
Citation: Cimili, P.; Voegl, J.; Hirsch,

P.; Gronalt, M. Ensemble Deep

Learning for Automated Damage

Detection of Trailers at Intermodal

Terminals. Sustainability 2024, 16, 1218.

https://doi.org/10.3390/su16031218

Academic Editors: Tadeusz Sawik and

Bartosz Sawik

Received: 15 December 2023

Revised: 26 January 2024

Accepted: 30 January 2024

Published: 31 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Ensemble Deep Learning for Automated Damage Detection of
Trailers at Intermodal Terminals
Pavel Cimili, Jana Voegl, Patrick Hirsch * and Manfred Gronalt

Institute of Production and Logistics, University of Natural Resources and Life Sciences Vienna, Feistmantelstraße
4, 1180 Vienna, Austria; pavel.cimili@boku.ac.at (P.C.); jana.voegl@boku.ac.at (J.V.);
manfred.gronalt@boku.ac.at (M.G.)
* Correspondence: patrick.hirsch@boku.ac.at

Abstract: Efficient damage detection of trailers is essential for improving processes at inland inter-
modal terminals. This paper presents an automated damage detection (ADD) algorithm for trailers
utilizing ensemble learning based on YOLOv8 and RetinaNet networks. The algorithm achieves
88.33% accuracy and an 81.08% F1-score on the real-life trailer damage dataset by leveraging the
strengths of each object detection model. YOLOv8 is trained explicitly for detecting belt damage,
while RetinaNet handles detecting other damage types and is used for cropping trailers from images.
These one-stage detectors outperformed the two-stage Faster R-CNN in all tested tasks within this
research. Furthermore, the algorithm incorporates slice-aided hyper inference, which significantly
contributes to the efficient processing of high-resolution trailer images. Integrating the proposed
ADD solution into terminal operating systems allows a substantial workload reduction at the ingate
of intermodal terminals and supports, therefore, more sustainable transportation solutions.

Keywords: ensemble learning; deep learning; damage detection; intermodal transport; trailer;
computer vision

1. Introduction

The importance of optimization processes connected to trailers at intermodal terminals
is increasing with the growing amount of transport carried out by road tractors with trailers
inside the European Union (EU). In 2021, road tractors with trailers dominated the road
freight transport sector in 17 EU countries, contributing to more than 60% of the total
tonne-kilometers conducted at the national level [1]. As for railroad freight transportation,
compared to 2009, the volume of goods transported via intermodal rail freight in Europe
witnessed a significant increase of 49.9% in tonnage [2]. Such a growing use of trailers is
crucial for the environment. Inland ports, vital links between the hinterland and maritime
shipping routes, not only facilitate the efficient movement of goods but also contribute to
reducing CO2 emissions [3]. It is for this reason that the role of intermodal terminals is
only increasing in the current worldwide situation when pollution intensifies and carbon
dioxide emissions from transportation emerge as a major environmental challenge [4,5].
The automated damage detection (ADD) algorithm proposed in this paper is one of the
highly desired process innovations by many intermodal terminals that will help not only
optimize internal operations but also positively impact the achievement of the terminal’s
environmental targets in the long run.

At the same time, the integration of ADD will alleviate the considerable workload on
professional checkers, who can then be reallocated to carry out other important tasks. Thus,
upon arrival at the terminal, the damaged trailer will be identified within a few seconds
and redirected to the repair area without subsequently blocking the movement of other
trucks. Such a significant reduction in unnecessary trailer movements will help substan-
tially decrease the amount of CO2 emissions at terminals, which is extremely important for

Sustainability 2024, 16, 1218. https://doi.org/10.3390/su16031218 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16031218
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-2678-4299
https://orcid.org/0000-0003-0944-4911
https://doi.org/10.3390/su16031218
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16031218?type=check_update&version=2

Sustainability 2024, 16, 1218 2 of 17

combating the greenhouse effect. Since most terminals already have optical character recog-
nition (OCR) gates, our developed ADD algorithm is an attractive process improvement
step that can significantly reduce financial and time costs for many intermodal terminals
worldwide. This is crucial in the current situation where the high cost of personnel consti-
tutes one of the barriers to popularizing inland intermodal transportation [6]. Investments
into such an innovative and interactive solution may become a new source of competitive
advantage for terminal operators [7]. There are several motives to develop and integrate
such an improvement into a terminal’s information ecosystem [8]:

• Advancing the automation process.
• Enhancing terminal offerings by proposing fast and reliable solutions to handle dam-

aged trailers.
• Documenting and protecting against claims: all detection results will be stored in the

Terminal Operating System (TOS) and can be accessed promptly in case of claims for
compensation.

Currently, OCR gates save images of trailers from all sides in the terminal operating
system (TOS) for manual documentation of detected damages post-factum. Simultaneously,
an ADD algorithm may analyze them online with pre-trained neural networks (NNs).

At present, the ADD of trailers is a highly under-researched field. In contrast, ADD
based on deep learning is well-investigated for other domains, e.g., maritime transportation
with containers. To the best of our knowledge, the first published attempt to transfer several
techniques for ADD from these domains to trailers was made by Cimili et al. [9]. Their ex-
periments were performed using the MobileNetV2 [10] network based on transfer learning
and convolutional autoencoders (CAE) for semi-supervised classification. Nevertheless,
none of these approaches, which showed high efficiency in detecting container defects,
could achieve similar performance for trailer damage detection.

This is related to the particularity of the surface structure of trailers and containers.
While containers feature a modular design with corrugated metal walls for increased
strength and stacking capabilities, trailers typically possess a continuous soft tarpaulin
surface. In addition, trailers are equipped with belts (tie-downs) along their sides, which
are not present on containers. Thus, trailers are susceptible to types of damage not inherent
to containers: cracked tarpaulin, torn belts, missing belts, and improper tarpaulin patches
(Figure 1).

Sustainability 2024, 16, x FOR PEER REVIEW 2 of 18

important for combating the greenhouse effect. Since most terminals already have optical
character recognition (OCR) gates, our developed ADD algorithm is an attractive process
improvement step that can significantly reduce financial and time costs for many inter-
modal terminals worldwide. This is crucial in the current situation where the high cost of
personnel constitutes one of the barriers to popularizing inland intermodal transportation
[6]. Investments into such an innovative and interactive solution may become a new
source of competitive advantage for terminal operators [7]. There are several motives to
develop and integrate such an improvement into a terminal’s information ecosystem [8]:
• Advancing the automation process.
• Enhancing terminal offerings by proposing fast and reliable solutions to handle dam-

aged trailers.
• Documenting and protecting against claims: all detection results will be stored in the

Terminal Operating System (TOS) and can be accessed promptly in case of claims for
compensation.
Currently, OCR gates save images of trailers from all sides in the terminal operating

system (TOS) for manual documentation of detected damages post-factum. Simultane-
ously, an ADD algorithm may analyze them online with pre-trained neural networks
(NNs).

At present, the ADD of trailers is a highly under-researched field. In contrast, ADD
based on deep learning is well-investigated for other domains, e.g., maritime transporta-
tion with containers. To the best of our knowledge, the first published attempt to transfer
several techniques for ADD from these domains to trailers was made by Cimili et al. [9].
Their experiments were performed using the MobileNetV2 [10] network based on transfer
learning and convolutional autoencoders (CAE) for semi-supervised classification. Nev-
ertheless, none of these approaches, which showed high efficiency in detecting container
defects, could achieve similar performance for trailer damage detection.

This is related to the particularity of the surface structure of trailers and containers.
While containers feature a modular design with corrugated metal walls for increased
strength and stacking capabilities, trailers typically possess a continuous soft tarpaulin
surface. In addition, trailers are equipped with belts (tie-downs) along their sides, which
are not present on containers. Thus, trailers are susceptible to types of damage not inher-
ent to containers: cracked tarpaulin, torn belts, missing belts, and improper tarpaulin
patches (Figure 1).

(a) (b)

(c) (d)

Figure 1. Examples of different trailer damage types not typical for containers: (a) cracked tarpaulin;
(b) fastener defects; (c) improper patch; (d) missing belt.

Sustainability 2024, 16, 1218 3 of 17

The aim of this paper is to find a novel ADD approach specifically for trailers that
goes beyond knowledge transfer from other domains like the ADD of containers.

To reach this aim, we developed an algorithm based on ensemble learning, which
achieves 88.33% accuracy and 81.08% F1-Score on the test data. For different tasks of
the algorithm RetinaNet [11], YOLOv8 [12], and Faster R-CNN [13] were tested, and the
best-performing network was selected for every task.

The contributions of this paper are summarized as follows:

• Introduction of a novel ensemble deep learning algorithm designed explicitly for the
ADD of trailers at terminals. To the best of our knowledge, this is the first published
algorithm that can handle damage detection of trailers using full-sized real-world
OCR images of trailers.

