
Citation: Bojič Burgos, J.; Pustišek, M.

Decentralized IoT Data

Authentication with Signature

Aggregation. Sensors 2024, 24, 1037.

https://doi.org/10.3390/s24031037

Academic Editors: Wilfried Gappmair,

Erich Leitgeb, Maja Matijašević and

Mario Kusek

Received: 31 December 2023

Revised: 23 January 2024

Accepted: 1 February 2024

Published: 5 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Decentralized IoT Data Authentication with Signature Aggregation
Jay Bojič Burgos * and Matevž Pustišek

Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia; matevz.pustisek@fe.uni-lj.si
* Correspondence: jay.bojicburgos@fe.uni-lj.si

Abstract: The rapid expansion of the Internet of Things (IoT) has introduced significant challenges in
data authentication, necessitating a balance between scalability and security. Traditional approaches
often rely on third parties, while blockchain-based solutions face computational and storage bot-
tlenecks. Our novel framework employs edge aggregating servers and Ethereum Layer 2 rollups,
offering a scalable and secure IoT data authentication solution that reduces the need for continuous,
direct interaction between IoT devices and the blockchain. We utilize and compare the Nova and
Risc0 proving systems for authenticating batches of IoT data by verifying signatures, ensuring data
integrity and privacy. Notably, the Nova prover significantly outperforms Risc0 in proving and verifi-
cation times; for instance, with 10 signatures, Nova takes 3.62 s compared to Risc0’s 369 s, with this
performance gap widening as the number of signatures in a batch increases. Our framework further
enhances data verifiability and trust by recording essential information on L2 rollups, creating an
immutable and transparent record of authentication. The use of Layer 2 rollups atop a permissionless
blockchain like Ethereum effectively reduces on-chain storage costs by approximately 48 to 57 times
compared to direct Ethereum use, addressing cost bottlenecks efficiently.

Keywords: blockchain; IoT; data authentication; signature aggregation; rollup; SNARK

1. Introduction

In the Internet of Things (IoT) realm, ensuring device identity and data authenticity
is highly important. Data authenticity refers to the veracity and non-repudiation of data,
ensuring that they have not been tampered with or forged. Data authentication and integrity
are important for several reasons. Firstly, they safeguard the reliability and trustworthiness
of data, ensuring that they accurately reflects the real-world conditions they represents.
This is particularly critical in Industrial Internet of Things (IIoT) scenarios [1], where data
are used to make informed decisions about critical assets, such as manufacturing equipment
or power grids. Invalid or manipulated data can lead to erroneous actions, potentially
causing disruptions, safety hazards, or financial losses.

The growing trend of data sharing and monetization within the IoT landscape un-
derscores the need for robust data authenticity mechanisms. This is because companies
and individuals increasingly exchange or purchase IoT data for various applications, such
as predictive maintenance, smart home optimization, or healthcare analytics [2–4]. Data
authenticity also plays a crucial role in supporting the development of artificial intelligence
(AI) applications [5]. AI algorithms rely on vast amounts of high-quality data to train and
refine their models. If the underlying data are not authentic, the AI models may generate
erroneous or misleading insights, potentially leading to flawed decisions and actions.

Blockchain technology, a distributed ledger system known for its transparency, secu-
rity, and immutability, offers a promising solution to address the challenges of IoT data
authentication. By leveraging blockchains’ inherent features, organizations can estab-
lish a trustless environment where IoT data can be securely shared and verified without
intermediaries [6].

Blockchain-based IoT data authentication solutions can enable several valuable fea-
tures, including the following:

Sensors 2024, 24, 1037. https://doi.org/10.3390/s24031037 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24031037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1042-6203
https://doi.org/10.3390/s24031037
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24031037?type=check_update&version=1

Sensors 2024, 24, 1037 2 of 25

• Data Integrity: Blockchains’ tamper-proof nature ensures that IoT data remain unal-
tered throughout their lifecycle, preventing unauthorized modifications or data breaches.

• Device Authentication: A blockchain can serve as a secure repository for device
identities, enabling reliable authentication of IoT devices and preventing unauthorized
access or data injection from malicious or compromised devices.

• Provenance Tracking: Blockchains’ ability to track data origin and movement provides
traceability for IoT data, allowing for the verification of data sources and provenance.

However, while blockchains offer significant benefits for IoT data authentication, they
also presents challenges that must be addressed. Scalability and cost are two significant
issues that must be carefully considered [6]. The resource-constrained nature of many
IoT devices raises concerns about the computational overhead and energy consumption
associated with blockchain transactions. Moreover, the cost of maintaining and operating
blockchain networks could be prohibitive for certain IoT applications.

The referenced paper [7] examines the application of permissioned blockchain archi-
tectures within a data authentication framework for IoT. Our stance is that relying solely
on such architectures introduces limitations that could restrict the framework’s scalability
and broader applicability. While efficient and controllable, these systems risk segregating
IoT networks from the dynamic and technologically rich broader blockchain ecosystem,
which boasts considerable liquidity and a substantial user base. Additionally, private
blockchains necessitate the establishment of validators, adding layers of complexity and an
element of centralization, which runs counter to the ideal of a decentralized system. A fully
blockchain-based data authentication solution for IoT devices based on public blockchains
might also be impractical due to the prohibitive costs involved.

To address these challenges, our proposed framework takes a different approach from
conventional blockchain-based authentication methods, which typically require direct
interactions between resource-limited IoT devices and blockchain nodes [8]. We propose
a layered architecture that decouples the generation and authentication of IoT data from
the blockchain itself. In this model, IoT devices transmit their data to edge aggregating
servers. These aggregators, acting as intermediary nodes and are equipped with ample
computational resources to verify IoT signatures. Only the aggregated signatures/proofs
or their hashes are relayed to the blockchain, serving as timestamps for the IoT signature-
verification process.

This approach offloads the computational burden from IoT devices and creates a
highly modular and scalable system. On the blockchain side, we employ scalable L2
blockchain scaling solutions, such as rollups, to address the issue of blockchain transaction
throughput. By leveraging these scaling solutions, the blockchain can handle a significantly
higher volume of IoT data without compromising security or performance. To further
enhance scalability, edge aggregating servers, which collect and aggregate signatures from
multiple IoT devices, are introduced. The increase in IoT devices and the scalability issues
that these present can now be solved by introducing more aggregators and/or new rollups
on the blockchain side.

• Our framework prioritizes data privacy by keeping sensitive IoT data confidential.
Instead of allowing IoT devices to communicate directly with the blockchain, we
handle all data verification through edge aggregator servers. This approach leverages
Zero-Knowledge Proofs (ZKPs), enabling us to verify data without exposing the actual
information, thus enhancing data privacy even further.

The implemented framework enabled us to conduct realistic experiments, providing
detailed insights into the operation of a trusted, decentralized IoT solution. This solution
stands out for its emphasis on data authenticity and the incorporation of Zero-Knowledge
privacy principles. The key research questions investigated in this paper are as follows:

• Impact of different proving systems: Our exploration delves into various proving
systems, examining their impact on the efficiency of proving and verification times
and the sizes of the proofs required to ensure efficient data authenticity. Within

Sensors 2024, 24, 1037 3 of 25

our solution, we observed a shift in the performance bottleneck. It moves from the
blockchain network to an off-chain system, which is particularly evident during the
proving and verification stages.

• On-chain storage costs: The research also includes an assessment of the financial
implications of using public blockchain networks for data storage. This component is
vital to maintain a high level of decentralization and trust, providing a clear advantage
over private or consortium blockchain networks. Our analysis balances the need for
decentralization with the practical aspects of storage costs on public blockchains.

The contributions of our work can be summarized as follows:

• Development of a novel framework: We introduced a unique framework that inte-
grates edge aggregating servers with Ethereum Layer 2 rollups. This design enhances
scalability and security in IoT data authentication, minimizing the need for continuous
direct interactions between IoT devices and the blockchain. By recording essential
information on L2 rollups, our framework ensures data verifiability and trust, creating
an immutable and transparent authentication record.

• Analysis of the viability of proving systems for our framework: Our work explored
and compared the Nova and Risc0 proving systems, focusing on their efficiency in
proof generation and verification times, as well as the proof sizes required for data
authenticity. We discovered that employing proof recursion and compression is crucial
for achieving superior performance in authentication, surpassing the efficiency of
proving a single signature verification, and even outperforming methods like ECDSA
batch verification.

• Cost-effective on-chain storage solutions: We assessed the financial implications of
using public blockchain networks for data storage. The use of Layer 2 rollups led to
significant reductions in on-chain storage costs. Our findings reveal that leveraging
rollups atop public blockchains like Ethereum offers low fees while keeping us inte-
grated within the larger, open-source public ecosystem, preventing isolation from the
broader market.

The paper begins with an Introduction highlighting the importance of data authenticity
in IoT and the potential of blockchain technology to address related challenges. Section 2,
the Literature Review, overviews existing IoT data authentication approaches and briefly
presents key fundamentals of our research as layered blockchain architectures and proving
systems. Section 3 details the proposed solution, dividing it into off-chain and on-chain
components. Section 4, Results, presents the findings from our tests on proving times,
verification times, proof sizes, and on-chain storage costs. Section 5 discusses these results.
Section 6 presents a set of conclusions summarizing the key insights and indicates possible
future research.

2. Literature Review

Since our goal is to establish a framework for IoT data authentication that does not
depend on permissioned blockchain networks or centralized solutions—which often entail
reliance on third parties and carry inherent trust limitations—this section provides an
overview of existing approaches to IoT data authentication. We also present the concept of
layered blockchain structures and explore proving systems. These elements are crucial for
the implementation of our proposed solution.

2.1. Existing Approaches to IoT Data Authentication

Data authentication plays an important role in IoT systems with some key challenges,
including the following:

• Device authentication (registration and identity management) : Essential for prevent-
ing rogue device infiltration and ensuring data originate from verified sources, thereby
maintaining IoT ecosystem integrity [7].

Sensors 2024, 24, 1037 4 of 25

• Data integrity: IoT data must remain unchanged during transmission and storage to
ensure their reliability [8].

• Data privacy: Protecting the confidentiality of sensitive information collected with IoT
devices [9].

• Cyber security: IoT systems are vulnerable to attacks like DDoS, Sybil, and eavesdrop-
ping, which can disrupt operations and compromise data integrity [10,11].

Building on the understanding of these challenges, we find that while numerous
solutions have been proposed, few manage to address all aspects of IoT data authentication
in a decentralized manner.

The paper [8] proposes a solution for ensuring data integrity stored in cloud environ-
ments, particularly for Internet of Things (IoT) applications. The key idea is to use crypto-
graphic hashes and smart contracts within a blockchain framework, utilizing Ethereum
as the underlying blockchain. When data are stored in the cloud, a unique cryptographic
hash of the data are generated and recorded on the blockchain. This hash serves as a digital
fingerprint. Smart contracts are then used to verify the integrity of the data automatically.
When data are retrieved, their hash is recalculated and compared with the hash stored
on the blockchain. If the hashes match, it confirms that the data have not been altered,
ensuring their integrity. While the approach presents a simple yet effective way to achieve
data integrity, there are limitations to this approach. Not only does the use of Ethereum
present considerable scalability issues since the costs would be too high, but the system
focuses solely on verifying whether the data have been altered while in storage. It does
not provide insights into the authenticity of the data themself. For instance, it does not
verify whether the data originated from the correct IoT device or if they were authentic at
the point of creation. This means that while the system can assure that the data have not
been tampered with since they were stored, it cannot guarantee their initial authenticity or
source. Therefore, additional mechanisms would be needed to validate the data’s origin
and authenticity before they are stored and hashed on the blockchain.

