q, S, R)-β-dissipative. Furthermore,
the proposed controller is obtained as u(t) = Kix(t), where Ki = K̄i P̄−1

i .

Proof. First, we provide the proof of the stochastic stabilization conditions. From the
closed-loop system in (21) and Lemma 1, we obtain the following condition:

He(Pi Ac
i ) +

M
∑
j=1

πijPj < 0. (28)

Using the property of the transition rate and matrix Si > 0 satisfying ∑M
j=1 πijSi = 0,

the following condition is derived:
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He(Pi Ac
i ) + ∑

j∈Di

πijPj + ∑
j∈D̃i

πijPj +
M
∑
j=1

πijSi

= He(Pi Ac
i ) + ∑

j∈Di

πijTij + ∑
j∈D̃i

πijTij < 0, (29)

where Tij = Pj − Si.
For i, j ∈ D, if the following inequality holds:

Tij > 0 if i = j, (30)

Tij < 0 if i ̸= j, (31)

then Condition (29) holds as

He(Pi Ac
i ) + ∑

j∈Di

πijTij < 0. (32)

Based on the definition of the GUTR in (4), Condition (32) can be rewritten as

He(Pi Ac
i ) + ∑

j∈Di

(π̃ij − ∆ij)Tij + ∑
j∈Di

(δπij + ∆ij)Tij < 0. (33)

Using only the known information on the transition rate, we adopt the upper bound
of the second and last terms on the left-hand side of (33). It thus follows that

∑
j∈Di

(π̃ij − ∆ij)Tij ≤ ∑
j∈Di

πmax
ij Tij, (34)

∑
j∈Di

(δπij + ∆ij)Tij ≤ ∑
j∈Di

2∆ijTij ≤ ∑
j∈Di

2∆ijUij, (35)

where Uij > 0 and

Tij − Uij < 0. (36)

Then, we can obtain the sufficient condition of (33) as follows:

He(Pi Ac
i ) + ∑

j∈Di

πmax
ij Tij + ∑

j∈Di

2∆ijUij < 0. (37)

Multiplying both sides of the above inequality by P−1
i gives

He(Ac
i P̄i) + ∑

j∈Di

πmax
ij T̄ij + ∑

j∈Di

2∆ijŪij < 0, (38)

where P̄i = P−1
i , T̄ij = P̄iPj P̄i − S̄i, S̄i = P̄iSi P̄i and Ūij = P̄iUij P̄i.

Next, due to (22),

∑
j∈Di

(πmax
ij − πmin

ij )He(Λij) ≥ 0, (39)

which is a weighting method with slack variables Λij that can reduce the conservatism of (38).
Using the S-procedure, (38), subject to (39), is formulated in terms of

Mc
i + ϵπmax

ii P̄i + ∑
j∈Di ,i ̸=j

πmax
ij P̄iPj P̄i < 0. (40)

Then, Condition (40) is transformed into

Mc
i + ϵπmax

ii P̄i −N T
i (−P)Ni < 0, (41)
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where P = diag
{

Pκ1 , · · · , PκL

}
.

Using the Schur complement, it can be demonstrated that (41) implies (26). From the
above proof, we can obtain the stochastic stabilization condition of System (21).

Second, for the proof of the strictly (Q, S, R)-β-dissipative condition using Lemma 2,
we can obtain the sufficient condition of (12) for the closed-loop system in (21):

He(Pi Ac
i ) + ∑

j∈Dk

πmax
ij Tij + ∑

j∈Dk

2∆ijUij (∗) (∗)

GT
i Pi + STEc

i −He(ST Ji)− R + βI (∗)
Q̃Ec

i Q̃Ji −I

 < 0, (42)

because He(Pi Ac
i ) + ∑M

j=1 πijPi < He(Pi Ac
i ) + ∑

j∈Dk

πmax
ij Tij + ∑

j∈Dk

2∆ijUij, as shown in (34)

and (35).
Multiplying both sides of (42) with diag

{
P̄i, I, I

}
yields

M̃c
i − (NiI)T(−P)(NiI) < 0. (43)

Then, using the Schur complement, it can be shown that (43) implies (27). Furthermore,
from Condition (30), the LMI condition in (23) can be obtained by

P̄i(Pi − Si)P̄i < 0. (44)

The LMI conditions in (24) and (25) can be acquired by

P̄i(Pj − Si)P̄i > 0, (45)

P̄i(Pj − Si − Uij)P̄i < 0, (46)

and by using the Schur complement from Conditions (31) and (36), respectively. Therefore,
the closed-loop system in (21) is strictly (Q, S, R)-β-dissipative according to Definition 2.