• Comprehensive testing of several state-of-the-art object detection deep neural net-
works in the ADD ensemble framework.

• The proposal and testing of an alternative algorithm of trailer detection on the image
using only classical computer vision techniques without deep learning.

• Analysis and recommendations for the ADD improvement for a specific terminal,
which was a part of this study. While derived from a particular case study, these
recommendations are applicable to any terminal worldwide that seeks to integrate a
similar ADD algorithm.

The paper is structured as follows: Section 2 will provide an overview of the current
state of the art in the field of object detection and its usage in previous papers on the
automation of damage assessment. Then we describe the ensemble learning algorithm
and the used data in Section 3. In Section 4, we show the performance of the developed
algorithm. Finally, the conclusions are provided in Section 5.

2. State of the Art

Cimili et al. [9] were the first to test several approaches for the ADD of trailers. The
first was based on a semi-supervised deep learning approach based on a Residual Encoder–
Decoder Network [14] or inception-like CAE [15]. The idea was to train the autoencoders
exclusively on the images of the negative, non-damaged class. Thus, the autoencoder
could never learn any patterns of the damage and could not reproduce them. Afterward,
the threshold based on the similarity of input and output images was determined. If the
similarity was below the threshold, the image was classified as “damaged”. However, the
method did not work robustly. One of the main reasons for the high misclassification rate
was the lack of images of the negative class in the training set that could represent cases
very similar to the positive class, i.e., improper patches, scratches, and twisted belts. As
semi-supervised learning did not yield desirable results, the authors turned to supervised
learning, namely, to the subclass of supervised learning called transfer learning. For that,
they used convolutional NN MobileNetV2 [10], which had already been pretrained on
large datasets by the model’s authors. Despite the data not being directly related to trailers
or containers, this transfer of knowledge could help in the identification of specific shapes
and patterns and could help to cover the lack of the training data. The approach showed
the most promising results, achieving more than 85% precision and accuracy on the test set
consisting of image tiles. However, these results were not good enough to perform testing
on the full-sized trailer images; all of them would be classified as “damaged” as at least
10% of the image tiles with the model’s performance would be misclassified.

Our goal is to advance the groundwork laid by Cimili et al. [9] by developing an
improved ADD algorithm. However, in this work, we perform tests not only on tiles but
on the full trailer images, which is crucial from a practical point of view for real-world
implementation. While we utilize several valuable concepts and ideas from Cimili et al. [9],
we have enhanced and implemented them within the framework of an ensemble learning
approach known as the “bucket of models”, where different models are trained and tested
for various purposes, and the best one is selected for each task.

Sustainability 2024, 16, 1218 4 of 17

Usually, one-stage and two-stage detectors are used for object detection in ensemble
learning tasks. In our research, we tested both types of detectors.

The vanilla version of the Region-based Convolutional Neural Network (R-CNN), one
of the most used two-stage algorithms, was presented by Girshick et al. [16]. The main
disadvantage of this network was its slowness. It is for this reason that one year later,
Girshick [17] proposed an improved version of the algorithm called Fast R-CNN with a
single convolutional module. Finally, the same year, Faster R-CNN was released [13]. It has
a separate Region Proposal Network (RPN) for region proposal generation, dramatically
decreasing the time required for object detection. Faster R-CNN has already been suc-
cessfully tested for different damage detection tasks, e.g., road damage detection [18] and
classification [19]. A particular version of R-CNN, Mask R-CNN, is used for the damage
segmentation of containers [20] and cars [21], which further suggests the effectiveness of
the algorithm for this type of task.

The main characteristic of one-stage detectors is that they skip the step of region
proposal and return bounding boxes in a shorter time, which is crucial for real-world
applications. “You Only Look Once” (YOLO) is an example of such an algorithm. One of its
last releases, YOLOv8, outperforms efficient predecessors YOLOv3 [22] and YOLOv5 [23]
in speed and accuracy [12]. YOLO proved its efficiency for damage detection in many
studies ([18,24–26]).

Another one-stage detection algorithm used in this research is RetinaNet [11]. It
consists of two major parts, one for classifying predictions and another for predicting
bounding boxes. The main advantage of the algorithm is its focal loss, which handles class
imbalance very well. It showed high performance in road damage detection and even
outperformed Faster R-CNN and different YOLO versions [25,27]. RetinaNet demonstrated
high performance for the trailer detection task in Cimili et al. [9].

Slice-aided hyper inference (SAHI) is applied to handle object detection on large
images [28]. The approach helps to divide a large image into tiles for training and to
perform inference of the trained detector. It delivers higher accuracy, faster computational
time, and less hardware loads for making predictions on high-resolution images. SAHI is
perfectly compatible with YOLOv8 and all the models from the Detectron2 package [29].
A combination of SAHI and YOLOv5 was successfully tested for damage detection for
hardwood floors [30].

To the best of our knowledge, integrating the aforementioned object detection net-
works within an ensemble learning framework and implementing SAHI techniques tailored
explicitly for trailers has not been explored or documented in any published papers yet. To
address this research gap, we present our ensemble learning architecture, data, training
and testing environment, and the computational results in the following sections.

3. Material and Methods

The study was based on data provided by a single multimodal freight operator. All
the experiments were run on the computer equipped with AMD Ryzen 5 5600, NVIDIA
GeForce RTX 3060 12 GB, 32 GB RAM DDR4 3200 MHz, and Windows 10 as the operating
system. Besides the Detectron2, SAHI, imgaug, and Ultralytics packages, we also used
Keras, Tensorflow, opencv-python, matplotlib, and scikit-image libraries.

The dataset used in this research (publicly unavailable due to privacy restrictions)
consisted of unlabelled real-world images of the left and right sides of the trailers taken
at the OCR gate at the entrance of an inland intermodal terminal in Europe. The spatial
resolution of the images was volatile. While the height was always 2000 pixels, the width
varied between approximately 7000 and 12,000 pixels, as shown in Figure 2. With the
current technology of the OCR gate, it was impossible to standardize the image width, as it
depended on the speed of the truck driving through the gate.

Sustainability 2024, 16, 1218 5 of 17

Sustainability 2024, 16, x FOR PEER REVIEW 5 of 18

current technology of the OCR gate, it was impossible to standardize the image width, as
it depended on the speed of the truck driving through the gate.

Figure 2. Examples of variable image sizes depending on the truck speed at the OCR gate.

The trailersʹ pictures included unnecessary background details that could affect the
ADD. To remove this background, we decided to crop trailers from images, which solved
several issues simultaneously:

Reduced the size of the training set—irrelevant backgrounds such as wheels, driver’s
cabins, or fuel tanks were excluded.

Increased inference speed—the trained NN for damage detection did not need to an-
alyze excluded backgrounds.

Reduced the number of false positive (FP) predictions—given the similarity in ap-
pearance among all the trailers, diverse models of trucks and wheels exist. Consequently,
the ADD might be unable to accurately learn all objects that may belong to the background
and would incorrectly identify some of these objects as “damage”.

For the different phases of the ensemble learning model, we chose one modification
of the one-stage algorithms YOLOv8 and RetinaNet, RetinaNet R101 and YOLOv8l, and
one modification of the two-stage detection algorithm Faster R-CNN, Faster R-CNN R101-
FPN. The main criteria for the selection were performance and hardware restrictions. For
working with Faster R-CNN R101-FPN and RetinaNetR101, we used the Detectron2 pack-
age, while YOLOv8l was trained with the Ultralitycs package.

During the YOLOv8 training, the complex loss function was used. It consists of two
major components—VarifocalLoss and SIoU Loss. VarifocalLoss is a refined version of the
traditional focal loss, which manages class imbalance. Simultaneously, SIoU Loss im-
proves the prediction of bounding boxes by evaluating different geometrical factors like
angle and shape discrepancies between the ground truth and predicted bounding boxes.
The abovementioned classical focal loss was used for the training of RetinaNet. For the
Faster R-CNN training, we used the combination of the L1-loss and the binary cross en-
tropy loss.

The entire process of ADD based on ensemble learning consists of multiple phases,
including preprocessing and searching for different damage types with separately trained
NNs as shown in Figure 3.

Figure 2. Examples of variable image sizes depending on the truck speed at the OCR gate.

The trailers’ pictures included unnecessary background details that could affect the
ADD. To remove this background, we decided to crop trailers from images, which solved
several issues simultaneously:

Reduced the size of the training set—irrelevant backgrounds such as wheels, driver’s
cabins, or fuel tanks were excluded.

Increased inference speed—the trained NN for damage detection did not need to
analyze excluded backgrounds.

Reduced the number of false positive (FP) predictions—given the similarity in appear-
ance among all the trailers, diverse models of trucks and wheels exist. Consequently, the
ADD might be unable to accurately learn all objects that may belong to the background
and would incorrectly identify some of these objects as “damage”.