In contrast to this approach, another intriguing solution is presented in the paper [12],
which discusses combining edge computing with a blockchain to enhance authentication
in IoT networks. Edge servers are primarily responsible for authenticating IoT devices
by verifying their credentials against blockchain-stored data, ensuring network access
is limited to authorized devices only. Beyond authentication, these edge servers also
contribute to efficient data management. Edge computing is crucial for real-time data
processing in IoT applications, reducing latency and bandwidth demands. However, the
system does place a certain level of trust in edge servers. While the blockchain ensures the
integrity of the data it stores, the accuracy and security of the data initially provided by edge
servers are vital. The system employs advanced cryptographic methods, including elliptic
curve cryptography, to enhance security and protect against data compromise. Therefore,
while blockchain technology ensures data immutability, the overall reliability and security
of the system hinges on the trustworthiness and security measures implemented at the
edge-server level.

A similar approach is the DIoTA framework [13], which offers a layered decentralized
ledger architecture to enhance IoT data authenticity. It employs a unique edge–global struc-
ture, where each edge ledger serves specific IoT devices, and a global ledger interlinks these
edge ledgers. This setup facilitates efficient cross-ledger data verification and incorporates
a lightweight data authentication scheme to reduce the computational load on IoT devices.
However, despite its innovative structure, DIoTA encounters significant limitations. Its
reliance on a permissioned blockchain undermines the true essence of decentralization.
The framework necessitates the establishment of validators, typically operated by entities
within the system, such as IoT device owners or data analytic service providers. This model
drifts away from a fully decentralized approach, as it centralizes control to a certain extent.
If the number of these validators is limited or if they are heavily concentrated within a few
entities, the system’s security and decentralization are compromised.

Sensors 2024, 24, 1037 5 of 25

On the positive side, DIoTA introduces some valuable concepts. For instance, the use
of efficient data authentication methods for IoT communication with the ledger, specifically
Hash-based message authentication code (HMAC) or Cypher-based message authentication
code (CMAC), are noteworthy. This aspect could be integrated into our approach to enhance
the efficiency of IoT device interactions, maintaining data integrity while minimizing
resource utilization.

ZeroTrustBlock [14] presents a similar solution in the healthcare field that utilizes a per-
missioned blockchain based on a Hyperledger to enhance the security, privacy, and interop-
erability of sensitive medical data with existing approaches, akin to IoT data authentication.

Another paper [15] explores an approach to integrating blockchain technology with
IoT data authentication, specifically focusing on smart grids and smart meters. This method
incorporates Zero-Knowledge Proof (ZKP) to enhance anonymity and secure data within
the blockchain environment. The solution involves using blockchain technology and Zero-
Knowledge Proof to secure data from smart meters within a smart grid environment. This
approach aims to prevent data counterfeiting and personal information infringement. The
system utilizes Ethereum’s smart contract functionality, incorporating Zero-Knowledge
Proof to ensure data integrity and confidentiality. A significant drawback of this approach
is that it requires IoT devices to write data directly onto the blockchain. This method is
impractical and expensive due to the high financial costs of blockchain transactions.

While ZKP provides a method to verify the accuracy of information without revealing
the data itself, the paper’s approach seems more focused on post-storage data integrity
rather than authenticating incoming data from IoT devices. There is a lack of a clear link
between continuous data generation by IoT devices and the initial two values used during
registration, potentially allowing fabricated data to be sent to the server without a way to
verify its authenticity against the initially registered values.

In the context of enhancing security in IoT environments, Xu et al.’s study introduces a
significant development with their Certificateless Aggregate Signature (CLAS) scheme [16],
which is meant to be used for smart home applications. This scheme, addressing security
concerns and the issue of private key leakage of similar schemes, operates in a certificateless
environment. It aims to simplify key management and reduce computational overhead,
especially in scenarios with numerous interconnected devices and substantial data flow.
However, the inherent possession of individual keys in many IoT applications raises
questions about the necessity and practicality of transitioning to a new scheme like CLAS.

In contrast, our approach, leveraging the widely used ECDSA in conjunction with
zk-SNARKs, offers a more direct ‘plug and play’ solution, obviating the need to adopt a
different scheme. Our method, using ZKPs, also stands out in terms of privacy preserva-
tion. It is nonetheless an interesting approach, since the use of a different schemes like
CLAS actually allows the aggregation of signatures, while our approach creates a proof of
signature verification as the aggregate.

The solution in [17] describes a security method for Internet of Things (IoT) networks
that focuses on making sure each device (I-Node) can be trusted before it sends information
through the network. It does this by setting up a system where devices have to prove their
identity using a digital signature. The network selects certain devices (I-G Nodes) to act as
checkpoints, collecting and verifying information from other devices. These checkpoints
then send all the verified information to a central point (data center) for storage.

However, this system introduces unnecessary complexity by imposing verification
duties on I-G Nodes without clear incentives or benefits for their participation. A more
streamlined approach might involve edge servers that manage the computational tasks,
thereby reducing the burden on individual IoT devices/nodes and simplifying the net-
work’s architecture. The proposed solution seems to occupy an awkward middle ground
between decentralized and centralized systems, potentially inheriting the drawbacks of
both without reaping the full benefits of either.

On the other hand, the work presented in [18] proposes a method to enhance privacy
and computational efficiency in Industrial IoT systems. Utilizing the Paillier cryptosystem

Sensors 2024, 24, 1037 6 of 25

for privacy preservation and the Elliptic Curve Digital Signature Algorithm (ECDSA) with
batch verification, the scheme addresses the critical need for secure data aggregation in
edge-supported environments.

However, while this solution offers advancements in privacy protection, it also intro-
duces additional computational work beyond ECDSA signing that may be prohibitive for
IoT devices with limited resources. Furthermore, the use of batch ECDSA verification, as
presented in [19], introduces a novel approach to authentication similar to ours but does
not achieve the same performance. For instance, our system takes only 7.13 s to verify
100 signatures. In contrast, the batch verification in the cited work is limited to a maximum
of 64 signatures and has verification times consistently exceeding 50 s when signatures
originate from different devices. Although innovative, homomorphic encryption might
not be necessary in scenarios where data are securely transmitted to trusted edge servers.
Secure communication channels like SSL and TLS can provide adequate privacy without
the extra computational overhead.

Discussion of Cited Studies and Their Implications

In our literature review of various IoT data authentication and privacy approaches,
we identified several areas where these methods fall short, especially when compared to
our approach. Key shortcomings in existing approaches include the following:

• Limited Post-Storage Verification: Some studies focus primarily on post-storage data
integrity, overlooking the critical aspect of data-origin authentication.

• Over-Reliance on Edge Servers: Certain methods depend heavily on edge servers for
data authentication without a clear mechanism to verify the correctness of the work
carried out, raising potential security vulnerabilities.

• Permissioned Blockchain Limitations: Some frameworks utilize permissioned blockchains,
which compromise the ideal of full decentralization. Additionally, when public
blockchains are used, they often rely on expensive platforms without employing
scaling solutions.

• Impractical Blockchain Interaction for IoT Devices: Other solutions require direct
blockchain interactions using IoT devices, leading to high computational and finan-
cial costs.

• Practicality Concerns in Key Management: There are systems proposing new key
management schemes that may not be practical for diverse IoT contexts. The challenge
lies in adopting these new schemes as opposed to using widely used ones.

• Computational Overhead from Cryptosystems: Certain solutions, while enhancing
privacy, add a significant computational workload, rendering them unsuitable for
resource-constrained IoT devices.

2.2. Layered Blockchain Structure

The blockchain industry has witnessed a paradigm shift toward a layered or modular
structure, notably in the public blockchain domain, such as the Ethereum ecosystem [20].
Traditional blockchain networks often employ a monolithic structure where a single chain
processes and stores all transactions. While straightforward, this approach can lead to
congestion and scalability issues, particularly when maintaining a high level of decen-
tralization is a priority. In scenarios where decentralization is less critical, scalability can
be enhanced by reducing the degree of decentralization. Nonetheless, as more users and
transactions join the network and the emphasis on decentralization remains high, the
system’s capacity to process transactions efficiently is strained, leading to higher fees and
slower transaction times.

Private, permissioned, or consortium networks have emerged [21], offering privacy
and customization. They also enable enhanced scalability by reducing the number required
for consensus. However, this shift towards more centralized control can compromise large-
scale decentralization’s security and resilience. Additionally, these networks often lack
interoperability, isolating them from other blockchain ecosystems. This isolation results in a

Sensors 2024, 24, 1037 7 of 25

disconnect from public networks’ innovation, liquidity, and extensive user base. This is why
public networks like Ethereum have evolved to adopt a layered blockchain architecture.
This includes Layer 1 (L1) networks, providing security and decentralization, and Layer
2 (L2) solutions that offer customizability and scalability by processing transactions off
the main chain (L1). This layered structure can scale further into Layer 3 scaling solutions
by building upon L2 solutions like rollups. This layered approach facilitates a modular
and interoperable ecosystem that benefits from broader blockchain space innovations and
liquidity while catering to diverse user and application needs.

Layer 2 Scaling Solutions

Multiple L2 scaling solutions exist, with rollups being the most versatile and widely
used [22]. Rollups achieve scalability and lower fees by processing transactions off L1 and
then consolidating batches of these transactions into a single transaction that is recorded on
L1. This shared cost mechanism significantly reduces individual transaction fees. Rollups
can be somewhat centralized but still inherit robust security from L1, though decentralized
configurations are also possible. Additionally, rollups can be modified for a particular use
case, such as allowing private data to be stored on it, essentially creating an alternative to
permissioned blockchains [23].

There are generally two types of rollups: optimistic rollups and Zero-Knowledge
(ZK) or validity rollups. Their primary difference lies in the type of proof they utilize.
Optimistic rollups operate on the assumption that all transactions are valid unless proven
otherwise, offering a reward for identifying invalid transactions. This economic incentive
model, however, requires a grace period for challenges, slightly delaying transaction finality.
ZK rollups, on the other hand, use complex mathematical proofs (zk-proofs) to validate
transactions. They offer quicker finality and more efficient data compression, albeit with
current limitations in their ability to handle complex transactions [22,24,25].

Rollups are central to our solution, offering an easier setup than permissioned ledger
systems. They do not necessarily require setting up individual validators, as L1 guarantees
security via proofs. This reduces complexity and enhances scalability.

2.3. Proving Systems

Proving systems are fundamental in cryptography and blockchain technology. They
are used to establish the validity of statements while potentially preserving the confiden-
tiality of underlying data. In these systems, one party, known as the prover, convinces
another party, the verifier, of the truthfulness of a given statement. There are two primary
types of proofs to consider:

• Validity Proofs: In these proofs, the prover demonstrates the correctness of a statement
or compliance with a specific condition [26,27].

• Zero-Knowledge Proofs (ZKPs): A specialized form of validity proof, ZKPs enable
a party to prove the truth of a statement to another party without revealing any
additional information beyond the fact that the statement is true. This characteristic is
particularly important for preserving privacy in various applications [26].

While these two categories encompass a wide array of proof types, a particularly
intriguing variant within this spectrum is SNARKs, standing for “Succinct Non-Interactive
Arguments of Knowledge.” SNARKs are a distinctive type of cryptographic proof, marked
by their two main properties: succinctness and non-interactivity. Succinctness means that
the proofs are relatively compact and quick to verify, which is highly advantageous in
numerous applications. Non-interactivity is a crucial feature where the prover can generate
a proof without ongoing communication with the verifier.

