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Abstract
This research work seeks to analysis the mortality trend experienced in Kenya over the sample period 1950
to 2021 using a multidimensional modeling framework. Life table functions, namely; life expectancy, survival
function and age at death distribution are applied to depict mortality characteristics. Life expectancy
and survival rate have significantly improved. There has been a shift in mortality status from a high
mortality population, to an intermediate stage and mortality risk factors have increased across age. Mortality
concentration curve and index within the Lorenz curve and Gini coefficient framework are used to analyze
the lifespan inequality. Lifespan inequality is high with negligible improvements over time. Gompertz force
of mortality is then estimated, which is statistically significant at 5% level. Deaths at exact age 25 is about
35 per ten thousand, with the rate death rate increasing by 6.09% per year starting from age 25. Under
the assumptions of stable population, where the mortality and fertility functions are independent of time,
Malthusian parameter is estimated which is less than zero for selected years. Kenya is a shrinking population
and death rate decrease with increase in Malthusian parameter. Finally, to model long-term mortality rate
forecast, Lee-Carter model is estimated. The model is statistically significant at 5% level explaining 78.4% of
the variations. Expected life expectancy at a given age is projected to increase, with life expectancy at birth
in 2030 and 2071 being 65.6 and 70.5 years respectively.
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1 Introduction
Globally in the last century, the has been a reduction in mortality and increase in life expectancy. These
improvement have been attributed to awareness of health behavior and modernization of health infrastructure
(Roser et al. [1] ). Global life expectancy at birth in 2021 is 71 years with the least developed countries lagging
behind by 7 years (UN WPP 2022). Covid-19 pandemic period between late 2020 and 2021 resulted to slowed
life expectancy improvement in the world. Life expectancy at birth in the sub-Saharan Africa is 59.7 for both
sexes. Female lead with 61.6 years as compared to males at 57.8 years. Models for analyzing mortality rates
are categorized into three groups, namely; expectation models, explanatory models and extrapolative models.
Expectation models are based on the a demographer opinion while explanatory models are based structural
analysis of cause of death. Extrapolative models are based on the past mortality trend. The latter models have
an have an advantage in modeling long-term forecast as compared to former models.

Age specific period life table function are tools used to analyze mortality. The shape of age-at-distribution derived
from the life table death density function, is used to describe variability of age at death, shift in modal age at
death and any shift in mortality. The age-at death distribution is well summarized by the mean and variability.
Mean is equivalent to life expectancy at birth while variability measures the dispersion around the mean. Modal
age death corresponding to the maximum value of the density has become a better longevity indicator in low
mortality population. ( Canudas-Romo 2008 [2] ,Canudas-Romo 2010 [3], Ouellette and Bourbeauet [4],Horiuchi
et al. 2013 [5] , Basellini and Camarda [6], Shang and Haberman [7] , Bergeron-Boucher et al. [8]). Survival
curves dimensions are used in mortality analysis to determine highest normal life duration that exceeds modal
age, death around the modal age and the proportion of survivors in population (Cheung et al. [9], Ebeling
et al. [10]). Gini coefficient and Lorenz curve are are mortality concentration index and curve for inequality
measure. Lorenz curve shows the spread of the disparity from the equality line while Gini coefficient quantify
the area between line of equality and Lorenz curve. Shkolnikov [11] (2003) developed a framework of applying
the two measure to evaluate life inequality. This techniques was been applied by Vaupel et al. [12] (2011)
,Giorgi et al. [13] 2017 and Zafeiris [14] 2023 in their disparity analysis. In mortality modeling and forecasting,
the model developed by Lee and Carter [15] has been widely used. The model is time series based model for
forecasting long-run age specific mortality. Age specific mortality is expressed as a function of unobserved time
specific intensity index and an additional parameter dependent on age. The model has been applied in analyzing
mortality rates in different countries such as; Chile (Lee and Rofman [16]), G7 countries (Tuljapurkar et al. [17]),
Australia ( Booth et al. [18], Carter and Prskawetz [19], and Booth and Tickle [20]), Sweden (Lundström and
Qvist [21]), Spain (Debón et al. [22]), India (Chavhan and Shinde [23]), Malaysia (Ibrahim et al. [24]), China
& Pakistan (Mubarik et al. [25]), Italy (Carfora and Orlando [26]) and Bangladesh (Fazle and Khan [27]).