For the different phases of the ensemble learning model, we chose one modification of
the one-stage algorithms YOLOv8 and RetinaNet, RetinaNet R101 and YOLOv8l, and one
modification of the two-stage detection algorithm Faster R-CNN, Faster R-CNN R101-FPN.
The main criteria for the selection were performance and hardware restrictions. For working
with Faster R-CNN R101-FPN and RetinaNetR101, we used the Detectron2 package, while
YOLOv8l was trained with the Ultralitycs package.

During the YOLOv8 training, the complex loss function was used. It consists of two
major components—VarifocalLoss and SIoU Loss. VarifocalLoss is a refined version of the
traditional focal loss, which manages class imbalance. Simultaneously, SIoU Loss improves
the prediction of bounding boxes by evaluating different geometrical factors like angle
and shape discrepancies between the ground truth and predicted bounding boxes. The
abovementioned classical focal loss was used for the training of RetinaNet. For the Faster
R-CNN training, we used the combination of the L1-loss and the binary cross entropy loss.

The entire process of ADD based on ensemble learning consists of multiple phases,
including preprocessing and searching for different damage types with separately trained
NNs as shown in Figure 3.

For Phase 1 and Phase 2 of the ensemble learning model, we split the image into the
lower and upper parts to reduce computational workload and decrease the inference time
of the model (Figure 4).

For Phase 1, we use the upper part (as yellow semi-squares are only located there),
and for Phase 2, only the lower part is used because belts are only located there. If H is the
height of the initial image, then H/2 is the height for the generated upper and lower parts.
In Phase 4, the model detects various damage types, except for missing or torn belts. This
phase utilizes the trailer image cropped in Phase 3, incorporating information from Phase 1
and Phase 2. Subsequent sections of this paper provide a comprehensive description of
each phase, explaining the specific details and procedures involved.

Sustainability 2024, 16, 1218 6 of 17Sustainability 2024, 16, x FOR PEER REVIEW 6 of 18

Figure 3. Framework of the ADD system for trailers at an intermodal terminal.

For Phase 1 and Phase 2 of the ensemble learning model, we split the image into the
lower and upper parts to reduce computational workload and decrease the inference time
of the model (Figure 4).

Figure 4. Example of image splitting into two parts with height H/2.

For Phase 1, we use the upper part (as yellow semi-squares are only located there),
and for Phase 2, only the lower part is used because belts are only located there. If H is the
height of the initial image, then H/2 is the height for the generated upper and lower parts.
In Phase 4, the model detects various damage types, except for missing or torn belts. This
phase utilizes the trailer image cropped in Phase 3, incorporating information from Phase
1 and Phase 2. Subsequent sections of this paper provide a comprehensive description of
each phase, explaining the specific details and procedures involved.

3.1. Phase 1—Preparation for Trailer Detection and Crop from the Image
3.1.1. Step 1a

The first step is the detection of the left and right upper yellow semi-squares, which
are located on all trailers of the operator with NN1.

The training set for NN1 initially consisted of 25 images of the left yellow semi-
squares and 25 images of the right semi-squares of size 320 × 320 pixels, cropped from the
full-sized trailer images. This resolution guarantees that the resulting tiles can be used for
all selected networks, including YOLOv8, which can handle images only if the size of their

Figure 3. Framework of the ADD system for trailers at an intermodal terminal.

Sustainability 2024, 16, x FOR PEER REVIEW 6 of 18

Figure 3. Framework of the ADD system for trailers at an intermodal terminal.

For Phase 1 and Phase 2 of the ensemble learning model, we split the image into the
lower and upper parts to reduce computational workload and decrease the inference time
of the model (Figure 4).

Figure 4. Example of image splitting into two parts with height H/2.

For Phase 1, we use the upper part (as yellow semi-squares are only located there),
and for Phase 2, only the lower part is used because belts are only located there. If H is the
height of the initial image, then H/2 is the height for the generated upper and lower parts.
In Phase 4, the model detects various damage types, except for missing or torn belts. This
phase utilizes the trailer image cropped in Phase 3, incorporating information from Phase
1 and Phase 2. Subsequent sections of this paper provide a comprehensive description of
each phase, explaining the specific details and procedures involved.

3.1. Phase 1—Preparation for Trailer Detection and Crop from the Image
3.1.1. Step 1a

The first step is the detection of the left and right upper yellow semi-squares, which
are located on all trailers of the operator with NN1.

The training set for NN1 initially consisted of 25 images of the left yellow semi-
squares and 25 images of the right semi-squares of size 320 × 320 pixels, cropped from the
full-sized trailer images. This resolution guarantees that the resulting tiles can be used for
all selected networks, including YOLOv8, which can handle images only if the size of their

Figure 4. Example of image splitting into two parts with height H/2.

3.1. Phase 1—Preparation for Trailer Detection and Crop from the Image
3.1.1. Step 1a

The first step is the detection of the left and right upper yellow semi-squares, which
are located on all trailers of the operator with NN1.

The training set for NN1 initially consisted of 25 images of the left yellow semi-squares
and 25 images of the right semi-squares of size 320 × 320 pixels, cropped from the full-sized
trailer images. This resolution guarantees that the resulting tiles can be used for all selected
networks, including YOLOv8, which can handle images only if the size of their sides is a
multiple of 32. We carefully selected images of different dilatation (due to variable truck
speeds), lighting conditions, and variations or disturbances of the image signal (noise). As
all the semi-squares look similar, there was no reason to select more images. Nevertheless,
we had to deal with another issue: prepare a model to detect semi-squares under any
conditions. Our catalog did not include enough images for some conditions to perform
proper training (rain, snow, extreme sun). We found a solution in augmentation: adjusting
brightness (+100, −40), adding blur, and changing saturation helps to mimic extremely
sunny or very dark days. The combination of these techniques with Gaussian noise during
augmentation helped to remove false predictions in case of rain and snow. This way, we
generated images for many cases missing in our image set. The final set consisted of
450 images for training and 50 for validation during training.

The information of the bounding box for every detected semi-square is stored in
COCO format, e.g., in a vector [x, y, w, h], where:

x—coordinate on the X-axis of the left upper corner of the box;

Sustainability 2024, 16, 1218 7 of 17

y—coordinate on the Y-axis of the left upper corner of the box;
w—width of the box;
h—the height of the box.

We take coordinates (x1, y1) of the box of the detected left semi-square and (x2, y2) for
the right semi-square. This step is necessary as most of the trailers are tilted in the image,
and the image needs to be rotated to perform a decent crop (Figure 5).

Sustainability 2024, 16, x FOR PEER REVIEW 7 of 18

sides is a multiple of 32. We carefully selected images of different dilatation (due to vari-
able truck speeds), lighting conditions, and variations or disturbances of the image signal
(noise). As all the semi-squares look similar, there was no reason to select more images.
Nevertheless, we had to deal with another issue: prepare a model to detect semi-squares
under any conditions. Our catalog did not include enough images for some conditions to
perform proper training (rain, snow, extreme sun). We found a solution in augmentation:
adjusting brightness (+100, −40), adding blur, and changing saturation helps to mimic ex-
tremely sunny or very dark days. The combination of these techniques with Gaussian
noise during augmentation helped to remove false predictions in case of rain and snow.
This way, we generated images for many cases missing in our image set. The final set
consisted of 450 images for training and 50 for validation during training.

The information of the bounding box for every detected semi-square is stored in
COCO format, e.g., in a vector [x, y, w, h], where:
x—coordinate on the X-axis of the left upper corner of the box;
y—coordinate on the Y-axis of the left upper corner of the box;
w—width of the box;
h—the height of the box.

We take coordinates (x1, y1) of the box of the detected left semi-square and (x2, y2) for
the right semi-square. This step is necessary as most of the trailers are tilted in the image,
and the image needs to be rotated to perform a decent crop (Figure 5).

Figure 5. Example of semi-squares’ detection and angle α between them.

3.1.2. Step 1b
Find the positional difference between the yellow semi-squares with the arctan func-

tion. If y1 ≤ y2, we get a positive value of arctan(tan(α)), in the opposite case—a negative
one (Equation (1)). tan (𝛼) = 𝑦 − 𝑦𝑥 − 𝑥 (1)

3.1.3. Step 1c
The following coordinates of the detected semi-squares of the future crop are saved:

p1(x1 − w1 × 0.5, max(min(y1 − h1, y2 − h2),0)) and p2(x2 + w2 × 1.5, max(min(y1 − h1, y2 − h2),0)).
Point p1 is located at the top left corner of the trailer, and point p2 is at the top right corner.
Our formula calculates their precise coordinates using data from the detected semi-
squares. The X-axis coordinates for the trailer’s upper corners, x1 − w1 × 0.5 and x2 + w2 × 1.5,
differ from the X-coordinates of the detected semi-squares. The actual left corner of the
trailer is positioned further to the left than the detected left semi-square, and the right
corner is located further to the right on the X-axis than the detected right semi-square.
max(min(y1 − h1, y2 − h2),0) detects Y-coordinates for the points p1 and p2. We select the co-
ordinate, which is located higher, min(y1 − h1, y2 − h2), and comparison with 0 guarantees
we do not leave image space.