Multiple trade-offs exist in various SNARK implementations, such as proof size,
proving time and verifying time. Quantum resistance is also an important factor worth
looking at [26,28].

Another important distinction is whether a SNARK is transparent or non-transparent.
Non-transparent SNARKs require a process known as a trusted setup. This setup involves

Sensors 2024, 24, 1037 8 of 25

generating initial parameters (or keys) for proving and verifying systems. These parameters
must be generated securely and trustworthy because any compromise in this process
can lead to significant vulnerabilities. The trusted setup generates sensitive information
which if not properly discarded, or worse, falls into malicious hands, can be used to create
fraudulent proofs that appear valid. Therefore, the integrity and security of non-transparent
SNARKs heavily rely on the proper execution and confidentiality of the trusted setup.

Transparent SNARKs, on the other hand, do not require a trusted setup. Instead, they
use cryptographic techniques that avoid the need for a preliminary phase where sensitive
parameters are generated. They are generally considered more robust and trust minimized,
as they do not rely on the secrecy and integrity of a setup ceremony.

2.3.1. Snark Composition, Aggregation, and Recursion

Different proving systems offer distinct advantages and trade-offs, such as speed
in generating proofs, compactness of proofs, or efficiency in verification times. SNARK
composition is a powerful technique that combines these strengths to optimize all aspects of
proving and verifying. In SNARK composition, multiple SNARKs are strategically merged
to address their individual limitations and enhance their strengths. For example, an inner
circuit with a larger size might be used to prove a computation quickly, though it might
result in a larger proof size. This larger proof then becomes the input for an outer, smaller
circuit designed to verify the validity of the initial statement or computation. Although the
proving time for this system might be slower, its smaller circuit size and reduced proof size
offer a balanced solution with relatively fast overall proving and a small final proof.

This method also enables self-composition, where a SNARK’s output is recursively
applied to itself. This iterative process gradually reduces verification overhead, making it
particularly valuable in scenarios where verification demands more resources than proof
generation [26]. SNARK composition enables significant applications like Incremental
Computations and Proof Aggregation. Incremental Computations use SNARKs to verify the
correctness of each step in a longer computational process, ensuring integrity throughout.
Proof Aggregation involves combining multiple proofs into a single, more manageable
proof, which is especially useful in scenarios requiring collective verification of numerous
individual proofs.

Figure 1 illustrates how proof aggregation might be applied to batch signature verifi-
cation. The naive approach would be to accumulate a large number of signatures before
verifying them and create a single comprehensive proof of verification. With proof aggre-
gation, proofs can be generated more promptly, and all the created proofs would then be
aggregated, essentially creating a “proof of proofs”.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 26

Figure 1. Proof aggregation.

Recursive proofs, on the other hand, involve iteratively applying a function F (such
as signature verification) to a computation with private inputs, where each step given pri-
vate inputs (ω) generates a proof (π) confirming the accuracy of the current computation
relative to the previous state (sn−1). Known as Incrementally Verifiable Computation (IVC),
this method reduces memory usage by generating smaller, individual proofs at each step
instead of a single, extensive proof or aggregating multiple proofs into one (Figure 2).

Figure 2. Incremental verifiable computation.

However, this approach also presents challenges. Since each new proof must validate
the correctness of the previous proof, the process becomes computationally intensive. De-
spite the approach’s power and flexibility, creating and verifying a proof at every step
increases the overall computational burden.

The Nova prover [29,30] introduces an innovative solution to the challenges of recur-
sive proofs. Nova’s technique involves composing proofs throughout the computation but
only finalizing them at the end. This strategy substantially reduces computational over-
head, as it incurs the cost of proof generation just once.

Nova employs a process called Statement Folding to merge multiple instances into a
single instance for verification. In this method, the prover P constructs a proof for a circuit
C without needing to run the entire verification algorithm V(Vk, X, π), which typically
involves the verifier key Vk (a part of the public parameters), the statement X, and the
proof π, with the output being true or false. Nova simplifies circuit C by removing most
verification checks, meaning that the prover only needs to construct a proof for a few se-
lected checks, greatly simplifying the proof construction process. While Nova benefits
from needing to verify only the last compressed SNARK, it also must ensure the correct
execution of the folding process. This verification is integrated into the computed and
proved function, typically referred to as the accumulator, which essentially accumulates
and verifies that the folding was indeed completed correctly.

2.3.2. Signature Aggregation
Since our solution focuses on removing interactions between IoT devices and the

blockchain, there is a need for an alternative approach to signature verification. Tradition-
ally, this was conducted by verifying the IoT signature directly on-chain and storing the

Figure 1. Proof aggregation.

Recursive proofs, on the other hand, involve iteratively applying a function F (such
as signature verification) to a computation with private inputs, where each step given
private inputs (ω) generates a proof (π) confirming the accuracy of the current computation
relative to the previous state (sn−1). Known as Incrementally Verifiable Computation (IVC),
this method reduces memory usage by generating smaller, individual proofs at each step
instead of a single, extensive proof or aggregating multiple proofs into one (Figure 2).

Sensors 2024, 24, 1037 9 of 25

Sensors 2024, 24, x FOR PEER REVIEW 9 of 26

Figure 1. Proof aggregation.

Recursive proofs, on the other hand, involve iteratively applying a function F (such
as signature verification) to a computation with private inputs, where each step given pri-
vate inputs (ω) generates a proof (π) confirming the accuracy of the current computation
relative to the previous state (sn−1). Known as Incrementally Verifiable Computation (IVC),
this method reduces memory usage by generating smaller, individual proofs at each step
instead of a single, extensive proof or aggregating multiple proofs into one (Figure 2).

Figure 2. Incremental verifiable computation.

However, this approach also presents challenges. Since each new proof must validate
the correctness of the previous proof, the process becomes computationally intensive. De-
spite the approach’s power and flexibility, creating and verifying a proof at every step
increases the overall computational burden.

The Nova prover [29,30] introduces an innovative solution to the challenges of recur-
sive proofs. Nova’s technique involves composing proofs throughout the computation but
only finalizing them at the end. This strategy substantially reduces computational over-
head, as it incurs the cost of proof generation just once.

Nova employs a process called Statement Folding to merge multiple instances into a
single instance for verification. In this method, the prover P constructs a proof for a circuit
C without needing to run the entire verification algorithm V(Vk, X, π), which typically
involves the verifier key Vk (a part of the public parameters), the statement X, and the
proof π, with the output being true or false. Nova simplifies circuit C by removing most
verification checks, meaning that the prover only needs to construct a proof for a few se-
lected checks, greatly simplifying the proof construction process. While Nova benefits
from needing to verify only the last compressed SNARK, it also must ensure the correct
execution of the folding process. This verification is integrated into the computed and
proved function, typically referred to as the accumulator, which essentially accumulates
and verifies that the folding was indeed completed correctly.

2.3.2. Signature Aggregation
Since our solution focuses on removing interactions between IoT devices and the

blockchain, there is a need for an alternative approach to signature verification. Tradition-
ally, this was conducted by verifying the IoT signature directly on-chain and storing the

Figure 2. Incremental verifiable computation.

However, this approach also presents challenges. Since each new proof must validate
the correctness of the previous proof, the process becomes computationally intensive.
Despite the approach’s power and flexibility, creating and verifying a proof at every step
increases the overall computational burden.

The Nova prover [29,30] introduces an innovative solution to the challenges of recur-
sive proofs. Nova’s technique involves composing proofs throughout the computation
but only finalizing them at the end. This strategy substantially reduces computational
overhead, as it incurs the cost of proof generation just once.

Nova employs a process called Statement Folding to merge multiple instances into a
single instance for verification. In this method, the prover P constructs a proof for a circuit
C without needing to run the entire verification algorithm V(Vk, X, π), which typically
involves the verifier key Vk (a part of the public parameters), the statement X, and the
proof π, with the output being true or false. Nova simplifies circuit C by removing most
verification checks, meaning that the prover only needs to construct a proof for a few
selected checks, greatly simplifying the proof construction process. While Nova benefits
from needing to verify only the last compressed SNARK, it also must ensure the correct
execution of the folding process. This verification is integrated into the computed and
proved function, typically referred to as the accumulator, which essentially accumulates
and verifies that the folding was indeed completed correctly.

2.3.2. Signature Aggregation

Since our solution focuses on removing interactions between IoT devices and the
blockchain, there is a need for an alternative approach to signature verification. Tradi-
tionally, this was conducted by verifying the IoT signature directly on-chain and storing
the actual signed data/messages off-chain. This approach was employed to lower data
storage costs on-chain, but signatures were not eliminated. They still needed to be recorded
on-chain and verified via a smart contract.

Signature aggregation allows us to remove even the signature verification from the
chain. Taking care of the signature verification and data storage off-chain drastically lowers
costs and paves a new way for optimization that does not require as much intervention
with blockchains. It essentially moves the bottleneck from the blockchain to an off-chain
system that can be further scaled using traditional means, even if that means adding extra
hardware. This flexibility is not possible on current blockchains, where we are limited by
the performance of any single chain.

In essence, signature aggregation is a method where multiple signatures from different
sources (in this case, IoT devices) are combined into a single, compact signature. This
process significantly reduces the amount of data required to verify the authenticity and
integrity of messages from multiple devices. A common approach in blockchains, for
example in Ethereum, is BLS signature aggregation [31], which allows the reduced signature
size to be verified against the aggregated public key, created by combining all the public
keys from the IoT devices.

While this approach is interesting, the fact that the majority of IoT devices use elliptic
curve cryptography (ECC), specifically ECDSA, necessitates a different approach to aggre-

Sensors 2024, 24, 1037 10 of 25

gation. This is where SNARK aggregation comes into play, allowing us to replace many
signatures with a single SNARK proof that validates the authenticity of all signatures.

As mentioned in Section 2.3.1, the Nova prover demonstrated how we could recur-
sively prove any computation. In this case, the function F we are recursing would be the
signature-verification algorithm. However, proving any computation is not trivial, and it
is computationally more intensive than running the algorithm on its own. Modifying the
signature verification to be more efficient, therefore, provides considerable performance
gains. The efficient ECDSA verification method from Personae Labs [32] achieves just
this. The performance benefits stem from executing certain computations outside of the
proving phase. In essence, it is an optimized process that restructures the ECDSA sig-
nature verification so that parts of it are computed off the SNARK circuit. This method
works by rewriting the ECDSA signature-verification equation to isolate elements that
can be computed outside the SNARK, thus reducing the number of operations within the
SNARK itself.

3. Framework Design

Our proposed framework enables a performant, secure, and privacy-focused IoT
data authentication and storage method, utilizing permissionless blockchains and Zero-
Knowledge proving systems. This framework achieves its goals by implementing a secure
data validation process that minimizes the computational burden on IoT devices, distin-
guishing our solution with its performance-oriented design and adaptable architecture.
It is set up to scale effectively, capable of accommodating an increasing number of IoT
devices and data volumes. This scalability is achieved either by adding new L2 rollups or
expanding the network of edge aggregating servers, ensuring the system adapts and grows
without compromising performance, security, or cost-efficiency.

The solution comprises two main components:

• Off-chain components include IoT devices and edge aggregating servers. The ag-
gregators serve as the first point of data aggregation and authentication, collecting
and validating data from IoT devices, thus preparing it for on-chain integration. This
process significantly reduces the computational load on individual IoT devices and
decreases the need for direct blockchain interaction.

• On-chain components feature a layered blockchain structure and smart contracts built
atop each L2 network. Ethereum is the foundational Layer 1 (L1), ensuring secure
and reliable operations, while Layer 2 networks, such as Optimism Rollups, provide
scalability and efficiency. Smart contracts facilitate IoT and edge-server registration
and data storage.