The aim of this paper is to analysis the trend and model mortality in Kenya using multidimensional approach.
This is achieved by analyzing the life table functions, determining lifespan inequality using mortality concentration
curve and index, determining the force of mortality under Gompertz law, estimating the Malthusian parameter
under the assumptions of stable population and estimating Lee-Carter mortality model to forecast life expectancy.

2 Methodology

2.1 Data
The source of data employed in this study is the UN (United Nation) WPP22 (world population prospect year
2022) [28]. The dataset consist of single year population and deaths for both male and female from 1950 to 2021.
According to Keilman [29] research o the accuracy of UN world population projection using 12 set of population
projection between 1950 and 1980, he observed a clear tendency over time towards accuracy improvements.
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Fig. 1. Crude mortality rate plot

Crude mortality rate trend in Kenya is shown Fig. 1(a). Its evident that mortality rate has reduced over time.
There was however a break in the decrease trend in the 1990s. Age specific mortality (ASMR) are analyzed
to show clear variation in mortality across age and year as shown in Fig. 1(b). Infant mortality has sharply
declined over time. From 6 years to 63 year, there has been less variability in ASMR over time. After 63 years,
ASMR tends to increase though there has been a decrease in value over time. In the neighborhood of 100 years
there is a lot of volatility over time.

2.2 Model

2.2.1 Life table function
A current life-table gives a cross section view of the survival and mortality experiences in a population by all
ages. Life table functions are;

px =
lx+1

lx
(2.1)

qx =
dx
lx

(2.2)

dx = lx − Lx+1 (2.3)

Lx =

∫ x+1

x

lydy (2.4)

Tx =

∫ ω−x

0

Lx+tdt (2.5)

ex =
Tx
lx

(2.6)
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Where lx is the number alive at exact age x, px is the probability of surviving from exact age x and x+ 1 , qx
is the probability of dying between exact age x and x+ 1 , dx is the number of deaths between exact age x and
x+ 1 , Lx is number of person-years lived between exact age x and x+ 1 , Tx is total number of person-years
lived from exact age x, ω is the maximum attainable age and ex is the life expectancy at exact age x.

Age survival curve is the plot of the share of individual expected to survive upto a certain age, which is obtained
from survival function. Age at death distribution is a plot of the death function. The plot of the life expectancy,
survival function and the death function are as shown in Fig. 2.

Fig. 2. Life table function plot

Fig. 2(a) show the evolution of life expectancy over time in Kenya. Life expectancy at birth has increased in
the recent years to more than 62 years as compared to 1950s to 1970s that was within the range of 40 to 55
years. Life expectancy from age 1 to 62 has declined in the recent years as compared to early 1980s and has
improved as compared to 1950 to 1960. From the age of 63 , life expectancy has increased over time. Fig. 2(b)
show the trend in life expectancy at birth of the years. There is a continuous increase in life expectancy at birth
with breaks in the trend as from 1990 to 2000 and around the Covid-19 pandemic period. Less than half of the
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population in mid-20th century made past 50 years as shown in Fig. 2(c). In contrast, more than 80% of the
population in 2020 were expected to live longer than 50 years.

The distribution of age at death is characterized by two mode; younger mode for infant and older age mode for
adult. In the early years, Kenya was higher mortality population with younger mode being greater than older
age mode, as shown in Fig. 2(d). This was characterized by infant mortality of 150 death per 1000 in 1950.
However the trend has improved with the recent years having low younger age mode and low infant mortality of
approximately 26 death per 1000 in the year 2020. The older age mode has slightly shifted over years. The gap
between the younger mode and older age mode has also reduced over time, for example year 2020 younger age
mode being 0.026 which is equivalent to older age mode of 0.024. This indicates a progress shift in mortality
from high mortality population to intermediate status. The dispersion of the age at death distribution has also
reduced with time. There exist a heavy tail on both side of the distribution in the recent year as compared to
1950s and 1960s. The mortality risk factors tends to be wide spread across age recently as compared to early
years The modal age at death corresponding to the peak of the distribution has slightly varied over time ranging
from 73 to 76 years in 2020 and 1980 respectively.