Such a crop might also include a little background above the trailer. This approach
ensures the prevention of any potential oversight of damage, including instances where it
may be situated at the uppermost section of the trailer. In addition, the background above
the trailer is always uniform and does not increase the probability of FP predictions. If the

Figure 5. Example of semi-squares’ detection and angle α between them.

3.1.2. Step 1b

Find the positional difference between the yellow semi-squares with the arctan function.
If y1 ≤ y2, we get a positive value of arctan(tan(α)), in the opposite case—a negative one
(Equation (1)).

tan (α) =
y1 − y2

x1 − x2
(1)

3.1.3. Step 1c

The following coordinates of the detected semi-squares of the future crop are saved:
p1(x1 − w1 × 0.5, max(min(y1 − h1, y2 − h2),0)) and p2(x2 + w2 × 1.5, max(min(y1 − h1,
y2 − h2),0)). Point p1 is located at the top left corner of the trailer, and point p2 is at the
top right corner. Our formula calculates their precise coordinates using data from the
detected semi-squares. The X-axis coordinates for the trailer’s upper corners, x1 − w1 × 0.5
and x2 + w2 × 1.5, differ from the X-coordinates of the detected semi-squares. The actual
left corner of the trailer is positioned further to the left than the detected left semi-square,
and the right corner is located further to the right on the X-axis than the detected right
semi-square. max(min(y1 − h1, y2 − h2),0) detects Y-coordinates for the points p1 and p2.
We select the coordinate, which is located higher, min(y1 − h1, y2 − h2), and comparison
with 0 guarantees we do not leave image space.

Such a crop might also include a little background above the trailer. This approach
ensures the prevention of any potential oversight of damage, including instances where it
may be situated at the uppermost section of the trailer. In addition, the background above
the trailer is always uniform and does not increase the probability of FP predictions. If the
difference between y1 − h1 or y2 − h2 is negative, then zero will be chosen to ensure that
the coordinates of points are not out of the image area in any case.

While developing the trailer detection algorithm, we assumed that the fresh livery of
the trailers used for this study would stay the same in the long run. However, the trailer
might not be detected if the semi-squares are covered by dirt or paint or are repainted. In
cases where the semi-squares are not detected in the first phase of the algorithm, we could
initiate an Alternative Phase 1. Future research on the ADD of trailers might include devel-
oping a trailer detection algorithm that does not rely on semi-squares, thereby avoiding
this limitation.

3.2. Phase 2

For this phase, two separate networks are used—one for detecting metal parts of the
belts (NN2) and another for detecting the whole belts (NN3). We also tried to train a single
model for these purposes but observed poor performance (Figure 6). While all the metallic
parts of the belts were correctly detected, the neural network failed to recognize most of
the full belts.

Sustainability 2024, 16, 1218 8 of 17

Sustainability 2024, 16, x FOR PEER REVIEW 8 of 18

difference between y1 − h1 or y2 − h2 is negative, then zero will be chosen to ensure that the
coordinates of points are not out of the image area in any case.

While developing the trailer detection algorithm, we assumed that the fresh livery of
the trailers used for this study would stay the same in the long run. However, the trailer
might not be detected if the semi-squares are covered by dirt or paint or are repainted. In
cases where the semi-squares are not detected in the first phase of the algorithm, we could
initiate an Alternative Phase 1. Future research on the ADD of trailers might include de-
veloping a trailer detection algorithm that does not rely on semi-squares, thereby avoiding
this limitation.

3.2. Phase 2
For this phase, two separate networks are used—one for detecting metal parts of the

belts (NN2) and another for detecting the whole belts (NN3). We also tried to train a single
model for these purposes but observed poor performance (Figure 6). While all the metallic
parts of the belts were correctly detected, the neural network failed to recognize most of
the full belts.

Figure 6. Poor performance of the combined network—most of the full belts were not detected.

For the training of NN2 and NN3, we prepared a dataset of 350 belt images of size
320 × 320 pixels cropped similarly to NN1 training. The focus during belt selection was on
diversity; due to the different widths of images and different belt types, we tried to guar-
antee maximal diversity of the training set. Here, we also used similar augmentation strat-
egies to simulate different environmental conditions. Thus, the final number of images in
the training set was 2300, with 300 left for validation.

3.2.1. Step 2a–Step 2d
In Step 2a of the algorithm, metal parts of the trailer belts are detected using NN2.

Then, the number of detected metal parts is counted in Step 2b. In Step 2c, we detect com-
plete belts (including metal and textile parts) with NN3 and count them in Step 2d.

3.2.2. Step 2e
In this next step, the absolute difference between results in Step 2b and Step 2d is

found. If the result is larger than zero, then at least one of the belts is damaged. Figure 7
illustrates such a scenario. The belt highlighted in the red square is damaged — its metal
part was detected, while the belt itself was not wholly identified. When comparing the
number of detected metal parts of the belts by NN2 to the number of detected full belts
by NN3, a discrepancy arises.

Figure 6. Poor performance of the combined network—most of the full belts were not detected.

For the training of NN2 and NN3, we prepared a dataset of 350 belt images of size
320 × 320 pixels cropped similarly to NN1 training. The focus during belt selection was
on diversity; due to the different widths of images and different belt types, we tried to
guarantee maximal diversity of the training set. Here, we also used similar augmentation
strategies to simulate different environmental conditions. Thus, the final number of images
in the training set was 2300, with 300 left for validation.

3.2.1. Step 2a–Step 2d

In Step 2a of the algorithm, metal parts of the trailer belts are detected using NN2.
Then, the number of detected metal parts is counted in Step 2b. In Step 2c, we detect
complete belts (including metal and textile parts) with NN3 and count them in Step 2d.

3.2.2. Step 2e

In this next step, the absolute difference between results in Step 2b and Step 2d is
found. If the result is larger than zero, then at least one of the belts is damaged. Figure 7
illustrates such a scenario. The belt highlighted in the red square is damaged—its metal
part was detected, while the belt itself was not wholly identified. When comparing the
number of detected metal parts of the belts by NN2 to the number of detected full belts by
NN3, a discrepancy arises.

Sustainability 2024, 16, x FOR PEER REVIEW 9 of 18

Figure 7. Example of metal parts and whole belts detected by NN2 and NN3.

3.2.3. Step 2f
If the counted number of metal parts in Step 2b is smaller than 25, then at least one

of the belts is missing (each trailer must have at least 25 belts).

3.2.4. Step 2g
This next step involves computing µ—the average of y + h of bounding box values

for each detected belt. Equation (2) represents the calculation of µ where K is the number
of detected belts, i is the index of detected belts, hi is the height of the bounding box for
each detected belt, and yi is the coordinate of the left upper corner of the bounding box on
the Y-axis.

µ = ∑ (y + h)K (2)

The value of µ approximates the y coordinate of the lower trailer edge needed for
cropping in the next step, as bounding boxes may be positioned incorrectly above or be-
low the belt’s actual location during the detection.

3.3. Phase 3
The trailer is cropped from the image using the following coordinates of the corner

points (Figure 8):
• p1: (x1 − w1 × 0.5, max(min(y1 − h1, y2 − h2),0));
• p2: (x2 + w2 × 1.5, max(min(y1 − h1, y2 − h2),0));
• p3: (x1 − w1 × 0.5, H/2 + µ);
• p4: (x2 + w2 × 1.5, H/2 + µ).

Figure 8. Points calculated and automatically drawn by the algorithm in the Python environment.

To test NN1, NN2, and NN3, we used 100 unlabeled trailer images. Even if we do not
know if the trailer in the image is damaged, we can still check if networks correctly detect
belts and yellow semi-squares. For each network, if even one object (belt or yellow semi-
square) was not detected, we count the whole example as false negative (FN), and if the
network found more objects than it should (e.g., 27 belts instead of 25), the whole example
is considered FP.

Figure 7. Example of metal parts and whole belts detected by NN2 and NN3.

3.2.3. Step 2f

If the counted number of metal parts in Step 2b is smaller than 25, then at least one of
the belts is missing (each trailer must have at least 25 belts).

3.2.4. Step 2g

This next step involves computing µ—the average of y + h of bounding box values for
each detected belt. Equation (2) represents the calculation of µ where K is the number of
detected belts, i is the index of detected belts, hi is the height of the bounding box for each
detected belt, and yi is the coordinate of the left upper corner of the bounding box on the
Y-axis.