3.1. Off-Chain

In this subsection we will delve into the off-chain part of our solution in more detail.
Starting with IoT devices and data authentication via signatures and later using a proving
system on the edge servers to aggregate signatures. In terms of IoT devices, we assume
that the devices themselves are secure from a hardware perspective and/or on the software
level, allowing the safe storage and use of private keys and data generation. Similarly,
for edge aggregating servers, we also assume security at both the hardware and software
levels, which is crucial for the effective operation of the proving system and the reliable
aggregation of signatures.

3.1.1. IoT Devices

To enable data authentication, all IoT devices need to do the following two tasks:

• Initial on-chain registration (only once);
• Data authentication via digital signatures.

Blockchains offer a solution that prevents data manipulation because of the immutable
nature of blockchains. This is why every IoT device has to authenticate itself on the ledger,
resulting in the creation and storage of its certificate, which includes its public key and

Sensors 2024, 24, 1037 11 of 25

other possible identifying details (e.g., what type of IoT device it is and what data does it
produce). These certificates (public keys) are used to make sure that the IoT devices indeed
generated the data.

Some IoT devices might be resource constrained, so expecting all IoT devices to
communicate directly with a chain for anything else besides initial registration is not viable,
since it comes with additional financial costs (paying for transaction fees).

To alleviate IoTs from this job, we introduce edge servers that aggregate IoT signatures
into one single signature/proof. The signatures are thus essential for our solution, where
we expect IoT devices to sign their messages before sending them to the edge aggregating
server. Using digital signatures on the IoT side with verification on the edge aggregator
offers faster data authentication. However, it increases the computational load on the IoT
device, which may not be ideal for resource-constrained devices, such as those running on
battery power. For these resource-constrained devices, Hash-based message authentication
code (HMAC) is available, which reduces the computational burden on IoT devices by
sacrificing the speed of data authentication.

3.1.2. Edge Aggregating Servers

Our solution employs cryptographic proofs (SNARKs) and the algorithm used for
ECDSA signature verification within the Nova prover. This enables a coprocessor of
sorts on top of the blockchain. These coprocessors, or edge aggregators, allow for the
offloading of computation and storage burdens from the blockchain to off-chain systems.
This approach helps to decouple unnecessary functions from the ledger, moving bottlenecks
to off-chain systems where they are more manageable. The ECDSA verification algorithm
checks the validity of signatures, and the Nova prover confirms that the algorithm has been
executed correctly and on valid inputs, including signatures, messages, and public keys.
The resulting proof serves as an aggregate verification of the signatures’ authenticity. It is
important to note that while this method increases overheads on off-chain systems, it is
more feasible than handling these tasks on the blockchain, where resources are more limited.

The operational steps each edge aggregator has to make are as follows:

• Initial on-chain registration (only once).
• Signature pre-processing (conform with efficient ECDSA).
• Building a Merkle tree for each batch (includes public keys, signatures, messages, and

batch identifiers) ensures all relevant data are accounted for in a verifiable structure.
• The edge aggregator signs the Merkle root along with the batch number and uses this

as the public input to the prover. This ties the proof generation directly to the specific
dataset represented by the Merkle tree.

• Writing each batch’s Merkle root, proof hash, and batch identifier on-chain. It enhances
transparency and provides an immutable record that can be independently verified.

Aggregating Signatures

All edge aggregators must register on-chain the same way IoT devices do. This is
because they are responsible for aggregating the signatures and writing on-chain, so we
need a way to verify that the right aggregator responsible for a set of IoT devices has indeed
completed the work and published the relevant data (for authentication) on-chain.

At the core of our system is the process of data collection from IoT devices using
the edge aggregators. Each IoT device collects data, referred to as ‘messages’, and signs
these messages with its private key to authenticate their origin. All these data are then
sent to an edge aggregator where some pre-processing is completed using the signatures
and actual message to conform with the efficient ECDSA verification method explained
in Section 2.3.2. These signed messages are then batched for processing, with each batch
being assigned a unique identifier to distinguish it from others. This unique identifier plays
a crucial role in the later stages of verification.

For each batch of data, a Merkle tree is constructed. The leaves of this Merkle tree
consist of a hash that incorporates the message, its signature, the corresponding public key,

Sensors 2024, 24, 1037 12 of 25

and the batch identifier. The construction of the Merkle tree is a critical step as it enables
the efficient and secure verification of the data inclusion in the batch. The Merkle tree root
and the current batch number are used as the message the aggregator has generated, so
it has to sign it. Pre-processing is completed for this message and signature as well, so
it can be used as the public input in the proving system (Nova). All other IoT data will
be the private inputs. This way, we find a ZK proof that gives no information about the
IoT data. The public input, which is the signed Merkle tree root plus the batch number,
allows us to prove that a certain IoT data packet was part of the authentication process via
signature aggregation.

The size of the aggregated signature, or more exactly, the proof of aggregation, also
called the recursive proof, is quite large, so an additional proving is completed to compress
the recursive proof. This compressed SNARK proof comes with the Nova prover and is
based on Spartan. Essentially, it creates a smaller proof that proves that we have a proof
that satisfies the initial statement, in this case, that the aggregation has been completed
correctly. The proof is intrinsically linked to the batch identifier, ensuring a clear and
verifiable connection between the proof and the specific batch of data.

To enhance the integrity and provide a timestamp for our system, the aggregator
records crucial information on a blockchain. This includes the hash of the aggregated
signature (compressed cryptographic proof), the Merkle root of the current batch, and
the batch identifier. Using a blockchain here is pivotal, as it offers an immutable ledger,
ensuring that the data cannot be altered retrospectively once recorded.

To see how the solution would work, imagine a transaction occurs and a buyer
purchases specific data from an IoT device. They are provided not just with the message
but also its signature, the corresponding public key, the batch identifier, and crucially, a
Merkle proof. This Merkle proof enables the buyer to independently verify that the specific
message was indeed part of the batch linked to the recorded proof. The buyer can verify this
by checking the Merkle proof against the publicly recorded Merkle root and ensuring that
the batch identifier aligns with the blockchain record. This verification process confirms
that the message was part of the specific batch for which the proof was generated, thus
assuring the buyer of the authenticity and integrity of the data. Verification that the proof is
correct can also be completed by providing the buyer with the proof (along with necessary
verification tools) and them verifying it themself.

Security considerations of this approach are discussed in Section 5.

Data Storage

The edge aggregating servers also take care of storage (IoT data like sensor readings) by
storing them on the aggregator itself, in a cloud database, or completely on-chain. The im-
age below depicts the whole system where the aggregator writes the final proof/aggregate
on-chain. The idea here is that once a setup has been created, the aggregator keeps produc-
ing new proofs for batches of signatures and then writes each proof and IoT data on-chain.
Smart contracts are deployed to store the data and verify the proof. While this approach
would be the ideal solution, it is not yet possible as of this paper, with the reason being
that the proof and whole data are still too big. Consequently, high gas costs are accrued
for writing all of these data. The complexity of creating a verifier smart contract is also an
issue. We believe that the exploration of full on-chain storage should still be considered
and explored further since rollups on L2 can also be built to store data on cheaper systems
than on L1. Perhaps the use of Layer 3 or alternative blockchain storage solutions like
EigenLayer, Celestia, Filecoin, and Arweave could also be considered (Figure 3).

A better approach would be to store all of the IoT data off-chain and only include
hashes of the proofs on-chain, working as a timestamp of when the proof was generated
and preventing the aggregators from tampering with the proofs. From there, anyone can
verify the proofs on their own, which is an acceptable solution for many non-financial
privacy applications. The image below depicts such a system (Figure 4).

Sensors 2024, 24, 1037 13 of 25

Sensors 2024, 24, x FOR PEER REVIEW 13 of 26

generated, thus assuring the buyer of the authenticity and integrity of the data. Verifica-
tion that the proof is correct can also be completed by providing the buyer with the proof
(along with necessary verification tools) and them verifying it themself.

Security considerations of this approach are discussed in Section 5.

Data Storage
The edge aggregating servers also take care of storage (IoT data like sensor readings)

by storing them on the aggregator itself, in a cloud database, or completely on-chain. The
image below depicts the whole system where the aggregator writes the final proof/aggre-
gate on-chain. The idea here is that once a setup has been created, the aggregator keeps
producing new proofs for batches of signatures and then writes each proof and IoT data
on-chain. Smart contracts are deployed to store the data and verify the proof. While this
approach would be the ideal solution, it is not yet possible as of this paper, with the reason
being that the proof and whole data are still too big. Consequently, high gas costs are
accrued for writing all of these data. The complexity of creating a verifier smart contract
is also an issue. We believe that the exploration of full on-chain storage should still be
considered and explored further since rollups on L2 can also be built to store data on
cheaper systems than on L1. Perhaps the use of Layer 3 or alternative blockchain storage
solutions like EigenLayer, Celestia, Filecoin, and Arweave could also be considered (Fig-
ure 3).

Figure 3. Fully on-chain storage.

A better approach would be to store all of the IoT data off-chain and only include
hashes of the proofs on-chain, working as a timestamp of when the proof was generated
and preventing the aggregators from tampering with the proofs. From there, anyone can
verify the proofs on their own, which is an acceptable solution for many non-financial
privacy applications. The image below depicts such a system (Figure 4).

Figure 3. Fully on-chain storage.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 26

generated, thus assuring the buyer of the authenticity and integrity of the data. Verifica-
tion that the proof is correct can also be completed by providing the buyer with the proof
(along with necessary verification tools) and them verifying it themself.

Security considerations of this approach are discussed in Section 5.

Data Storage
The edge aggregating servers also take care of storage (IoT data like sensor readings)

by storing them on the aggregator itself, in a cloud database, or completely on-chain. The
image below depicts the whole system where the aggregator writes the final proof/aggre-
gate on-chain. The idea here is that once a setup has been created, the aggregator keeps
producing new proofs for batches of signatures and then writes each proof and IoT data
on-chain. Smart contracts are deployed to store the data and verify the proof. While this
approach would be the ideal solution, it is not yet possible as of this paper, with the reason
being that the proof and whole data are still too big. Consequently, high gas costs are
accrued for writing all of these data. The complexity of creating a verifier smart contract
is also an issue. We believe that the exploration of full on-chain storage should still be
considered and explored further since rollups on L2 can also be built to store data on
cheaper systems than on L1. Perhaps the use of Layer 3 or alternative blockchain storage
solutions like EigenLayer, Celestia, Filecoin, and Arweave could also be considered (Fig-
ure 3).

Figure 3. Fully on-chain storage.

A better approach would be to store all of the IoT data off-chain and only include
hashes of the proofs on-chain, working as a timestamp of when the proof was generated
and preventing the aggregators from tampering with the proofs. From there, anyone can
verify the proofs on their own, which is an acceptable solution for many non-financial
privacy applications. The image below depicts such a system (Figure 4).

Figure 4. Divided storage (on-chain + off-chain database).

3.2. Proving System Implementation

The implementation and testing of our aggregator started with choosing a proving
system that would allow us to skip the trusted setup that comes with some SNARKs.
We first utilized the RISC Zero zkVM, a high-performance tool for proving the correct
execution of arbitrary code written in Rust. This tool lowers the threshold to achieve a
working provable program because we just have to write Rust code and the zkVM proves
it. Applications written in Risc0 are structured into two parts: the host code and the guest
code. The guest program is the code that we want to run; in our case, it is the ECDSA
verification algorithm, and the host code is the code that proves that the guest code was
executed correctly. The idea here was to create one proof of verification per signature
and lastly create an aggregated proof of proofs with their recursive solution that would
compress many Risc0 receipts (proofs) into a single receipt and lastly compress the last
receipt via their STARK-to-SNARK circuit that translated a STARK proof into a SNARK
proof. Unfortunately, their recursion circuit was not yet available or documented at the
time of writing and neither was their compression circuit. Nonetheless, the proving time
for one ECDSA signature verification was an eye opener since the proving speed was
unsatisfactory for large IoT data authentication. Despite the ease of use of Risc0, the lack of
performance led us to Nova, a performant recursive prover.