2.2.2 Mortality concentration curve and index
Mortality concentration curve is the best technique of analyzing lifespan inequality. Concentration curve is
associated with Lorenz curve and while the concentration index is associated with the Gini index. Lorenz curve
when applied to demography shows person’s year lived distribution that’s the cumulative person years lived
share as a function of the cumulative death number share. Lorenz curve, y = L(p) , has the following equations
(Hanada [30]);

L(p) =
1

µ

∫ p

0

xf(x)dx (2.7)

p =

∫ x

0

f(x)dx (2.8)

Where f(x) is a density function shown in equation (2.9) and µ is the expectation.

f(x) =
dx
l0

(2.9)

From the density function, the cumulative death density function of person year lived x (F(x ) ) and the
cumulative share of deaths with person lived less or equal to x (Φ(x) ) are expressed as shown in equation (2.10)
and equation (2.11) respectively.

F (x) = 1− lx
L0

(2.10)

Φ(x) =
T0 − (Tx + xlx)

T0
(2.11)

The divergence between the diagonal and Lorenz curve indicates the variability in person year’s lived. Perfect
equality happens at only two end points

• F (x) = 1,Φ(x) = 1 for x = e0

• F (x) = 0,Φ(x) = 0 for ∀x, x 6= e0

Gini index is a measure of absolute value mean of the inter-individual difference in age at death, divide by life
expectancy (Shkolnikov et al. [11]). It normally ranges from 0 to 1. For values close to 1 indicates greater

5



Njenga and Kipchirchir; Asian Res. J. Math., vol. 20, no. 1, pp. 1-15, 2024; Article no.ARJOM.111814

inequality. Gini index expresses the amount of space between perfect line of equality and the lorenz curve
doubled. It’s the area enclosed by y = L(p ) and y = x to the area of triangle y = 0, y = x and x = 1

G = 2

∫ 1

0

(x− L(x))dx (2.12)

Substituting x and L(x ) in equation (2.12), and using the partial integration identity,

d(1− F (t))

dt
= −f(t) (2.13)

, then Gini index is expressed as

G = 1− 1

µ

∫ ∞
0

(1− F (x))2dx (2.14)

Fig. 3. Concentration curve plot

Considering year 2021 life table the Lorenz curve and Gini index are shown in figure 3(a). For those longest-lived
20% person claimed 32% of the total number of life years indicated by upper part of the curve. Short-lived 40%
of persons claimed around 18% of all years of life shown at bottom of the curve. Gini index based on age
specific mortality in 2021 is estimated to be 0.3619, indicating that person year lived from birth to death are less
equally distributed. The Gini coefficient for the other years were calculated and plotted as shown in Fig. 3(b).
There has been a slight improvement in lifespan disparity over time. The maximum Gini value is 36 in 1950
and the minimum value being 28 in the year 1980 when expressed as a percentage. Kenya is characterized as a
population with high lifespan inequality that has not improved over time, commonly experienced in developing
countries (Peltzman [31]).

2.2.3 Force of mortality
Force of mortality denoted as µx is the instantaneous death rate at exact age x. Its the ratio of rate of change
in the number of survivors ( lx ) at exact age x to the number of survivors ( lx ), that is

µx = lim
δx→0

lx − lx+δx
lx.δx

(2.15)
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which reduces to equation (2.16)

µx =
−1

lx
lim
δx→0

lx+δx−lx
δx

(2.16)

where µx ia also used for µ(x) . Solving the limit, force of mortality is given as;

µx =
−1

lx

dlx
dx

(2.17)

Gompertz [32] attributed death to either deterioration of the power to understanding destruction or chance. He
stipulated that, the power of man to resist death (Rx ) decreases at a rate proportional to the power itself, that
is

dRx
dx

= −hRx (2.18)

where h is a positive constant. Integrating equation (2.18)∫
dRx
Rx

= −h
∫
dx (2.19)

lnRx = −hx+ k (2.20)
Rx = e−hx+k (2.21)
Rx = ek.e−hx (2.22)

Since force of mortality is man’s measure of susceptibility to death, Gompertz [32] also stipulated that