µ =
∑K

i=1(yi + hi)

K
(2)

Sustainability 2024, 16, 1218 9 of 17

The value of µ approximates the y coordinate of the lower trailer edge needed for
cropping in the next step, as bounding boxes may be positioned incorrectly above or below
the belt’s actual location during the detection.

3.3. Phase 3

The trailer is cropped from the image using the following coordinates of the corner
points (Figure 8):

• p1: (x1 − w1 × 0.5, max(min(y1 − h1, y2 − h2),0));
• p2: (x2 + w2 × 1.5, max(min(y1 − h1, y2 − h2),0));
• p3: (x1 − w1 × 0.5, H/2 + µ);
• p4: (x2 + w2 × 1.5, H/2 + µ).

Sustainability 2024, 16, x FOR PEER REVIEW 9 of 18

Figure 7. Example of metal parts and whole belts detected by NN2 and NN3.

3.2.3. Step 2f
If the counted number of metal parts in Step 2b is smaller than 25, then at least one

of the belts is missing (each trailer must have at least 25 belts).

3.2.4. Step 2g
This next step involves computing µ—the average of y + h of bounding box values

for each detected belt. Equation (2) represents the calculation of µ where K is the number
of detected belts, i is the index of detected belts, hi is the height of the bounding box for
each detected belt, and yi is the coordinate of the left upper corner of the bounding box on
the Y-axis.

µ = ∑ (y + h)K (2)

The value of µ approximates the y coordinate of the lower trailer edge needed for
cropping in the next step, as bounding boxes may be positioned incorrectly above or be-
low the belt’s actual location during the detection.

3.3. Phase 3
The trailer is cropped from the image using the following coordinates of the corner

points (Figure 8):
• p1: (x1 − w1 × 0.5, max(min(y1 − h1, y2 − h2),0));
• p2: (x2 + w2 × 1.5, max(min(y1 − h1, y2 − h2),0));
• p3: (x1 − w1 × 0.5, H/2 + µ);
• p4: (x2 + w2 × 1.5, H/2 + µ).

Figure 8. Points calculated and automatically drawn by the algorithm in the Python environment.

To test NN1, NN2, and NN3, we used 100 unlabeled trailer images. Even if we do not
know if the trailer in the image is damaged, we can still check if networks correctly detect
belts and yellow semi-squares. For each network, if even one object (belt or yellow semi-
square) was not detected, we count the whole example as false negative (FN), and if the
network found more objects than it should (e.g., 27 belts instead of 25), the whole example
is considered FP.

Figure 8. Points calculated and automatically drawn by the algorithm in the Python environment.

To test NN1, NN2, and NN3, we used 100 unlabeled trailer images. Even if we do
not know if the trailer in the image is damaged, we can still check if networks correctly
detect belts and yellow semi-squares. For each network, if even one object (belt or yellow
semi-square) was not detected, we count the whole example as false negative (FN), and
if the network found more objects than it should (e.g., 27 belts instead of 25), the whole
example is considered FP.

3.4. Phase 4

In Phase 4, the SAHI library is called to perform sliced damage detection with an
overlap ratio of 30% with the pre-trained damage detection NN4. To select the best
candidate to be NN4, we again trained and tested Faster R-CNN R101-FPN, RetinaNetR101,
and YOLOv8l.

As the image size of trailers was too large to train the detection network with the given
hardware, we again used tiling to divide each trailer image into collections of multiple
smaller tiles of size 320 × 320 pixels. The overlap ratio for the sliding window during
tiling was set to 50% to ensure that the damage located on more than one tile was correctly
included in the training set. This way, 500–900 tiles were created from each image of
the trailer side, depending on the initial resolution. There were 100 images of damaged
trailers exhibiting the following distribution of damage types: cracked tarpaulin (47.57%),
improper patch (33.51%), damaged belt (8.65%), missing belt (6.49%), not fixed belt (3.24%)
and damaged inch cord (0.54%). Damaged inch cords were excluded from the set due to
the lack of data on this class for training and testing. Neither unfixed nor missing belts
were used for training NN4, as these are detected in other phases of the algorithm by
two different neural networks. Since cracked tarpaulins and improper patches were often
visually indistinguishable, we defined only one class of damage for NN4: “damaged”. Such
a strategy also demonstrated the effectiveness of the transfer learning approach in Cimili
et al. [9]. For the “background” class, we made empty annotations to allow models to
learn patterns of trailer surfaces that should not be classified as damaged. It also included
complicated cases such as proper patches, scratches, and dirt, which look like damage but
should not be classified as such. After the tiling of the images, we selected only the tiles
that represented damage—in total, 305 tiles from 81 damage cases consisting of cracked
tarpaulin and improper patches.

In a similar manner to the training of NN1, NN2, and NN3, we set the learning rate
for the training of NN4 to 0.00025, the number of epochs to 50, and the batch size to 10.

Sustainability 2024, 16, 1218 10 of 17

To obtain more training data for the minority (“damaged”) class from 305 tiles, we used
data augmentation. To make this step as helpful as possible for training, we thoroughly
analyzed trailer images to obtain more information on possible saturation, noise levels,
contrast ratio, lighting conditions, and blur. Finally, seven augmentation variants were
selected and applied with the “imgaug” package for Python:

• Adding −40 to the brightness channel.
• Adding +80 to the brightness channel.
• Multiplication of hue and saturation channels by random values between 0.5 and 1.
• Blurring each image with a Gaussian kernel with a sigma of 1.5.
• Adding Gaussian noise sampled from the normal distribution with a mean of 10 and

standard deviation of 30.
• Combination of Gaussian blur with Gaussian noise.
• Combination of Gaussian blur with Gaussian noise and brightness adjustment.

After the augmentation step, the training set for NN4 consisted of 3500 images. Around
15% of images in the training set belonged to the “background” class with no damage and
served to prevent FP predictions.

While training YOLOv8l networks with the Ultralytics package, we disabled mosaic
augmentation during training. Mosaic augmentation was introduced with the fourth
version of the YOLO network. It combines four randomly chosen images from the training
set into one concerning all bounding boxes. However, it is unsuitable for our problem as
it causes FP predictions in many cases because it is hard to classify a patch on the trailer
when only its part is visible.

The Detectron2 package was used to train all other NNs. Using the package’s function-
ality, we applied horizontal flipping with a 10% probability for each image in the training
set. Vertical flipping was not a suitable augmentation option for our research problem, as
many trailer parts, like belts, can never be turned upside down.

3.5. Phase 5

The user is shown the trailer image with visualized bounding boxes for the found dam-
age with some descriptions. Also, information is provided on missing or damaged belts.

3.6. Alternative Phase 1

In Alternative Phase 1, the trailer cropping can be performed without additional rota-
tions. Thus, the usage of NNs is replaced by several classical image processing operations,
and Phase 3 becomes unnecessary and is eliminated (Figure 9).

The entire process of trailer cropping is shown in Figure 10. Firstly, the image is
converted from the BGR (Blue, Green, Red) to HSV (Hue, Saturation, Value) format. As all
trailers in our research belong to the single operator and are blue, this color can always be
filtered by hue (H) and saturation (S). We filter only pixels with a hue between 70 and 110
and saturation between 80 and 250. There are no restrictions on the brightness value (V).

Then, we add Gaussian blur to remove small unnecessary details, such as minor
damage, dirt, or holes. In the next step, the image is converted into grayscale, and Otsu’s
thresholding method [31] for subsequent binary segmentation is applied. This thresholding
technique splits pixels depending on their intensity values into two classes (foreground
and background). It helps to segment blue objects filtered out earlier by colour selection
(blue trailers and sometimes drivers’ cabins). Then, we apply morphological closing with
the rectangular kernel of size 50 × 50 pixels to fill undesired left gaps in the regions of the
binary image where most pixel values are equal to 1 and to smooth out the contours of
the trailer. As in the example in Figure 10, trucks often have the same colour as trailers (or
are very similar), but we do not want to detect them. To select only a trailer, we search for
all contours on the resulting binary mask of the trailer image and select the largest one;
this can only be a trailer. The final step is applying the minAreaRect function from the cv2
package to find and crop the smallest rectangle covering the filtered trailer mask. Thus, we

Sustainability 2024, 16, 1218 11 of 17

still need to apply belt detection for damage search, but no rotation and corner detection is
required now.

Sustainability 2024, 16, x FOR PEER REVIEW 11 of 18

3.5. Phase 5
The user is shown the trailer image with visualized bounding boxes for the found

damage with some descriptions. Also, information is provided on missing or damaged
belts.

3.6. Alternative Phase 1
In Alternative Phase 1, the trailer cropping can be performed without additional ro-

tations. Thus, the usage of NNs is replaced by several classical image processing opera-
tions, and Phase 3 becomes unnecessary and is eliminated (Figure 9).

Figure 9. Alternative variant of the ADD framework.