In Nova, we have to write our own circuits. We re-used the Efficient ECDSA verifica-
tion circuit written by Personae Labs with some modifications. The circuit was written in
Circom, but Nova natively supports the Bellpeperson library for Rust, so we utilized an
open source library, Nova-scotia, as the middleware between Nova and Circom. Since we
are verifying ECDSA (secp256k1) signatures, we utilized secp/secq curve cycles, which
Nova already support. The proving side works over the secq curve and the verifying works

Sensors 2024, 24, 1037 14 of 25

over secp, so when compiling with the Circom compiler, we had to specify the prime to be
used—prime secq256k1 for the circuit generation.

The outputs are the circuit in R1CS and the witness generator in wasm. We could then
write the implementation for Nova in Rust. We read the pre-processed signatures, generated
the public parameters using the R1CS file, and lastly, created and verify the proofs.

There are two proving stages: the first is the recursive one that proves the validity of
all signatures (signature aggregation), and the second for compressing the recursive proof.
The recursive proving takes in the public input s0 and the private inputs ω (witnesses), with
F being the signature aggregation. The public input is the Edge serve message, signature,
and public key, and the private inputs are all of the IoT messages, signatures, and public
keys. Both the public and private inputs are pre-processed to conform with the efficient
format (Figure 5).

Sensors 2024, 24, x FOR PEER REVIEW 14 of 26

Figure 4. Divided storage (on-chain + off-chain database).

3.2. Proving System Implementation
The implementation and testing of our aggregator started with choosing a proving

system that would allow us to skip the trusted setup that comes with some SNARKs. We
first utilized the RISC Zero zkVM, a high-performance tool for proving the correct execu-
tion of arbitrary code written in Rust. This tool lowers the threshold to achieve a working
provable program because we just have to write Rust code and the zkVM proves it. Ap-
plications written in Risc0 are structured into two parts: the host code and the guest code.
The guest program is the code that we want to run; in our case, it is the ECDSA verification
algorithm, and the host code is the code that proves that the guest code was executed
correctly. The idea here was to create one proof of verification per signature and lastly
create an aggregated proof of proofs with their recursive solution that would compress
many Risc0 receipts (proofs) into a single receipt and lastly compress the last receipt via
their STARK-to-SNARK circuit that translated a STARK proof into a SNARK proof. Un-
fortunately, their recursion circuit was not yet available or documented at the time of writ-
ing and neither was their compression circuit. Nonetheless, the proving time for one EC-
DSA signature verification was an eye opener since the proving speed was unsatisfactory
for large IoT data authentication. Despite the ease of use of Risc0, the lack of performance
led us to Nova, a performant recursive prover.

In Nova, we have to write our own circuits. We re-used the Efficient ECDSA verifica-
tion circuit written by Personae Labs with some modifications. The circuit was written in
Circom, but Nova natively supports the Bellpeperson library for Rust, so we utilized an
open source library, Nova-scotia, as the middleware between Nova and Circom. Since we
are verifying ECDSA (secp256k1) signatures, we utilized secp/secq curve cycles, which
Nova already support. The proving side works over the secq curve and the verifying
works over secp, so when compiling with the Circom compiler, we had to specify the
prime to be used—prime secq256k1 for the circuit generation.

The outputs are the circuit in R1CS and the witness generator in wasm. We could
then write the implementation for Nova in Rust. We read the pre-processed signatures,
generated the public parameters using the R1CS file, and lastly, created and verify the
proofs.

There are two proving stages: the first is the recursive one that proves the validity of
all signatures (signature aggregation), and the second for compressing the recursive proof.
The recursive proving takes in the public input s0 and the private inputs ω (witnesses),
with F being the signature aggregation. The public input is the Edge serve message, sig-
nature, and public key, and the private inputs are all of the IoT messages, signatures, and
public keys. Both the public and private inputs are pre-processed to conform with the
efficient format (Figure 5).

Figure 5. Nova recursive prover.

Alongside the actual inputs, the recursive prover also takes the R1CS and witness
generator files, as well as the public parameters generated with the R1CS file.

For each aggregation step, the prover will take 10 signatures and then continue to the
next step with the next 10 signatures. At the very end, we receive the recursive proof,

Figure 5. Nova recursive prover.

Alongside the actual inputs, the recursive prover also takes the R1CS and witness
generator files, as well as the public parameters generated with the R1CS file.

For each aggregation step, the prover will take 10 signatures and then continue to
the next step with the next 10 signatures. At the very end, we receive the recursive proof,
which is quite large, which is why we further compress this proof with the Spartan prover
incorporated with Nova.

3.3. On-Chain
3.3.1. Layer 2 Rollups

We have set up a Layer 2 (L2) rollup for our proposed solution, since we believe it
presents a superior approach for real-world applications. This preference is due to rollups’
ability to remain centralized and thus gain scalability while still ensuring security by
posting proofs and compressed block data on the primary Layer 1 (L1). Initially, we set up
our rollup to settle on Ethereum’s test network Holesky to assess usability and functionality.

However, for the actual testing and benchmarking, where costs of interacting with the
rollup were recorded, we employed the Optimism Sepolia testnet. This choice was made to
ensure more realistic blockchain load conditions, which could not be replicated on a laptop
with minimal traffic. The Sepolia testnet provided a more accurate environment for testing,
with loads similar to real-world scenarios.

This layered structure, where we can spin up new rollups, facilitates the creation of
new modules that can achieve better performance and privacy (with some modifications)
while relying on L1 for settlement and security. As one rollup becomes congested, we can
simply spin up new rollups, all settling on Ethereum. This approach is also intriguing
because we do not silo ourselves from the broader ecosystem, which includes an abundance
of open-source developments, liquidity, and user bases. Furthermore, this model provides
a standardized means of interoperability with other rollups. For instance, two companies
could create their L2s with tailored adjustments and exchange data and resources within
the shared ecosystem via bridges or Ethereum itself.

3.3.2. Smart Contract

While the layered blockchain structure allows for increased modularity and scalability
by spinning new rollups, additional modularity should be achieved on the smart contract
side. We implement this by utilizing the MUD framework [33]. It allows for our proposed

Sensors 2024, 24, 1037 15 of 25

system to be scalable, handling potentially vast numbers of IoT devices that are aggregated
using multiple edge aggregators.

The MUD framework comprises two primary components: Store and World. Store
serves as an alternative to Solidity’s storage engine, offering a data model similar to a
relational database or key-value store. This design allows for automatic indexing via
event emissions on each storage operation and packs data more compactly than Solidity’s
storage engine. Moreover, it enables on-chain reading of external contract storage without
depending on existing view functions.

In our implementation, each piece of IoT data (hashes, proofs, and/or the data itself)
is stored as a record in a table within Store. Each record is uniquely identified using a
combination of a ResourceId (tableId) and a composite key (bytes32[] keyTuple). The
ValueSchema of each table defines the data types stored, similar to column types in a
database table. The table schema used in our implementation is outlined in Table 1,
displaying the schemas for device registration and aggregator data entry. As the network
of IoT devices grows, requiring more edge aggregators, our system can expand by creating
multiple namespaces with these tables. Access control for each namespace ensures that
only specific edge aggregators can write batches.

Table 1. Schema for our data tables.

Device Registration Aggregator Data Entry (Batch Info)

keySchema: {
owner: “address”,
},
valueSchema: {
isIotDevice: “bool”,
},

keySchema: {
owner: “address”,
},
valueSchema: {
batchNumber: “uint32”,
proofHash: “string”,
merkleRoot: “string”,
},

Store also automatically generates a library for each table, providing getter and setter
functions. Furthermore, Store allows for runtime schema definition, enabling the reg-
istration of new tables with new schemas after deployment. This capability is crucial
for advanced applications such as the World protocol, which we utilize in our IoT data
authentication framework.

The World component of MUD provides the logic and access control layer on top
of Store’s storage capabilities. It acts as a central entry point for calls, performing access
control checks and routing authorized requests to the appropriate System. Systems are
stateless contracts interacting with data in Store. They can read from all tables and modify
data in accessible tables, typically within their namespace, which can be understood as
containers for tables and systems. Even access control is based on namespaces.

Our experimentation involved several steps. Initially, we defined the table schemas.
This was followed by the implementation of system contracts, utilizing the libraries gen-
erated for each table. We crafted a single system contract containing functions to modify
the data in both tables. Subsequently, we deployed the smart contracts using the MUD
framework. After deployment, our focus shifted to logging the gas costs associated with
device registration and the entry of edge aggregator data for specific batches. The en-
tire process was straightforward, effectively highlighting the user-friendly nature of the
MUD framework.

Figure 6 depicts the complete solution architecture. The process begins with multiple
IoT devices collecting data and generating corresponding digital signatures. These data,
along with the signatures, are then transmitted to the edge aggregating servers.

Sensors 2024, 24, 1037 16 of 25
Sensors 2024, 24, x FOR PEER REVIEW 17 of 26

Figure 6. Overview of the whole solution (smart contract + off-chain aggregation).

On the left, we have illustrated how a fully on-chain storage approach would look
like, but it is important to note that we have not tested this approach. We have instead
defined alternative research approaches in the Conclusion section (Section 6) that focus
on a fully on-chain approach. The edge aggregator receives data and signatures from its
connected IoT devices. It performs signature aggregation to create a compact batch that
includes aggregated IoT data, the batch number, proof hash, and Merkle root. This batch
is then written to NameSpace 1 on the blockchain for immutable storage, ensuring integ-
rity and verifiability of the data. On the right, another edge aggregator similarly receives
data and signatures but opts for a different data handling approach. After aggregation,
the IoT data are forwarded to a traditional database for storage, while only the batch num-
ber, proof hash, and Merkle root are written to NameSpace 2 on the blockchain. This
method segregates the detailed IoT data from the blockchain, leveraging traditional data-
bases for storage, and uses the blockchain primarily for verification purposes.

Below the aggregators, the diagram shows the World Contract, which acts as the
backbone of the system’s on-chain component. It houses NameSpace 1 and NameSpace 2,
each containing tables for storing data and systems for executing logic.

4. Results
Our solution is structured into two main components, resulting in our findings being

split into two distinct sections: off-chain and on-chain. Our experimental setup for the off-
chain (edge aggregating server) component was carried out using a MacBook M1 Pro with
16 GB of memory, which facilitated the creation of signatures, their verification, and the

Figure 6. Overview of the whole solution (smart contract + off-chain aggregation).

On the left, we have illustrated how a fully on-chain storage approach would look
like, but it is important to note that we have not tested this approach. We have instead
defined alternative research approaches in the Conclusion section (Section 6) that focus
on a fully on-chain approach. The edge aggregator receives data and signatures from its
connected IoT devices. It performs signature aggregation to create a compact batch that
includes aggregated IoT data, the batch number, proof hash, and Merkle root. This batch is
then written to NameSpace 1 on the blockchain for immutable storage, ensuring integrity
and verifiability of the data. On the right, another edge aggregator similarly receives data
and signatures but opts for a different data handling approach. After aggregation, the
IoT data are forwarded to a traditional database for storage, while only the batch number,
proof hash, and Merkle root are written to NameSpace 2 on the blockchain. This method
segregates the detailed IoT data from the blockchain, leveraging traditional databases for
storage, and uses the blockchain primarily for verification purposes.