Rx =
1

µx
(2.23)

Thus equation (2.22) reduces to
µx = e−kehx (2.24)

Both e−k and eh reduces to constants B and C respectively, thus equation (2.24) becomes;

µx = BCx (2.25)

Constants B and C are estimated by expressing force of mortality (µx ) in term of lxmh . Applying chain rule
for natural logarithm to equation (2.17)

µx =
−d
dx

lnlx (2.26)

integrating both side of equation (2.26) ∫ y

0

dlnx =

∫ y

0

−µxdx (2.27)

Solving the integral on the left hand side of equation (2.27), one obtains

ln(
ly
l0

) = −
∫ y

0

−µxdx (2.28)

Therefore
lx = l0e

−
∫ x
0 µtdt (2.29)

From equation (2.25), then equation (2.29) reduces to

lx = l0e
−B

∫ x
0 −µtdt (2.30)
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Fig. 4. Force of Mortality

Table 1. Gompertz force of mortality results

a Estimation
Estimate Std. Error P-value

(Intercept) -5.6286523 0.0190883 2× 10−16

slope 0.0608969 0.0004408 2× 10−16

R-Squared: 0.9962
F statistics: 1.908× 104 on (1,73) DF

p-value < 0.0001

Solving the integral by substitution method where z = ct ,

lx = l0e
− B

lnC
(Cx−1) (2.31)

The age from 25 years is selected to model the force of mortality as it seems to be linear as shown in Fig. 4.
The estimated parameter of the Gompertz model are shown in Table 1. The estimated Gompertz model is
statistically significant at 5% level. From the model the values of constant B and C are 0.0609 and 0.0035
respectively. The constant C states that the deaths at exact age 25 is just about 35 per ten thousand, and the
slope equivalent to B indicates the death rate increases by 6.09% per year starting at age 25.

2.2.4 Malthusian parameter
Malthusian parameter also known as the intrinsic rate of natural increase, denoted as r. Its defined as the rate of
population increase that reproduce within discrete intervals of time and has generations that are not overlapping
(Malthus [33]). It’s based on stable population assumptions which state that; death rate,rate of increase, age
distribution and birth rate are independent of time. Thus the respective mortality and fertility functions reduces
as follow

c(a, t) = c(a) (2.32)
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µ(a, t) = µ(a) (2.33)

d(t) = d =

∫ ω

0

c(a)µ(a)da (2.34)

b(t) = b =

∫ β

0

c(a)m(a)da (2.35)

where a is age, c(a) is age distribution, µ(a) is force of mortality, m(a) is the age-specific fertility rate for
female births and p(a) is the probability of surviving from birth to age a. The notation ma for m(a) is also
used. Consider stable population characteristic equation given as∫ β

α

e−rap(a)m(a)da = 1 (2.36)

where α and β are the mimimum and maximum ages of child bearing respectively.

Multiplying both side by the reciprocal of R0 and solving using numerical method, equation (2.36) reduces as
shown below

1

R0

∫ β

α

e−rap(a)m(a)da =
1

R0
(2.37)

r =
lnR0

E(A)
(2.38)

where
R0 =

∫
p(a)m(a)da =

1

l0

∫
lam(a)da (2.39)

is the net reproductive rate,

E(A) =
1

R0

∫
a

p(a)m(a)da (2.40)

is the mean age of child bearing. , lx is the number of survivors at age x and mx is the is the female offsprings
per female at an exact age x (age specific fecundity). If

• r = 0 , a stationary population

• r < 0 , a shrinking population

• r > 0 , an expanding population

The effect of intrinsic rate on death rate is obtained by solving equation (2.34)as follows

lnd = ln

∫ ω

0

c(a)µ(a)da (2.41)

dlnd

dr
=
dln

dr
ln

∫ ω

0

c(a)µ(a)da (2.42)

1

d

d

dr
=

∫ ω
0

( d
dr
c(a))µ(a)da∫ ω

0
c(a)µ(a)da

(2.43)

Equation (2.43) finally reduces to
1

d

d

dr
= E(A)− E(A)death (2.44)
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Where E(A)death is the mean age at death. Therefore,

d

dr
= (E(A)− E(A)death)d (2.45)