The entire process of trailer cropping is shown in Figure 10. Firstly, the image is con-
verted from the BGR (Blue, Green, Red) to HSV (Hue, Saturation, Value) format. As all
trailers in our research belong to the single operator and are blue, this color can always be
filtered by hue (H) and saturation (S). We filter only pixels with a hue between 70 and 110
and saturation between 80 and 250. There are no restrictions on the brightness value (V).

(a) (b)

(c) (d)

Figure 9. Alternative variant of the ADD framework.

Sustainability 2024, 16, x FOR PEER REVIEW 11 of 18

3.5. Phase 5
The user is shown the trailer image with visualized bounding boxes for the found

damage with some descriptions. Also, information is provided on missing or damaged
belts.

3.6. Alternative Phase 1
In Alternative Phase 1, the trailer cropping can be performed without additional ro-

tations. Thus, the usage of NNs is replaced by several classical image processing opera-
tions, and Phase 3 becomes unnecessary and is eliminated (Figure 9).

Figure 9. Alternative variant of the ADD framework.

The entire process of trailer cropping is shown in Figure 10. Firstly, the image is con-
verted from the BGR (Blue, Green, Red) to HSV (Hue, Saturation, Value) format. As all
trailers in our research belong to the single operator and are blue, this color can always be
filtered by hue (H) and saturation (S). We filter only pixels with a hue between 70 and 110
and saturation between 80 and 250. There are no restrictions on the brightness value (V).

(a) (b)

(c) (d)

Sustainability 2024, 16, x FOR PEER REVIEW 12 of 18

(e) (f)

Figure 10. Process of trailer cropping in the Alternative Phase 1: (a) load image in BGR color space
(standard cv2 color space); (b) convert into HSV format and filter color; (c) add Gaussian blur; (d)
apply Otsu thresholding; (e) apply morphological closing; (f) apply minAreaRect cv2 function to
the largest detected contour.

Then, we add Gaussian blur to remove small unnecessary details, such as minor dam-
age, dirt, or holes. In the next step, the image is converted into grayscale, and Otsu’s
thresholding method [31] for subsequent binary segmentation is applied. This threshold-
ing technique splits pixels depending on their intensity values into two classes (fore-
ground and background). It helps to segment blue objects filtered out earlier by colour
selection (blue trailers and sometimes drivers’ cabins). Then, we apply morphological
closing with the rectangular kernel of size 50 × 50 pixels to fill undesired left gaps in the
regions of the binary image where most pixel values are equal to 1 and to smooth out the
contours of the trailer. As in the example in Figure 10, trucks often have the same colour
as trailers (or are very similar), but we do not want to detect them. To select only a trailer,
we search for all contours on the resulting binary mask of the trailer image and select the
largest one; this can only be a trailer. The final step is applying the minAreaRect function
from the cv2 package to find and crop the smallest rectangle covering the filtered trailer
mask. Thus, we still need to apply belt detection for damage search, but no rotation and
corner detection is required now.

Another advantage of the approach with the Alternative Phase 1 is that Phase 4 is
now also executed in parallel with Phase 2 instead of afterward. This increases the speed
of the whole process of the ADD.

3.7. Test of the Whole Approach
Additional data were provided for final tests of the entire ensemble learning model,

including all the phases. We received images of 25 trailers (50 full-sized trailer images)
that were known to have damage and of another 25 trailers that “with high probability”
had no damage. Unfortunately, we could not be sure that negative class trailers were com-
pletely undamaged. Six damaged cases (12 images) were excluded from the test set as a
technical error occurred during the image capture at the OCR gate. The images were com-
pletely dark and could not be processed due to their quality.

We also excluded four cases (8 images) of the positive class as they represented two
classes not included in the training set: damaged seal and damaged inch cord. As the
training data contained a single example of a damaged inch cord, it was excluded from
both the training and test sets. Damaged seals were not in the training data at all. Thus,
there were only 15 cases of the damaged class left. Therefore, to have a balanced test set,
we also reduced the number of negative cases to 15.

Each case of the positive class might be damaged either on one or both sides. If, at
least on one trailer side, the damage was correctly detected (the bounding box matches
the actual damage), we count this case as true positive (TP), as in this case, the terminal
personnel would need to check the whole trailer surface. For the same reason, if the model
found damage on at least one of the trailer images without damage, the whole case is
observed as FP. If no damage was detected on either side of the defect-free trailer, the
entire case is classified as true negative (TN). Based on these rules, we also prepared an
evaluation based on several key performance indicators (KPIs) for each tested model:

Figure 10. Process of trailer cropping in the Alternative Phase 1: (a) load image in BGR color space
(standard cv2 color space); (b) convert into HSV format and filter color; (c) add Gaussian blur;
(d) apply Otsu thresholding; (e) apply morphological closing; (f) apply minAreaRect cv2 function to
the largest detected contour.

Sustainability 2024, 16, 1218 12 of 17

Another advantage of the approach with the Alternative Phase 1 is that Phase 4 is now
also executed in parallel with Phase 2 instead of afterward. This increases the speed of the
whole process of the ADD.

3.7. Test of the Whole Approach

Additional data were provided for final tests of the entire ensemble learning model,
including all the phases. We received images of 25 trailers (50 full-sized trailer images) that
were known to have damage and of another 25 trailers that “with high probability” had no
damage. Unfortunately, we could not be sure that negative class trailers were completely
undamaged. Six damaged cases (12 images) were excluded from the test set as a technical
error occurred during the image capture at the OCR gate. The images were completely
dark and could not be processed due to their quality.

We also excluded four cases (8 images) of the positive class as they represented two
classes not included in the training set: damaged seal and damaged inch cord. As the
training data contained a single example of a damaged inch cord, it was excluded from
both the training and test sets. Damaged seals were not in the training data at all. Thus,
there were only 15 cases of the damaged class left. Therefore, to have a balanced test set,
we also reduced the number of negative cases to 15.

Each case of the positive class might be damaged either on one or both sides. If, at
least on one trailer side, the damage was correctly detected (the bounding box matches
the actual damage), we count this case as true positive (TP), as in this case, the terminal
personnel would need to check the whole trailer surface. For the same reason, if the model
found damage on at least one of the trailer images without damage, the whole case is
observed as FP. If no damage was detected on either side of the defect-free trailer, the entire
case is classified as true negative (TN). Based on these rules, we also prepared an evaluation
based on several key performance indicators (KPIs) for each tested model:

Accuracy = (TP + TN) ÷ (TP + TN + FP + FN) (3)

Precision = TP ÷ (TP + FP) (4)

Recall = TP ÷ (TP + FN) (5)

F1-Score = 2 × (Recall × Precision) ÷ (Recall + Precision) (6)

4. Results

Firstly, we evaluate the performance of the approach in Alternative Phase 1 for crop-
ping trailers from images. Since the method is based on color filtering, we test it on
100 images taken during the day and 100 images taken at night. The cropping results
(Table 1) are categorized into three classes: “correctly cropped”, “not cropped”, and
“wrongly cropped”. The “not cropped” class indicates cases where the trailer is detected
in the image. The “wrongly cropped” class refers to situations where some part of the
background is cropped along with the trailer, but, despite the imperfection, the resulting
cropped part is still deemed suitable for further use.

Table 1. Performance of the alternative cropping approach in Alternative Phase 1.

Wrongly Cropped Not Cropped Correctly Cropped

Nighttime 8 1 91
Daytime 16 10 74

The whole process of damage detection, including all phases of the ensemble learning
algorithm for a single trailer image, works approximately 35–50% faster using this cropping
method of Alternative Phase 1. The inference with the alternative cropping takes around
5.5–8 s and 7.5–12 s for the standard approach depending on the image size. Nevertheless,
we decided not to use an approach from Alternative Phase 1 for testing the entire ensemble

Sustainability 2024, 16, 1218 13 of 17

learning algorithm due to the low quality of trailer recognition during daytime hours,
which is associated with challenging lighting conditions.

Table 2 shows the performance of the networks for detecting yellow semi-squares
(NN1). RetinaNet R101 was the best candidate, achieving 100% accuracy and 100% F1-
Score. YOLOv8l could not detect one semi-square on three images with bad lighting
conditions. The Faster R-CNN R101-FPN exhibited unsatisfactory performance, detecting
a significantly larger number of semi-squares on each image than what was really depicted.
Consequently, the Faster R-CNN model appeared unsuitable for fulfilling the objectives of
this specific task.

Table 2. Performance of the candidate networks for NN1.

Algorithm Accuracy Precision Recall F1-Score

YOLOv8l 97.00% 100.00% 97.00% 98.50%
RetinaNet R101 100.00% 100.00% 100.00% 100.00%

Faster R-CNN R101-FPN — — — —

YOLOv8l was selected as the best candidate for NN2 to find the belts’ metal parts
(Table 3). It achieved 98% accuracy and 98.98% F1-Score and did not correctly detect only
2 metal parts out of approximately 2500.