Below the aggregators, the diagram shows the World Contract, which acts as the
backbone of the system’s on-chain component. It houses NameSpace 1 and NameSpace 2,
each containing tables for storing data and systems for executing logic.

4. Results

Our solution is structured into two main components, resulting in our findings being
split into two distinct sections: off-chain and on-chain. Our experimental setup for the
off-chain (edge aggregating server) component was carried out using a MacBook M1 Pro
with 16 GB of memory, which facilitated the creation of signatures, their verification, and
the generation of proofs. Our framework is designed to be compatible with any IoT device

Sensors 2024, 24, 1037 17 of 25

capable of securely creating signatures. This includes devices that can safely store and
use private keys. For the on-chain component, we utilized the public Optimism Sepolia
testnet, rather than our own rollup, to simulate more realistic blockchain load conditions
and provide a more accurate assessment of on-chain costs.

The off-chain portion elaborates on the signature aggregator’s proving times and
proof sizes. This aggregator processes IoT messages and signatures, compiling them into
batches, generating succinct proof of verification/aggregation. In this context, we have
explored two proving systems, both employing a transparent approach that eliminates
the need for a trusted setup. We present a comparison of the outcomes achieved by these
two systems. On the other hand, the on-chain section delves into the storage costs and the
registration process for devices, encompassing both edge aggregators and IoT devices. Our
tests on the on-chain component focused solely on recording the essential data needed to
authenticate an entire batch after its proof. While direct on-chain storage of all IoT data has
not been evaluated, the costs can be inferred from the expenses incurred in storing only the
necessary batch data.

4.1. Proving Times and Proof Sizes

Figure 7 illustrates the comparative proving times for the Nova and Risc0 systems as
the number of signatures required for aggregation increases. For Nova, the proving times
represent the total of two components: the time required to generate the recursive SNARK
and the time to produce a smaller, compressed SNARK derived from the recursive one.

Sensors 2024, 24, x FOR PEER REVIEW 18 of 26

generation of proofs. Our framework is designed to be compatible with any IoT device
capable of securely creating signatures. This includes devices that can safely store and use
private keys. For the on-chain component, we utilized the public Optimism Sepolia test-
net, rather than our own rollup, to simulate more realistic blockchain load conditions and
provide a more accurate assessment of on-chain costs.

The off-chain portion elaborates on the signature aggregator’s proving times and
proof sizes. This aggregator processes IoT messages and signatures, compiling them into
batches, generating succinct proof of verification/aggregation. In this context, we have ex-
plored two proving systems, both employing a transparent approach that eliminates the
need for a trusted setup. We present a comparison of the outcomes achieved by these two
systems. On the other hand, the on-chain section delves into the storage costs and the
registration process for devices, encompassing both edge aggregators and IoT devices.
Our tests on the on-chain component focused solely on recording the essential data
needed to authenticate an entire batch after its proof. While direct on-chain storage of all
IoT data has not been evaluated, the costs can be inferred from the expenses incurred in
storing only the necessary batch data.

4.1. Proving Times and Proof Sizes
Figure 7 illustrates the comparative proving times for the Nova and Risc0 systems as

the number of signatures required for aggregation increases. For Nova, the proving times
represent the total of two components: the time required to generate the recursive SNARK
and the time to produce a smaller, compressed SNARK derived from the recursive one.

Figure 8 presents the proving times for the recursive and compressed SNARKs in the
Nova prover. We can see that the time for the compressed SNARK remains constant, while
the recursive one rises linearly with the increase in the number of signatures. This is be-
cause the compressed one only proves the correctness of the recursive SNARK regardless
of the number of signatures, while the recursive one has to aggregate more signatures.

The recursive proof in Nova is approximately 8.7 MB, while the compressed proof is
just 29, in contrast to the 1.3 MB size of the Risc0 proof. However, it is important to note
that the Risc0 proof is not compressed, so for our case, aggregating multiple proofs and
then compressing the last proof would be necessary.

Figure 7. Proving time for Nova (recursive + compressed) and Risc0. Figure 7. Proving time for Nova (recursive + compressed) and Risc0.

Figure 8 presents the proving times for the recursive and compressed SNARKs in
the Nova prover. We can see that the time for the compressed SNARK remains constant,
while the recursive one rises linearly with the increase in the number of signatures. This is
because the compressed one only proves the correctness of the recursive SNARK regardless
of the number of signatures, while the recursive one has to aggregate more signatures.

Sensors 2024, 24, 1037 18 of 25Sensors 2024, 24, x FOR PEER REVIEW 19 of 26

Figure 8. Nova proving time for the recursive and the compressed SNARK.

While proving time is important on the edge aggregating server side, verification
times are crucial for clients who need to verify that the aggregation and, thus, data au-
thentication have been correctly performed. Figure 9 depicts the verification time per sig-
nature for both the Risc0 and the Nova provers. We have combined the verification times
for the Nova prover for the recursive and compressed SNARKs. It can be observed that
the verification times per signature remain constant for the Risc0 prover, which is ex-
pected as a proof is created for each signature verification.

Analyzing the proving times per individual signature is equally important. That is
why Figure 10 illustrates the proving times for both the Nova and Risc0 proving systems
on a per-signature basis. It shows that the proving times for Nova decrease as the number
of signatures in a batch increases, indicating improved efficiency at scale. In contrast, the
proving times for Risc0 remain constant, which is consistent with its overall proving time
trend.

Figure 8. Nova proving time for the recursive and the compressed SNARK.

The recursive proof in Nova is approximately 8.7 MB, while the compressed proof is
just 29, in contrast to the 1.3 MB size of the Risc0 proof. However, it is important to note
that the Risc0 proof is not compressed, so for our case, aggregating multiple proofs and
then compressing the last proof would be necessary.

While proving time is important on the edge aggregating server side, verification times
are crucial for clients who need to verify that the aggregation and, thus, data authentication
have been correctly performed. Figure 9 depicts the verification time per signature for both
the Risc0 and the Nova provers. We have combined the verification times for the Nova
prover for the recursive and compressed SNARKs. It can be observed that the verification
times per signature remain constant for the Risc0 prover, which is expected as a proof is
created for each signature verification.

Sensors 2024, 24, x FOR PEER REVIEW 19 of 26

Figure 8. Nova proving time for the recursive and the compressed SNARK.

While proving time is important on the edge aggregating server side, verification
times are crucial for clients who need to verify that the aggregation and, thus, data au-
thentication have been correctly performed. Figure 9 depicts the verification time per sig-
nature for both the Risc0 and the Nova provers. We have combined the verification times
for the Nova prover for the recursive and compressed SNARKs. It can be observed that
the verification times per signature remain constant for the Risc0 prover, which is ex-
pected as a proof is created for each signature verification.

Analyzing the proving times per individual signature is equally important. That is
why Figure 10 illustrates the proving times for both the Nova and Risc0 proving systems
on a per-signature basis. It shows that the proving times for Nova decrease as the number
of signatures in a batch increases, indicating improved efficiency at scale. In contrast, the
proving times for Risc0 remain constant, which is consistent with its overall proving time
trend.

Figure 9. Verification time per signature for Nova (recursive + compressed) and Risc0.

Sensors 2024, 24, 1037 19 of 25

Analyzing the proving times per individual signature is equally important. That is
why Figure 10 illustrates the proving times for both the Nova and Risc0 proving systems
on a per-signature basis. It shows that the proving times for Nova decrease as the number
of signatures in a batch increases, indicating improved efficiency at scale. In contrast,
the proving times for Risc0 remain constant, which is consistent with its overall proving
time trend.

Sensors 2024, 24, x FOR PEER REVIEW 20 of 26

Figure 9. Verification time per signature for Nova (recursive + compressed) and Risc0.

Figure 10. Proving time per signature for Nova and Risc0.

4.2. On-Chain Storing Costs
For our on-chain test, we assessed the costs associated with registration and the cost

of writing authenticating data for each batch, which includes the batch number, aggregat-
ing proof hash, and the Merkle root. We present the costs for Layer 1 (L1) and Layer 2 (L2)
networks, demonstrating how using L2 can significantly reduce costs.

Two factors contribute to gas consumption within L2 networks, specifically in our
case, with a rollup based on the Optimism stack. The first is the portion of gas used for
writing our transaction to L1, and the second is the gas used for executing the transaction
on L1. The gas prices for these two components differ.

Equations (1) and (2) depict how the transaction fee is calculated based on the gas
used for the transaction and the current gas price for both networks. This calculation in-
cludes the base gas price, the priority gas price, and a scalar representing a dynamic over-
head cost, which, at the time of writing, was set to 0.684. To determine the actual transac-
tion fee, both fees from L1 and L2 must be summed. 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑒𝑒 𝑜𝑛 𝐿2 𝑔𝑎𝑠 𝑢𝑠𝑒𝑑 ∙ 𝑏𝑎𝑠𝑒 𝑝𝑟𝑖𝑐𝑒 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑝𝑟𝑖𝑐𝑒 (1)

𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑒𝑒 𝑜𝑛 𝐿1 𝑔𝑎𝑠 𝑢𝑠𝑒𝑑 ∙ 𝑏𝑎𝑠𝑒 𝑝𝑟𝑖𝑐𝑒 ∙ 𝑠𝑐𝑎𝑙𝑎𝑟 (2)

The prices for the gas units and ETH utilized in the calculations are detailed in Table
2, which reflects the average market rates for the Ethereum and Optimism networks at the
time of writing, with 1 ETH being equivalent to 109 gwei units.

Table 2. Prices used in cost calculations.

Layer 1 Layer 2

Base Price [gwei/gas] Priority Price [gwei/gas] Base Price [gwei/gas] Priority Price [gwei/gas] ETH Price
[USD/ETH]

28 0.1 0.00345 0.02 2150

Figure 10. Proving time per signature for Nova and Risc0.

4.2. On-Chain Storing Costs

For our on-chain test, we assessed the costs associated with registration and the cost of
writing authenticating data for each batch, which includes the batch number, aggregating
proof hash, and the Merkle root. We present the costs for Layer 1 (L1) and Layer 2 (L2)
networks, demonstrating how using L2 can significantly reduce costs.

Two factors contribute to gas consumption within L2 networks, specifically in our
case, with a rollup based on the Optimism stack. The first is the portion of gas used for
writing our transaction to L1, and the second is the gas used for executing the transaction
on L1. The gas prices for these two components differ.

Equations (1) and (2) depict how the transaction fee is calculated based on the gas used
for the transaction and the current gas price for both networks. This calculation includes
the base gas price, the priority gas price, and a scalar representing a dynamic overhead
cost, which, at the time of writing, was set to 0.684. To determine the actual transaction fee,
both fees from L1 and L2 must be summed.

transaction f ee on L2 = gas used·(base price + priority price) (1)

transaction f ee on L1 = gas used·(base price)·scalar (2)

The prices for the gas units and ETH utilized in the calculations are detailed in Table 2,
which reflects the average market rates for the Ethereum and Optimism networks at the
time of writing, with 1 ETH being equivalent to 109 gwei units.

Tables 3 and 4 detail the costs of a single registration and data writing. The data are
presented in terms of gwei units and US dollars for two distinct scenarios: one using the
Ethereum mainnet and the other employing a rollup based on Optimism.

Figure 11 depicts the difference in accumulated costs for the scenario where we write
the authenticating data for a batch of signatures. It shows how the costs of utilizing L1

Sensors 2024, 24, 1037 20 of 25

instead of L2 would rise dramatically as the amount of data written for batches rises or
accumulates over time.