Remark 1. The Conditions (30) and (31) maintain the stabilization condition’s inequality while
removing the unknown transition rates from the condition. This approach allows for a more gener-
alized stabilization criterion that handles uncertainties in transition rates without compromising
the condition’s integrity. By employing the inequalities, we effectively decouple the stabilization
condition from the specific values of the transition rates, thereby enhancing the applicability of our
findings to systems with partially or completely unknown transition dynamics.

In Theorem 1, the following optimization problem provides the optimal dissipative
performance bound β:

min − β (47)

s.t. (22) − (27).

Moreover, Theorem 1 can be extended to achieve H∞ and passivity performance as in
the following cases:

• H∞ performance: Q̃ = I, S = 0, and R = γI + βI,
• Passivity performance: Q = 0, S = I, and R = 2βI.

Remark 2. Note that the proposed theorem is based on the LMI approach. To solve the optimization
problem based on this theorem, we used the Robust Control Toolbox in MATLAB 2022. Therefore, all the
computations to solve the optimization problem are off-line, which can be solved using Toolbox. When
the LMIs have a solution, the controller gains and optimal dissipative performance bounds are obtained.
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4. Examples

In this section, numerical and practical examples are presented to verify the effective-
ness of the proposed approach.

4.1. Example 1

Consider the following numerical example, as used in [22]:

A1 =

[
0.35 −7.30
1.48 0.81

]
, A2 =

[
0.89 −3.11
1.48 0.21

]
,

A3 =

[
−0.11 −0.85
2.31 −0.10

]
, A4 =

[
−0.17 −1.48
1.59 −0.27

]
,

B1 =

[
0.57
1.23

]
, B2 =

[
0.78
−0.49

]
, B3 =

[
1.34
0.39

]
, B4 =

[
−0.38
1.07

]
,

G1 =

[
0.5
0.1

]
, G2 =

[
0.15
0.0

]
, G3 =

[
0.0
0.4

]
, G4 =

[
0.2
0.3

]
,

E1 =
[
0.0 −0.1

]
, E2 =

[
0.1 0.0

]
, E3 =

[
0.0 0.1

]
, E4 =

[
0.1 0.0

]
,

F1 = F2 = F3 = F4 = 0, J1 = J2 = J3 = J4 = 0,

Q = −1, S = 0.1, R = 1.

The transition rate matrix Π is:

Π =


[−1.5,−1.2] [0.1, 0.3] × ×

× × [0.2, 0.4] [0.2, 0.4]
[0.5, 0.7] × [−1.6,−1.4] ×
[0.3, 0.5] × × ×

.

From the above transition matrix, we can obtain the following sets for the measurability of πij:

D1 = {1, 2}, D̃1 = {3, 4},D2 = {3, 4}, D̃2 = {1, 2},

D3 = {1, 3}, D̃3 = {2, 4},D4 = {1}, D̃4 = {2, 3, 4}.

Based on the above system parameters, Figure 1a shows the state trajectories for this
example, which means that this system is in an unstable open-loop condition with u(t) = 0.

By solving the proposed conditions in Theorem 1, we can obtain the optimal dissipative
performance, β = 0.9932, and the proposed controller gains are

K1 =
[
5.8609 −10.690

]
, K2 =

[
−7.5336 4.0370

]
,

K3 =
[
−2.2120 −4.1430

]
, K4 =

[
3.2756 −4.2008

]
.

Based on these gains, Figure 1b shows the state trajectories of the closed-loop system
and the mode evolution with x(0) =

[
0.4,−1.2

]T and ω(t) = 0. Figure 2 presents the
state trajectories with the mode evolution and control input under x(0) = [0, 0]T and
ω(t) = e−0.2t. From these figures, the state trajectories converge to zero as the time increases.
This verifies that the proposed method guarantees the strict (Q, S, R)-β-dissipativity and
stochastic stability of the MJS with external disturbances and GUTRs.
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Figure 1. State trajectories for the (a) open-loop and (b) closed-loop systems under x(0) =
[
0.4,−1.2

]T

and ω(t) = 0.

0 5 10 15 20 25 30

Time (second)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

x
(
t
)

x
1
(t)

x
2
(t)

0 10 20 30

Time (second)

1

2

3

4

M
o
d
e

(a)

0 5 10 15 20 25 30

Time (second)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

u
(
t
)

(b)

Figure 2. (a) State trajectories and (b) input trajectories for the closed-loop system under x(0) =
[
0, 0
]T

and ω(t) = e−0.2t.