Table 3. Performance of the candidate networks for NN2.

Algorithm Accuracy Precision Recall F1-Score

YOLOv8l 98.00% 100.00% 98.00% 98.98%
RetinaNet R101 26.00% 26.00% 100.00% 41.27%

Faster R-CNN R101-FPN 15.00% 15.00% 100.00% 26.09%

All three networks demonstrated the worst results in the detection of complete belts.
Such performance issues relate to variable image size and various lighting conditions.
These factors contribute to the distortion of belt appearances, causing some belts to appear
flattened, stretched out, or nearly invisible. Nevertheless, YOLOv8l outperformed other
candidates in this task, achieving 97% accuracy and 98.47% F1-Score (Table 4).

Table 4. Performance of the candidate networks for NN3.

Algorithm Accuracy Precision Recall F1-Score

YOLOv8l 97.00% 100.00% 97.00% 98.47%
RetinaNet R101 47.00% 52.80% 81.00% 63.93%

Faster R-CNN R101-FPN 90.00% 91.80% 97.80% 94.71%

After selecting the networks for the intermediate tasks, we could finally test the overall
performance of the entire approach. However, we still needed to choose a network for
damage detection, which could only be carried out in conjunction with NN1, NN2, and
NN3, as NN4 required a cropped trailer as input from the previous phases. Since NN1,
NN2, and NN3 yield identical results combined with any NN4 alternative, subsequent
tests will also determine the most suitable choice for NN4.

For this final evaluation, we used two criteria: performance per truck and performance
per image. In the first criterion, we considered the entire detection as FP or FN if the damage
was wrongly detected on even just one side of the trailer (Table 5). In the second criterion,
we treated each image as an independent case (Table 6). Both approaches equally allow
for assessing which model performs better, but their combined use helps create a better
understanding of the networks’ efficiency.

Sustainability 2024, 16, 1218 14 of 17

Table 5. Performance per trailer of the whole model.

Algorithm Accuracy Precision Recall F1-Score

YOLOv8 70.00% 64.70% 73.33% 68.74%
RetinaNet R101 76.67% 78.57% 73.33% 75.84%

Faster R-CNN R101-FPN 56.66% 47.82% 91.66% 62.85%

Table 6. Performance per image of the whole model.

Algorithm Accuracy Precision Recall F1-Score

YOLOv8 81.66% 68.42% 76.47% 72.22%
RetinaNet R101 88.33% 83.33% 78.95% 81.08%

Faster R-CNN R101-FPN 70.00% 59.37% 86.36% 70.34%

The whole ensemble model demonstrated the best results with the RetinaNet R101
algorithm selected for Phase 4, achieving an accuracy of 76.67% and an F1-Score of 75.84%
per truck, as well as 88.33% accuracy and 81.08% F1-Score per image. Among the cases of
undetected damage were three instances of damaged belts that were scarcely represented
in the training set and one tile in an image with very high brightness. Out of the four cases,
two were patches that suspiciously resembled defects, and in our opinion, they should
have been rechecked by professional personnel at the terminal.

The results show that the presented ensemble learning model outperforms approaches
introduced by Cimili et al. [9]. Nevertheless, a direct quantitative comparison is highly
challenging. Cimili et al. [9] used classification instead of object detection NNs, tested
separate models for the trailer’s upper and lower parts, and employed supervised and
semi-supervised approaches. However, their results per tile for each of the tested models
were not sufficient at that time to conduct testing on full-size trailer images instead of just
tiles. The maximal observed accuracy of 89% per tile in Cimili et al. [9] would mean that by
each full-sized trailer image consisting of at least a hundred such tiles, 10% of them would
be misclassified. In contrast, our ensemble learning model achieves almost 90% accuracy
and an 81% F1-Score for the entire trailer image, which is notable given that correct analysis
of a single full-sized trailer image requires accurate predictions for several hundred tiles.
Even a single erroneous prediction in these tiles could render the entire prediction incorrect.

For the best model, we prepared confidence matrices per truck (Table 7) and per image
(Table 8). In this context, the rationale behind using just two classes for assessing the whole
ensemble model is as follows: even if the model mistakenly identifies damage that is not
there or incorrectly assigns the damage to the wrong category, a professional checker at the
terminal would still need to physically inspect the trailer to confirm the model’s accuracy
manually. Thus, any single error or misclassification by the model, even for one trailer side,
necessitates on-site verification.

Table 7. Confidence matrix of the model performance per truck.

Predicted Label\Actual Label Damage No Damage

Damaged 11 3
No damage 4 12

Table 8. Confidence matrix of the model performance per image.

Predicted Label\Actual Label Damage No Damage

Damaged 15 3
No damage 4 38

Sustainability 2024, 16, 1218 15 of 17

5. Conclusions

In this research, we proposed the novel ADD algorithm for trailers, which can be
integrated into the TOS of intermodal inland terminals. This algorithm is the first published
algorithm that can detect damage of multiple classes (damage, damaged belt, missing belt)
on full-sized trailer images (not only on tiles). This algorithm consists of several phases
and steps, while different object detection networks demonstrated varying performance
for different tasks. The developed method considers the structural features of trailers as
well as their key differences from containers. It includes several specific steps that address
these differences. These steps involve trailer recognition in images using semi-squares
and identifying damaged or completely detached belts by comparing the object detection
results from separate networks.

In this way, the ensemble learning strategy using a simple “bucket of models” proved
its efficiency, achieving almost 76.67% accuracy and an 75.84% F1-Score per truck, and
88.33% accuracy and an 81.08% F1-Score per image. While RetinaNet showed the best
results in detecting semi-squares and damage, YOLOv8 outperformed it in identifying
full belts and their metal parts. Despite two-stage detectors being considered slower but
more accurate than one-stage detectors, Faster R-CNN could not compete with more recent
one-stage counterparts.

The proposed method of trailer cropping in Alternative Phase 1, based on classical
computer vision techniques without NNs, demonstrated promising results, particularly in
nighttime conditions. It has a significantly shorter execution time than the approach based
on cropping with NNs (approximately 30–35% faster) and can crop even tilted trailers.
However, due to highly variable lighting conditions ranging from very sunny to extremely
dark, it could not always crop the trailer from the image using color filters. These lighting
conditions also affect the performance of the damage detector, as most undetected cases
occur in very sunny weather. The detection rate of the images that were correctly cropped
with no mistakes drops from 91% at nighttime to 74% at daytime. Therefore, if we want
to achieve efficient ADD and fast trailer recognition in images, it is necessary to create
consistent lighting conditions at any time of the day and in any weather. Currently, the best
images are taken at nighttime using flashlights. To imitate such conditions, the terminal
could construct a closed cover over the OCR gate, which will protect cameras from sunshine.
Moreover, such a cover will protect against snow and rain particles, which can potentially
be recognized as “damage” and lead to FP detections.

The augmentation strategy succeeded in increasing the quantity of training data and
simulating various environmental conditions. Adding the Gaussian noise combined with
some blur and brightness adjustment even helped to train the model to work correctly
during snowy or rainy days. The idea of dividing the trailer image into upper and lower
parts reduces computational time and enables parallelization of the algorithm’s phases.

In the future, more training data can be generated by installing additional cameras at
the OCR gate. These can be regular cameras placed at new angles and positions or depth
cameras that generate not only visual information but also distance data. For instance,
Beckman et al. [32] proposed a solution for crack detection using Faster R-CNN with a
sensitivity detection network using such cameras.

The varying length of images creates additional challenges in detecting damage and
training models. Setting a truck speed limit at the OCR gate could be one of the effective
methods to address this issue.

The observed KPIs of the methodology can be used in further research to conduct
computer simulations to analyze the long-term prospects of our approach, given its current
performance. The developed model might also be used for offline, real-world experiments,
including emulation with connection to the TOS. Even though the current algorithm is
suitable for ADD on trailers of only one operator, its effectiveness paves the way for
knowledge transfer to other datasets and trailer operators.

In the long term, the proposed ADD method for trailers can significantly reduce the
workload on personnel and redirect resources to other necessary tasks. Subsequently, such

Sustainability 2024, 16, 1218 16 of 17

changes can enhance the cost efficiency of intermodal terminals worldwide. This, in turn,
will increase the attractiveness of such facilities and encourage investments in constructing
new terminals.

By optimizing intermodal terminals with the proposed algorithm, the transportation
sector can advance sustainability by promoting intermodal transport, contributing to CO2
reduction through a significant reduction in unnecessary trailer movements, and fighting
against the greenhouse effect in the long run.