Table 2. Prices used in cost calculations.

Layer 1 Layer 2

Base Price [gwei/gas] Priority Price [gwei/gas] Base Price [gwei/gas] Priority Price [gwei/gas] ETH Price [USD/ETH]

28 0.1 0.00345 0.02 2150

Table 3. Gas usage and cost for device registration in the case of using L1 or L2.

Layer 1 Only Layered (L1 + L2)

Gas Used Gas Used L1 Gas Used L2

Registration 74,653 2188 74,653

Cost in gwei and USD

Cost [gwei] 2,097,749.3 41,904.576 1750.612

Cost [USD] 4.51 0.090 0.003

Cost total [USD] 4.51 0.093

Table 4. Gas usage and cost for batch data writing in the case of using L1 or L2.

Layer 1 Only Layered (L1 + L2)

Gas Used Gas Used L1 Gas Used L2

Writing data 198,979 4820 198,979

Cost in gwei and USD

Cost [gwei] 5,591,309.9 92,312.64 4666.057

Cost [USD] 12.02 0.198 0.010

Cost total [USD] 12.02 0.208

Sensors 2024, 24, x FOR PEER REVIEW 21 of 26

Tables 3 and 4 detail the costs of a single registration and data writing. The data are
presented in terms of gwei units and US dollars for two distinct scenarios: one using the
Ethereum mainnet and the other employing a rollup based on Optimism.

Table 3. Gas usage and cost for device registration in the case of using L1 or L2.

Layer 1 Only Layered (L1 + L2)

Gas Used Gas Used L1 Gas Used L2
Registration 74,653 2188 74,653

Cost in gwei and USD
Cost [gwei] 2,097,749.3 41,904.576 1750.612
Cost [USD] 4.51 0.090 0.003

Cost total [USD] 4.51 0.093

Table 4. Gas usage and cost for batch data writing in the case of using L1 or L2.

Layer 1 Only Layered (L1 + L2)

Gas Used Gas Used L1 Gas Used L2
Writing data 198,979 4820 198,979

Cost in gwei and USD
Cost [gwei] 5,591,309.9 92,312.64 4666.057
Cost [USD] 12.02 0.198 0.010

Cost total [USD] 12.02 0.208

Figure 11 depicts the difference in accumulated costs for the scenario where we write
the authenticating data for a batch of signatures. It shows how the costs of utilizing L1
instead of L2 would rise dramatically as the amount of data written for batches rises or
accumulates over time.

Figure 11. Cost comparison between using Layer 1 only and Layered (L1 + L2) for writing batch
authenticating data.

5. Discussion
IoT data authentication, traditionally centralized, has been revolutionized using

blockchain technology, offering immutability and enhanced security. However, while se-
cure, direct interaction with public ledgers is not economically scalable due to transaction

Figure 11. Cost comparison between using Layer 1 only and Layered (L1 + L2) for writing batch
authenticating data.

Sensors 2024, 24, 1037 21 of 25

5. Discussion

IoT data authentication, traditionally centralized, has been revolutionized using
blockchain technology, offering immutability and enhanced security. However, while
secure, direct interaction with public ledgers is not economically scalable due to transaction
costs. Permissioned blockchains improve scalability and privacy, but at the cost of true
decentralization, reintroducing a degree of trust and thus lower security.

Our approach tackles this problem by preserving high security while still making the
system highly scalable. The solution consists of an off-chain edge aggregating server that
manages IoT devices and handles authentication via signature aggregation, coupled with a
layered blockchain structure. The first layer includes the Ethereum network, providing high
decentralization and security, while the second layer comprises rollups with higher perfor-
mance and cheaper fees. These rollups are used for device registration—encompassing IoT
devices and Edge aggregation servers—and for storing authenticating data for each batch
of signatures the edge aggregator processes. These data include the proof hash produced
by the proving system inside the edge aggregator, the Merkle tree root, and the current
batch number.

5.1. Off-Chain Results

We utilized the Nova and Risc0 provers, with Nova being used to aggregate batches
of signatures and produce a proof at the end of aggregation and Risc0 to create a proof of
signature verification for one signature only. Figure 7 provides a logarithmic comparison
of the proving times for Nova and Risc0 as the number of signatures increases. Utilizing a
log scale is crucial to effectively visualize Risc0’s performance in conjunction with that of
Nova, given that Risc0’s proving times escalate much faster with an increasing number of
signatures. For example, when the count of signatures rises from 10 to 20, Risc0’s proving
time nearly doubles from 369.7 s to 739.4 s, while Nova’s proving time grows from 3.62 s to
only 5.187 s.

The substantial performance gap arises because generating a proof for each signature
verification is computationally intensive. Risc0 operates as a non-recursive prover, creating
an individual proof for each signature verification. In contrast, Nova functions as a high-
performance recursive prover, verifying batches of signatures and producing a proof only
after all verifications are complete. This difference in approach underscores the scalability
and efficiency of Nova, particularly in scenarios with a large number of signatures.

This gap becomes more pronounced when comparing both systems for proving times
and verifying times per signature (Figures 10 and 11), where the Nova prover demonstrates
increased efficiency with more signatures, unlike the constant times of the Risc0 prover.

However, the Nova prover’s efficiency comes with a complexity: it has two contribu-
tors to proving time. The first is the time it takes to create a recursive proof, and the second
is the time required to compress it. These two contributions are there because the proofs
created from recursion were too large, so another step of proving the recursive proof was
used, creating a final compressed proof which is much smaller in size. For instance, the
recursive proof in Nova is approximately 8.7 Mb, while the compressed proof is just 29 Kb,
in contrast to the 1.3 Mb size of the Risc0 proof. In Figure 8, we noticed that the proving
time for the recursive side grew linearly as the number of signatures being aggregated
rose, while the time for compressing the proof stays the same. This makes sense, since the
compressing part always takes in one proof regardless of the number of signatures.

It is important to note that the proofs generated with Risc0 could be combined into
a single succinct proof. However, we chose not to pursue this due to incomplete Risc0
documentation on this subject and the lengthy proving time for one signature verification.
The Nova prover was thus chosen as it provided excellent performance, with proving and
verification times per signature decreasing as the number of signatures in a batch being
processed grew.

Sensors 2024, 24, 1037 22 of 25

5.2. On-Chain Results

For the on-chain results, we measured the costs associated with registering devices and
writing the authenticating data from the edge aggregator for one batch, irrespective of the
number of signatures in a batch, as the proof hash and Merkle root sizes remain constant.
The results demonstrate the cost advantage of using Layer 2 rollups over Ethereum Layer 1.
Specifically, the costs of using Layer 1 only are almost 48 times larger than using Layer 2 for
device registration and 57 times larger for authenticating data writing. Thus, employing a
Layer 2 rollup significantly reduces costs compared to using the Ethereum mainnet. This
cost reduction is in addition to the decreased costs for IoT devices, which, in our approach,
do not need to interact with a ledger. Yet, the proving system and the Merkle tree root
guarantees that the data are authentic, originating from registered IoT devices, and have
not been tampered with.

5.3. Security Discussion

With our approach leveraging cryptographic proofs (SNARKs) and Merkle trees, we
have established a foundation for secure and privacy-focused IoT data authentication and
storage. This method inherently enhances security: any tampering with the input data or
the prover would result in the generation of invalid proofs, thereby signaling potential
security breaches and ensuring that only valid data are processed and recorded.

Nevertheless, for a system to be production-ready, other security considerations must
be taken into account. While our research assumes the security of IoT devices and edge
servers at both the hardware and software levels, the practical implementation of such
systems in real-world scenarios may present additional challenges. Ensuring the physical
and digital integrity of IoT devices is crucial, as they are often deployed in uncontrolled
environments and could be prone to tampering or unauthorized access. Similarly, edge
servers, while assumed to be secure in our framework, would require rigorous security
protocols to prevent data breaches, unauthorized access, and ensure data privacy.

Another critical aspect is the secure communication between IoT devices and edge
aggregating servers. It is essential to safeguard data transmission to prevent interception,
eavesdropping, or manipulation. Implementing robust encryption protocols for data in
transit, such as TLS/SSL, along with mutual authentication, integrity checks, and access
controls, can provide the necessary multi-layered security.

Further research should explore these areas in depth, focusing on robust methods to
secure IoT devices and edge servers against a wide range of threats. One potential avenue
is the integration of automated security checks that could continuously monitor for signs
of tampering or unauthorized access, both in IoT devices and at the server level. Such
mechanisms would be particularly effective given the security guarantees our approach
allows. The use of SNARKs and Merkle trees not only enhances data integrity but also
offers a solid foundation for developing additional security features.

Furthermore, while the approach is discussed in Section 3.1.2 using Merkle trees
enhances the verifiability of the data, there is still an element of trust in the server. The
server’s role in constructing the Merkle tree and generating the public input for the prover
must also come with the guarantee that the private inputs going into the prover are the
same data being used to build the Merkle tree. As of this paper, this issue has not yet been
tackled, but some approaches we foresee could be as follows:

1. Modifying the Prover.

a. Modify the prover to take public keys as inputs and signatures and messages as
private inputs. This could provide a more direct link between the data sources
(IoT devices) and the proof.

b. Modify the prover to construct the Merkle tree as part of the proof generation
process. This would tightly couple the data verification with the proof itself,
providing strong assurance that the same data are used in both the Merkle tree
and the proof, without the need to disclose any data for each batch.

Sensors 2024, 24, 1037 23 of 25

2. Proving that the process of building a Merkle tree used the same data as the process
of aggregating signatures. This could be completed by utilizing yet another proving
system or for example, Intel’s trusted execution environment (SGX).

6. Conclusions

In contrast to existing IoT data authentication methods described in Section 2.1, our
solution offers a unique blend of efficiency, scalability, and privacy. Unlike approaches
that primarily rely on post-storage data integrity checks or over-dependence on edge
servers, our framework integrates zk-SNARKs and Merkle trees to ensure data privacy with
verifiability. This integration not only maintains privacy but also enables the verification
of data origin and integrity. Furthermore, our framework’s design for scalability, utilizing
edge aggregating servers, addresses the common issue of computational overhead in
resource-constrained IoT devices, a significant limitation in many existing techniques. By
recording key information such as the Merkle root and proof hash on the blockchain, our
approach also ensures immutable and transparent record keeping, enhancing trust and
authenticity far beyond what is typically achieved in the current literature. Additionally, our
approach to authentication is more performant than similar approaches utilizing ECDSA
batch verification.

In essence, the solution shifts the bottleneck to an off-chain system, moving the latency
associated with IoT data authentication (signature verification) to this off-chain system.
Rollups allow for almost immediate soft transaction confirmation, with the proving time of
edge aggregators becoming the main contributor to latency.

Using recursion in our chosen proving system is crucial, as it improves proving time
performance. Additionally, proof compression is vital, and without it, the proofs are too
large for practical use.

While current results in proving times and proof sizes show that a combination of
recursive proving and compression is necessary, we anticipate further advancements and
refinements in proof generation. These improvements will likely reduce proof sizes and
times even more, allowing us to store the compressed proofs directly on-chain more easily.
This would make using smart contracts to verify the proofs easier, enhancing immediacy
and integration within the blockchain ecosystem and transitioning our solution from a
Layer 2.5 to a Layer 3 system.