4.2. Example 2

Consider the following mass-spring-damper mechanical system [45]:

Mÿ(t) + Dẏ(t) + V(t)y(t) = (1 + cẏ3(t))u(t) + ω(t), (48)

where y(t) is the position of the mass, u(t) is the input force, ω(t) is the external disturbance,
M is the mass, and D is the viscous damping. Here, V(t) = V(rt) is the time-varying
stiffness, which is defined as

V(rt) =

{
0.5 if rt = 1
1.81 if rt = 2

.
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Here, we assume that M = 1, D = 1, c = 0, x(t) =
[
ẏ(t) y(t)

]T, and z(t) =[
y(t) u(t)

]T. Using the above parameters, System (49) can be constructed as the following
MJS:

ẋ(t) = A(r(t))x(t) + B(r(t))u(t) + G(r(t))ω(t),

z(t) = E(r(t))x(t) + F(r(t))u(t) + J(r(t))ω(t),
(49)

where

A1 =

[
−1 −0.5
1 0

]
, A2 =

[
−1 −1.81
1 0

]
, B1 =

[
1
0

]
, B2 =

[
1
0

]
,

G1 = G2 =

[
1
0

]
, E1 = E2 =

[
0 1
0 0

]
, F1 = F2 =

[
0
1

]
, J1 = J2 = J3 = J4 = 0.

Table 1 lists the corresponding transition matrices for different transition rates. Here,
in Cases 2 and 3, the transition matrices contain unknown transition rates for each mode,
representing the asynchrony between each mode in (49). Table 2 lists the optimal perfor-
mance values of the different transition matrices in Table 1. The performance values are
obtained using the following conditions:

• Dissipativity performance: Q =

[
−1 0
0 −1

]
, S =

[
0.1
0.1

]
, R = 1,

• H∞ performance: Q =

[
−1 0
0 −1

]
, S = 0, R = (γ + β)

[
1 0
0 1

]
.

Table 2 demonstrates that these performance values deteriorate with the degree of asyn-
chronous intensification in each case. Specifically, for Case 3, the following control gains can be
obtained by solving the optimization problem in (47) for strictly (Q, S, R)-β-dissipativity:

K1 =
[
−1.8518 −1.4186

]
, K2 =

[
−2.0079 −1.5633

]
.

Based on the proposed controller employing the above gains, we obtained the state
trajectories and mode evolution under x(0) = [−1, − 0.5] and ω(t) = e−0.3t sin(t), as
shown in Figure 3a. Figure 3b represents the control input. Thus, Figure 3 shows that the
controller stochastically stabilizes the MJS with external disturbances and GUTRs.

Table 1. Transition matrix Π.

Case 1 Case 2 Case 3[
−3 3
4 −4

] [
−3 3
[3, 5] ×

] [
× ×

[3, 5] ×

]

Table 2. Comparison of the optimal β with different transition rates.

Performance Case 1 Case 2 Case 3

Dissipativity (β) 0.5277 0.4340 0.1379

H∞ (γ) 0.4722 0.5660 0.8620

Furthermore, Figure 4 shows the energy supply rate R(t) and external disturbance ω(t).

From Figure 4, the dissipativity performance value can be obtained by
∫ 30

0 E[R(z(t),ω(t))]dt∫ 30
0 ωT(t)ω(t)dt

= 0.3631.

Therefore, (49) satisfies the strict (Q, S, R)-β-dissipativity because the calculated perfor-
mance value is larger than the performance bound β = 0.1379.
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Figure 3. (a) State trajectories and (b) input trajectories under x(0) =
[
−1,−0.5

]T
and ω(t) = e−0.3t sin(t).

0 5 10 15 20 25 30

Time (second)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R(t)

(t)

0 10 20 30

Time (second)

0

1

2

3

M
o
d
e

Figure 4. The comparison of the energy supply rate R(t) and ω(t) for x(0) = 0.

5. Conclusions

This study addressed the strictly dissipative control problem of continuous-time MJSs
with external disturbances and GUTRs. The stabilization condition was derived with
the mode-dependent Lyapunov function, formulated as an LMI, to guarantee stochastic
stability and strict dissipativity. Furthermore, to reduce the conservatism of the derived
conditions, we introduced an appropriate weighting method related to the bounds of the
transition rate with slack variables. Finally, the effectiveness of the proposed approach was
verified using two examples.
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