Author Contributions: P.C.: Conceptualization, Formal analysis, Writing—original draft, Writing—
Review & Editing, Data Curation, Methodology, Investigation, Validation, Visualization, Software;
J.V.: Conceptualization, Validation, Resources, Writing—Review and Editing, Project administration,
Funding acquisition; P.H.: Conceptualization, Methodology, Validation, Writing—Review and Edit-
ing, Supervision; M.G.: Conceptualization, Methodology, Validation, Resources, Writing—Review &
Editing, Supervision, Project administration, Funding acquisition. All authors have read and agreed
to the published version of the manuscript.

Funding: Financial support by Grant No 877682 of the program Mobility of the Future provided by
the Austrian Research Promotion Agency and the Federal Ministry for Climate Action, Environment,
Energy, Mobility, Innovation and Technology is gratefully acknowledged. The funding body did not
have a part in the design of the study, the collection, analysis, or interpretation of data or in writing
the manuscript. The Principal Investigator of the grant is Manfred Gronalt.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We would like to express our gratitude to Waltraud Pamminger for her com-
prehensive support throughout the project and Robert Spiessmaier for his extensive assistance and
consultations on all the technical aspects.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Eurostat. Road Freight Transport by Axle Configuration of Vehicle (tkm, Vehicle-km, Journeys)—Annual Data [Data Set]. 2022.

Available online: https://ec.europa.eu/eurostat/databrowser/view/road_go_ta_axle/default/table?lang=en (accessed on 15
April 2023).

2. Posset, M.; Gronalt, M.; Peherstorfer, H.; Schultze, R.-C.; Starkl, F. Intermodal Transport Europe; Universität für Bodenkultur Wien:
Wien, Austria, 2020.

3. Zhuang, P.; Li, X.; Wu, J. The Spatial Value and Efficiency of Inland Ports with Different Development Models: A Case Study in
China. Sustainability 2023, 15, 12677. [CrossRef]

4. Wang, L.; Zhu, X. Container loading optimization in rail–truck intermodal terminals considering energy consumption. Sustain-
ability 2019, 11, 2383. [CrossRef]

5. Aljadiri, R.; Sundarakani, B.; El Barachi, M. Evaluating the Impact of COVID-19 on Multimodal Cargo Transport Performance: A
Mixed-Method Study in the UAE Context. Sustainability 2023, 15, 15703. [CrossRef]

6. Rogerson, S.; Santén, V.; Svanberg, M.; Williamsson, J.; Woxenius, J. Modal shift to inland waterways: Dealing with barriers in
two Swedish cases. Int. J. Logist. Res. Appl. 2020, 23, 195–210. [CrossRef]

7. De Langen, P.W.; Chouly, A. Strategies of terminal operating companies in changing environments. Int. J. Logist. Res. Appl. 2009,
12, 423–434. [CrossRef]

8. Protic, S.M.; Fikar, C.; Voegl, J.; Gronalt, M. Analysing the impact of value added services at intermodal inland terminals. Int. J.
Logist. Res. Appl. 2020, 23, 159–177. [CrossRef]

9. Cimili, P.; Voegl, J.; Hirsch, P.; Gronalt, M. Automated damage detection of trailers at intermodal terminals using deep learning.
In Proceedings of the 24th International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation (HMS
2022), Rome, Italy, 19–21 September 2022. [CrossRef]

10. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520. [CrossRef]

11. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [CrossRef]

https://ec.europa.eu/eurostat/databrowser/view/road_go_ta_axle/default/table?lang=en
https://doi.org/10.3390/su151712677
https://doi.org/10.3390/su11082383
https://doi.org/10.3390/su152215703
https://doi.org/10.1080/13675567.2019.1640665
https://doi.org/10.1080/13675560902775725
https://doi.org/10.1080/13675567.2019.1657386
https://doi.org/10.46354/i3m.2022.hms.003
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/TPAMI.2018.2858826

Sustainability 2024, 16, 1218 17 of 17

12. Jocher, G.; Chaurasia, A.; Qiu, J. YOLO by Ultralytics (Version 8.0.0) [Computer Software]. 2023. Available online: https://github.
com/ultralytics/ultralytics (accessed on 10 February 2023).

13. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv
2015, arXiv:1506.01497. [CrossRef] [PubMed]

14. Mao, X.-J.; Shen, C.; Yang, Y.-B. Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections. arXiv
2016, arXiv:1606.08921. [CrossRef]

15. Sarafijanovic-Djukic, N.; Davis, J. Fast distance-based anomaly detection in images using an inception-like autoencoder. In
Proceedings of the Discovery Science: Proceedings of the 22nd International Conference, DS 2019, Split, Croatia, 28–30 October
2019; Proceedings 22; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 493–508. [CrossRef]

16. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587. [CrossRef]

17. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448. [CrossRef]

18. Hegde, V.; Trivedi, D.; Alfarrarjeh, A.; Deepak, A.; Kim, S.H.; Shahabi, C. Yet another deep learning approach for road damage
detection using ensemble learning. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA,
USA, 10–13 December 2020; pp. 5553–5558. [CrossRef]

19. Pham, V.; Pham, C.; Dang, T. Road damage detection and classification with detectron2 and faster r-cnn. In Proceedings of the
2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 5592–5601. [CrossRef]

20. Li, X.; Liu, Q.; Wang, J.; Wu, J. Container damage identification based on Fmask-RCNN. In Proceedings of the Neural Computing
for Advanced Applications: Proceedings of the First International Conference, NCAA 2020, Shenzhen, China, 3–5 July 2020;
Proceedings 1; Springer: Singapore, 2020; pp. 12–22. [CrossRef]

21. Dorathi Jayaseeli, J.D.; Jayaraj, G.K.; Kanakarajan, M.; Malathi, D. Car Damage Detection Cost Evaluation Using MASK R-CNN.
In Proceedings of the Intelligent Computing and Innovation on Data Science: Proceedings of the ICTIDS 2021, Kota Bharu,
Malaysia, 19–20 February 2021; Springer: Singapore, 2021; pp. 279–288. [CrossRef]

22. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [CrossRef]
23. Jocher, G. YOLOv5 by Ultralytics; (Version 7.0) [Computer Software]; CERN: Geneva, Switzerland, 2020. [CrossRef]
24. Doshi, K.; Yilmaz, Y. Road damage detection using deep ensemble learning. In Proceedings of the 2020 IEEE International

Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 5540–5544. [CrossRef]
25. Yin, J.; Qu, J.; Huang, W.; Chen, Q. Road Damage Detection and Classification based on Multi-level Feature Pyramids. KSII Trans.

Internet Inf. Syst. 2021, 15, 786–799. [CrossRef]
26. Zhang, X.; Xia, X.; Li, N.; Lin, M.; Song, J.; Ding, N. Exploring the tricks for road damage detection with a one-stage detector.

In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020;
pp. 5616–5621.

27. Ale, L.; Zhang, N.; Li, L. Road damage detection using RetinaNet. In Proceedings of the 2018 IEEE International Conference on
Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 5197–5200. [CrossRef]

28. Akyon, F.C.; Altinuc, S.O.; Temizel, A. Slicing aided hyper inference and fine-tuning for small object detection. In Proceedings
of the 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 16–19 October 2022; pp. 966–970.
[CrossRef]

29. Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.-Y.; Girshick, R. Detectron2 [Computer Software]. 2019. Available online: https://github.
com/facebookresearch/detectron2 (accessed on 14 January 2023).

30. Xia, J.; Jeong, Y.; Yoon, J. An automatic machine vision-based algorithm for inspection of hardwood flooring defects during
manufacturing. Eng. Appl. Artif. Intell. 2023, 123, 106268. [CrossRef]

31. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
32. Beckman, G.H.; Polyzois, D.; Cha, Y.J. Deep learning-based automatic volumetric damage quantification using depth camera.

Autom. Constr. 2019, 99, 114–124. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.48550/arXiv.1606.08921
https://doi.org/10.1007/978-3-030-33778-0_37
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/BigData50022.2020.9377833
https://doi.org/10.1109/BigData50022.2020.9378027
https://doi.org/10.1007/978-981-15-7670-6_2
https://doi.org/10.1007/978-981-16-3153-5_31
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.5281/zenodo.3908559
https://doi.org/10.1109/BigData50022.2020.9377774
https://doi.org/10.3837/tiis.2021.02.022
https://doi.org/10.1109/BigData.2018.8622025
https://doi.org/10.1109/ICIP46576.2022.9897990
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.1016/j.engappai.2023.106268
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1016/j.autcon.2018.12.006

	Introduction
	State of the Art
	Material and Methods
	Phase 1—Preparation for Trailer Detection and Crop from the Image
	Step 1a
	Step 1b
	Step 1c

	Phase 2
	Step 2a–Step 2d
	Step 2e
	Step 2f
	Step 2g

	Phase 3
	Phase 4
	Phase 5
	Alternative Phase 1
	Test of the Whole Approach

	Results
	Conclusions
	References