Future work could be considered in implementing aspects described in the Secu-
rity discussion. Another avenue to explore would be other L2 solutions as they mature.
While rollups store all transaction data on L1, other L2 solutions like plasma, validiums,
and volitions offer different data storage mechanisms, potentially reducing costs even
further. Plasma, for example, keeps most data and computation off-chain, except for criti-
cal components like deposits, withdrawals, and Merkle roots [34]. Validiums are similar
to ZK-rollups but store data off-chain, relying on Data Availability Committees for data
storage [22]. Volitions, pioneered by StarkWare, allow applications to switch between
ZK-rollup and validium modes, offering flexibility regarding on-chain and off-chain data
storage [35]. These solutions present interesting avenues for blockchain-only solutions in
IoT data authentication, providing significant cost reductions while maintaining security
and integrity.

Author Contributions: Methodology, J.B.B.; Software, J.B.B.; Validation, M.P.; Investigation, J.B.B.;
Resources, M.P.; Writing—original draft, J.B.B.; Writing—review & editing, M.P.; Supervision, M.P..
All authors have read and agreed to the published version of the manuscript.

Funding: The research was supported by the Slovenian Research and Innovation Agency and the
University of Ljubljana in the research program P2-0425, “Decentralized solutions for the digitaliza-
tion of industry and smart cities and communities”. The research was also supported by the “UL
for a Sustainable Society: Lifelong learning and micro-credits” project, co-funded by the Republic of
Slovenia, the Ministry of Education, Science and Sport and the European Union—NextGenerationEU.

Institutional Review Board Statement: Not applicable.

Sensors 2024, 24, 1037 24 of 25

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Panchal, A.C.; Khadse, V.M.; Mahalle, P.N. Security Issues in IIoT: A Comprehensive Survey of Attacks on IIoT and Its

Countermeasures. In Proceedings of the 2018 IEEE Global Conference on Wireless Computing and Networking (GCWCN),
Lonavala, India, 23–24 November 2018; pp. 124–130.

2. Passlick, J.; Dreyer, S.; Olivotti, D.; Grützner, L.; Eilers, D.; Breitner, M.H. Predictive Maintenance as an Internet of Things Enabled
Business Model: A Taxonomy. Electron. Mark. 2021, 31, 67–87. [CrossRef]

3. Al-Ali, A.R.; Zualkernan, I.A.; Rashid, M.; Gupta, R.; Alikarar, M. A Smart Home Energy Management System Using IoT and Big
Data Analytics Approach. IEEE Trans. Consum. Electron. 2017, 63, 426–434. [CrossRef]

4. Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things Is a Revolutionary Approach for Future Technology Enhancement: A Review.
J. Big Data 2019, 6, 111. [CrossRef]

5. Adi, E.; Anwar, A.; Baig, Z.; Zeadally, S. Machine Learning and Data Analytics for the IoT. Neural Comput. Appl. 2020, 32,
16205–16233. [CrossRef]

6. Hafid, A.; Hafid, A.S.; Samih, M. Scaling Blockchains: A Comprehensive Survey. IEEE Access 2020, 8, 125244–125262. [CrossRef]
7. Shen, M.; Liu, H.; Zhu, L.; Xu, K.; Yu, H.; Du, X.; Guizani, M. Blockchain-Assisted Secure Device Authentication for Cross-Domain

Industrial IoT. IEEE J. Sel. Areas Commun. 2020, 38, 942–954. [CrossRef]
8. Liu, B.; Yu, X.L.; Chen, S.; Xu, X.; Zhu, L. Blockchain Based Data Integrity Service Framework for IoT Data. In Proceedings of the

2017 IEEE International Conference on Web Services (ICWS), Honolulu, HI, USA, 25–30 June 2017; pp. 468–475.
9. Zhou, J.; Cao, Z.; Dong, X.; Vasilakos, A.V. Security and Privacy for Cloud-Based IoT: Challenges. IEEE Commun. Mag. 2017, 55,

26–33. [CrossRef]
10. Barki, A.; Bouabdallah, A.; Gharout, S.; Traoré, J. M2M Security: Challenges and Solutions. IEEE Commun. Surv. Tutor. 2016, 18,

1241–1254. [CrossRef]
11. Ammar, M.; Russello, G.; Crispo, B. Internet of Things: A Survey on the Security of IoT Frameworks. J. Inf. Secur. Appl. 2018, 38,

8–27. [CrossRef]
12. Guo, S.; Hu, X.; Guo, S.; Qiu, X.; Qi, F. Blockchain Meets Edge Computing: A Distributed and Trusted Authentication System.

IEEE Trans Ind. Inf. 2020, 16, 1972–1983. [CrossRef]
13. Xu, L.; Chen, L.; Gao, Z.; Fan, X.; Suh, T.; Shi, W. DIoTA: Decentralized-Ledger-Based Framework for Data Authenticity Protection

in IoT Systems. IEEE Netw. 2020, 34, 38–46. [CrossRef]
14. Thantharate, P.; Thantharate, A. ZeroTrustBlock: Enhancing Security, Privacy, and Interoperability of Sensitive Data through

ZeroTrust Permissioned Blockchain. Big Data Cogn. Comput. 2023, 7, 165. [CrossRef]
15. Lee, C.H.; Kim, K.-H. Implementation of IoT System Using Block Chain with Authentication and Data Protection. In Proceedings

of the 2018 International Conference on Information Networking (ICOIN), Chiang Mai, Thailand, 10–12 January 2018; pp.
936–940.

16. Xu, R.; Zhou, Y.; Yang, Q.; Yang, K.; Han, Y.; Yang, B.; Xia, Z. An Efficient and Secure Certificateless Aggregate Signature Scheme.
J. Syst. Archit. 2024, 147, 103030. [CrossRef]

17. Fathima, N.; Banu, R.; Ahammed, G.F.A. Integrated Signing Procedure Based Data Transfer Security and Authentication
Framework for Internet of Things Applications. Wirel. Pers. Commun. 2023, 130, 401–420. [CrossRef]

18. Shang, S.; Li, X.; Gu, K.; Li, L.; Zhang, X.; Pandi, V. A Robust Privacy-Preserving Data Aggregation Scheme for Edge-Supported
IIoT. IEEE Trans. Ind. Inf. 2023, 1–12. [CrossRef]

19. Kittur, A.S.; Pais, A.R. A New Batch Verification Scheme for ECDSA*signatures. Sādhanā 2019, 44, 157. [CrossRef]
20. Scaling. Available online: https://ethereum.org/en/developers/docs/scaling/ (accessed on 22 November 2023).
21. Polge, J.; Robert, J.; Le Traon, Y. Permissioned Blockchain Frameworks in the Industry: A Comparison. ICT Express 2021, 7,

229–233. [CrossRef]
22. Thibault, L.T.; Sarry, T.; Hafid, A.S. Blockchain Scaling Using Rollups: A Comprehensive Survey. IEEE Access 2022, 10, 93039–93054.

[CrossRef]
23. Burgos, J.B.; Pustišek, M. Tackling Trust and Scalability of the Blockchain-Based Shared Manufacturing Concept. In Proceedings

of the 2023 17th International Conference on Telecommunications (ConTEL), Graz, Austria, 11–13 July 2023; pp. 1–7.
24. Optimistic Rollups. Available online: https://ethereum.org/en/developers/docs/scaling/optimistic-rollups/ (accessed on 29

December 2023).
25. Zero-Knowledge Rollups. Available online: https://ethereum.org/en/developers/docs/scaling/zk-rollups/ (accessed on 29

December 2023).
26. Thaler, J. Proofs, Arguments, and Zero-Knowledge; Now Foundation and Trends: Boston, MA, USA, 2023.

https://doi.org/10.1007/s12525-020-00440-5
https://doi.org/10.1109/TCE.2017.015014
https://doi.org/10.1186/s40537-019-0268-2
https://doi.org/10.1007/s00521-020-04874-y
https://doi.org/10.1109/ACCESS.2020.3007251
https://doi.org/10.1109/JSAC.2020.2980916
https://doi.org/10.1109/MCOM.2017.1600363CM
https://doi.org/10.1109/COMST.2016.2515516
https://doi.org/10.1016/j.jisa.2017.11.002
https://doi.org/10.1109/TII.2019.2938001
https://doi.org/10.1109/MNET.001.1900136
https://doi.org/10.3390/bdcc7040165
https://doi.org/10.1016/j.sysarc.2023.103030
https://doi.org/10.1007/s11277-023-10291-w
https://doi.org/10.1109/TII.2023.3315375
https://doi.org/10.1007/s12046-019-1142-9
https://ethereum.org/en/developers/docs/scaling/
https://doi.org/10.1016/j.icte.2020.09.002
https://doi.org/10.1109/ACCESS.2022.3200051
https://ethereum.org/en/developers/docs/scaling/optimistic-rollups/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/

Sensors 2024, 24, 1037 25 of 25

27. Goldreich, O.; Micali, S.; Wigderson, A. Proofs That Yield Nothing but Their Validity and a Methodology of Cryptographic
Protocol Design. In Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali; Association for
Computing Machinery: New York, NY, USA, 2019; pp. 285–306. ISBN 9781450372664.

28. Petkus, M. Why and How Zk-Snark Works. arXiv 2019, arXiv:1906.07221.
29. Kothapalli, A.; Setty, S.; Tzialla, I. Nova: Recursive Zero-Knowledge Arguments from Folding Schemes. In Lecture Notes in

Computer Science, Proceedings of the Annual International Cryptology Conference, Santa Barbara, CA, USA, 15–18 August 2022; Springer:
Cham, Switzerland, 2022; pp. 359–388.

30. Nguyen, W.; Boneh, D.; Setty, S. Revisiting the Nova Proof System on a Cycle of Curves. Cryptol. Eprint Arch. 2023, 2023, 969.
31. Boneh, D.; Gentry, C.; Lynn, B.; Shacham, H. A Survey of Two Signature Aggregation Techniques. 2003. Available online:

https://networkdls.com/Articles/crypto6n2.pdf#page=2 (accessed on 2 December 2023).
32. Personae Labs Efficient ECDSA & the Case for Client-Side Proving. Available online: https://personaelabs.org/posts/efficient-

ecdsa-1/#precomputing-point-multiples (accessed on 5 December 2023).
33. Mud Introduction. Available online: https://mud.dev/introduction (accessed on 17 January 2024).
34. Buterin, V. Exit Games for EVM Validiums: The Return of Plasma. Available online: https://vitalik.eth.limo/general/2023/11/

14/neoplasma.html (accessed on 23 November 2023).
35. Volition on Starknet: Your Data, Your Choice. Available online: https://www.starknet.io/en/posts/developers/volition-on-

starknet-your-data-your-choice (accessed on 25 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://networkdls.com/Articles/crypto6n2.pdf#page=2
https://personaelabs.org/posts/efficient-ecdsa-1/#precomputing-point-multiples
https://personaelabs.org/posts/efficient-ecdsa-1/#precomputing-point-multiples
https://mud.dev/introduction
https://vitalik.eth.limo/general/2023/11/14/neoplasma.html
https://vitalik.eth.limo/general/2023/11/14/neoplasma.html
https://www.starknet.io/en/posts/developers/volition-on-starknet-your-data-your-choice
https://www.starknet.io/en/posts/developers/volition-on-starknet-your-data-your-choice

	Introduction
	Literature Review
	Existing Approaches to IoT Data Authentication
	Layered Blockchain Structure
	Proving Systems
	Snark Composition, Aggregation, and Recursion
	Signature Aggregation

	Framework Design
	Off-Chain
	IoT Devices
	Edge Aggregating Servers

	Proving System Implementation
	On-Chain
	Layer 2 Rollups
	Smart Contract

	Results
	Proving Times and Proof Sizes
	On-Chain Storing Costs

	Discussion
	Off-Chain Results
	On-Chain Results
	Security Discussion

	Conclusions
	References