For

• E(A) > E(A)death , d increase with r

• E(A) < E(A)death , d decrease with r

• E(A) = E(A)death , d does not change for a change in r

Table 2. Intrinsic rate of increase and related function results

value(2021) value(2000) value(1980)
R0 0.7261 0.5312 0.4120
E(A) 3128.705 2786.959 2719.373
r -0.0001 -0.0002 -0.0003

Table 2. shows intrinsic natural rate of increase for three selected years, with all the three years having r less
than zero. This implies that Kenya is a shrinking population. Intrinsic rate of natural increase has increased
from 1980, though by a small margin. Since the age of child bearing is 15 to 49 years, then mean age of child
bearing is less than the mean age at death which was shown under age-at death distribution section, to range
between 72 to 75 years. This implies that death rate (d) decrease with increase in r. Kenya death rate has been
reducing under stable population conditions as the intrinsic rate of natural increase improves.

2.2.5 Lee - Carter model estimation

Lee and Carter [15] developed a model that expresses natural logarithm of age-specific death rate as a linear
function of unobserved specific period index with its parameters being dependent on age.

ln(mx,t) = αx + βxκt + εx,t (2.46)

where αx and βx are age dependent parameters, κt is a stochastic process dependent only on year of observation
and εx,t is the error term.

The exponential of αx is the general shape by age while βx describe the rate of decline in response to change
in κ ie

dln(mx,t)

dt
= βx

dκ

dt
(2.47)

Where

• κ is linear in time: - implies each age specific mortality changes at its own constant exponential rate

• κ approaches −∞ : - implies each age specific mortality rates approaches zero. There is no negative
death rates.

OLS method is used to estimate the parameter αx, βx and κt for x = 1, 2, 3, . . . , N and t = 1, 2, 3, . . . , T ,
subject to boundary conditions

N∑
x=1

βx = 1 and
T∑
t=1

κt = 0 (2.48)
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The estimator of αx is given as

α̂x =
1

T

T∑
t=1

ln(mx,t) (2.49)

The other parameter estimators are then obtained by singular value decomposition (SVD) of N × T matrix M,
for

Mx,t = ln(mx,t)− α̂x (2.50)

Under SVD, the solution is
M = UDV T (2.51)

Then, the estimator for parameter betax and κt are given as:

β̂x =
1

c
Ux,1 and κ̂t = c.D1,1.V1,t (2.52)

where
D1,1 is the largest singular value of M
Ux,1 is the entry value at (x,1) of U
V1,t is the entry value at (x,t) of V and
c =

∑N
x=1 Ux,1 satisfying the boundary conditions

Fig. 5. Lee-Carter parameter estimates plot

The Lee- Carter model estimated is statistically significant with a log-likelihood score of -84543.7 of deviance
110405.2 and 272 parameters. The model explains 78.4% of the variation in the data set. The parameters
estimate for the model are as shown in Fig. 5. General mortality pattern α is high for infant mortality, hump
around ages of 25 years and linear increase from 50 years as shown in Fig. 5(c). The β parameter as shown Fig.
5(b), is low which is an indication of a uniform mortality rate change across years. However, from 44 to 59 years,
the parameter β is negative which indicates worsening mortality in this age group over time. The mortality
index kappat declined in cubic way with two inflection points at approximately 1985 and 1995 respectively as
shown in Fig. 5(a).

2.2.6 Forecast
The first step in forecasting mortality rate involves estimating future values of the mortality index (κt ) parameter
using ARIMA approach as described by Box and Jenkins [34]. The preferred model to fit in the forecast period
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2022 to 2070 is ARIMA (1,1,0) with a drift given as;

κt = κt−1 − 0.9873 + εt (2.53)

The model has a white noise of 0.0.915 standard deviation. The value of estimated κt parameter are as shown
in Table 3.

Table 3. κ predicted values

year 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
κ -33.717 -34.705 -35.692 -36.679 -37.667 -38.654 -39.641 -40.629 -41.616 -42.603

year 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
κ -43.591 -44.578 -45.565 -46.553 -47.540 -48.527 -49.514 -50.502 -51.489 -52.476

year 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
κ -53.464 -54.451 -55.438 -56.426 -57.413 -58.400 -59.388 -60.375 -61.362 -62.349

year 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
κ -63.337 -64.324 -65.311 -66.299 -67.286 -68.273 -69.261 -70.248 -71.235 -72.223

year 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
κ -73.210 -74.197 -75.184 -76.172 -77.159 -78.146 -79.134 -80.121 -81.108 -82.096

After estimating κt parameter, ASMR forecasts for h steps ahead are modeled using

ln(mx,t+h) = α̂x + β̂xκ̂t (2.54)

The predicted ASMR are used to model life expectancy for the same period, with the result across age and year
shown in Fig. 6.

Fig. 6. Expected number of years left plot
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Table 4. Forecast diagnostics

ERROR MEASURES BASED ON MORTALITY RATES
Averages across ages

ME MSE MPE MAPE
-0.00019 0.00060 0.02092 0.11080

Averages across years
IE ISE IPE IAPE

-0.01537 0.04937 2.08505 11.06310
ME- mean error; MSE - mean square error; MPE- mean percent error;

MAPE- mean absolute percent error; IE - integrated error; ISE- integrated square error;
IPE- Integrated percent error and IAPE - integrated absolute percent error

To assess the accuracy of forecast, average error measure of mortality rate both across age and year are considered
as shown in Table 4. Mean average percent error (MAPE) is used to tell how far off the predicted values are on
average. On average across age, the predictions are less than 1% off the actual values. The average across years
is slightly higher, at 11% off the actual values.

Generally life expectancy at any given age is projected to increase with time. Life expectancy at birth in 2022,
2023 and 2024 are 64.4, 64.5 and 64.7 respectively. Its projected that as Kenya attains a middle class developed
country by 2030, life expectancy at birth would be 65.6 years.

3 Discussion and Conclusion
The study sort to analyses the trend and model mortality by considering life table functions, lifespan inequality,
force of mortality and expected life expectancy at any given age. The life table functions demonstrated clear
pattern in the characteristic of the life expectancy evolution, age distribution of death and modal age trend, and
proportion of the population able to survive to a given age. Life expectancy at an exact given age has increased.
Age-at death distribution showed a while infant mortality has continuously reduced in infant mortality with year
2020 having infant mortality rate of approximately 26 per 1000, which approximately equal to older age mode.
The distribution also showed a slight reduction in modal age at death to 73 years in 2020 and a reduction in
distribution dispersion. The Lorenz curve and Gini coefficient satisfactory exhibited the underlying pattern in
lifespan inequality. Person year lived from birth to death are less equally distributed, with a slight improvement
with time. The Gompertz and Lee-Carter model estimated were both statistically significant at 5% confidence
level. Gompertz parameter estimates for the year 2021 were 0.0609 and 0.0035 for B and C respectively. The
Malthusian parameter estimates indicate over the selected years, it’s less than zero with slight improvements
over time. Lee-Carter model indicated approximately uniform low mortality rate of change at any given year
over time and a worsening mortality rate at the age of 44 to 59 years. For forecasting purposes, ARIMA(1,1,0)
with a drift best fitted the data set in estimating the κ parameter used to predict expected mortality rate and
life expectancy from year 2022 to 2070.

This study provides evidence to conclude that Kenya has experienced a shift in mortality status from a high
mortality population, to an intermediate stage. Life expectancy and survival rate have significantly improved
though lifespan inequality improvements are negligible. Deaths at exact age 25 is about 35 per ten thousand,
with the rate death rate increasing by 6.09% per year starting from age 25. Under stable population assumptions,
Kenya is a shrinking population and death rate decrease with increase in Malthusian parameter. Over the years,
mortality factors have increased across age. Expected life expectancy at a given age is projected to increase,
with life expectancy at birth in 2030 and 2071 being 65.6 and 70.5 years respectively.

We recommend that policy makers to consider developing measures and policy framework to address the
worsening mortality at the age of 44 to 59, the spread of health risk factors across age and lifespan inequality.
In addition, the child mortality measures being implemented be strengthen further as the population shift in
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mortality status. For the period 1990 to 2020, mortality characteristics were worsening, we recommend future
research to be undertaken to understand the drive force.
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