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Abstract: We investigate the dynamic phase transition in two-dimensional Ising models whose
equilibrium characteristics are influenced by either anisotropic interactions or quenched defects.
The presence of anisotropy reduces the dynamical critical temperature, leading to the expected
result that the critical temperature approaches zero in the full-anisotropy limit. We show that a
comprehensive understanding of the dynamic behavior of systems with quenched defects requires
a generalized definition of the dynamic order parameter. By doing so, we demonstrate that the
inclusion of quenched defects lowers the dynamic critical temperature as well, with a linear trend
across the range of defect fractions considered. We also explore if and how it is possible to predict
the dynamic behavior of specific magnetic systems with quenched randomness. Various geometric
quantities, such as a defect potential index, the defect dipole moment, and the properties of the defect
Delaunay triangulation, prove useful for this purpose.

Keywords: dynamic phase transition; magnetic defects; quenched disorder; anisotropy; Delaunay
triangulation

1. Introduction

Understanding the out-of-equilibrium response of thermodynamic systems is a timely
and fascinating topic. Several peculiar features of complex systems depend on their re-
sponse to perturbations that drive them close to, but out of, equilibrium. This encompasses
various types of systems displaying self-organized criticality [1], including biological sys-
tems [2], brain activity [3], and social interactions [4,5]. Magnetic systems, particularly the
Ising spin model, provide a simple yet highly fruitful terrain for studying and understand-
ing different dynamic phenomena [6,7]. The Barkhausen noise [8–12] is a paradigmatic
example of bursty behavior emerging from a slow driving, and nucleation phenomena can
be explored to understand how first-order transitions can be induced and driven in bistable
systems [13–16].

We examine the dynamic phase transition (DPT), a phenomenon that gauges the capac-
ity of a thermodynamic system to adhere to the time oscillations of external drivers [17,18].
The DPT has been extensively investigated in the recent literature, encompassing exper-
imental observations [19–21], theoretical mean-field calculations [22], and Monte Carlo
simulations [23,24]. It shares significant similarities with the equilibrium phase transition
in ferromagnets, including the existence of a first-order phase line at zero external bias
field for sub-critical periods, and a second-order critical point that ends the phase line at
the critical period [25]. However, the existence of metamagnetic anomalies and singular
low driving-field behavior evidence that the DPT universality class is not equivalent to the
equilibrium Curie transition [26–28].
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While the majority of theoretical studies in the literature pertain to homogeneous,
isotropic Ising systems, some investigations have incorporated randomness by considering
random-field [29], random-bond [30], or site-diluted [31] Ising systems. In this paper,
we explore how the magnetic response varies when the system deviates from isotropy
or contains a finite fraction of defects. Following [16], we model magnetic defects as
fixed spins that are not allowed to flip during the system’s evolution. Impurities and/or
vacancies alter the magnetic interactions between free spins. In recent years, they have been
modeled as zero-spin sites, which induce anti-ferromagnetic coupling between next-nearest
neighbors sitting on opposite sides of the impurity [32,33]. Defects have also been modeled
by (small) sets of spins that interact with larger coupling constants [34]. Our model can
be seen as the limiting case of [34] under the assumption that the spin regions are small
(thus occupying a single site) and defects in them interact so strongly that they align to a
common value and do not evolve in time. Among the many applications of the Ising model
to different physical systems, the way we model defects can be helpful in understanding
domain formation in membranes with quenched protein obstacles [35]. In this case, the spin
values model the opposite ends of the amphiphilic lipid molecules that form the membrane,
while the fixed defects represent the proteins.

In addition to quantifying the impact of quenched randomness on the system response,
we focus on the ability to predict a priori how a specific random realization is expected to
influence the dynamical response of the system. Our findings reveal that key features of the
random distribution include the value and distribution of a defect potential, the magnitude
of the defect dipole, and the specifics of the Delaunay triangulation associated with the
random location of the defects.

The paper is structured as follows. In the next section, we provide a brief overview
of the definition and key properties of Ising systems in the presence of either interaction
anisotropy or quenched defects. Additionally, we describe the necessary adaptations to
the rejection-free N-fold Monte Carlo algorithm in the presence of varying external fields.
Section 3 presents our primary findings on the dynamic phase transition for Ising systems
with anisotropy or defects. In Section 4, we tackle the challenge of predicting a specific
system’s behavior based on the geometry of the defect distribution. The concluding section
summarizes and discusses the main findings.

2. Model

We consider an Ising system in a 2D square lattice with periodic boundary conditions.
The Hamiltonian takes the form

H[s] = − ∑
⟨i,j⟩

Jijsisj − h(t)∑
i

si, (1)

in which the positive parameters Jij represent the interaction coupling between the i-th
and the j-th spin, and ⟨i, j⟩ denotes the sum over nearest neighbors. We focus on the
system’s response to an oscillating magnetic field h(t) = h0 sin ωt, with amplitude h0 and
frequency ω.

2.1. Time Evolution

We simulate and trace the evolution of the system according to Glauber dynamics [36]. We
therefore associate to each possible spin flip (si → −si) a transition probability rate

wi[s] = 1
2 (1 − si tanh βhi)α

−1, (2)

where β = 1/(kBT) with T the temperature and kB the Boltzmann constant, hi is the local
field acting on the i-th spin, obtained by adding the external field to the local field generated
by the neighboring spins, and α is a characteristic time associated with spin flipping. To
simplify matters, in the following, the parameter α will be set equal to unity, which amounts
to measuring the time evolution in terms of the spin-flipping characteristic time.
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The Monte Carlo simulations here reported adapt the rejection-free N-fold way algo-
rithm originally implemented by Bortz and coworkers [37], as we discuss next. We recall
that the N-fold way algorithm associates a stochastic time interval ∆t with any completed
spin-flip move. This time interval simulates the amount of physical time that elapses
between the last and present moves. All the choices, including the spin-flip move and
the associated time interval, rely on the Hamiltonian values computed when the move
is performed. Therefore, these might not be consistent if the external field variation is
significant across the estimated time interval ∆t. This effect in particular might generate
large errors at low temperatures, when the moves possibly involve large time intervals. In
order to account for this problem, we introduce a characteristic time variation τext in the
external fields and accept a move (and the corresponding proposed time interval ∆t) only
if ∆t ≤ τext. If, by contrast, ∆t > τext, we acknowledge that no move occurs in the time
interval τext, we update the physical time (and, correspondingly, the external fields), and
proceed with the algorithm evolution. In the simulations discussed in the present work,
the external field variation is determined by the magnetic field frequency ω, so that we fix
τext = 10−2 ω−1.

2.2. Anisotropic Ising Model

We model anisotropy by considering two different values of the exchange interaction,
depending on the interaction direction, Jx and Jy. With this assumption, the Hamiltonian
takes the form

H[s] = −Jx ∑
⟨i,j⟩x

sisj − Jy ∑
⟨i,j⟩y

sisj − h(t)∑
i

si (3)

where the subscripts x, y in ⟨ · ⟩ identify neighboring spins respectively placed along the two
main lattice directions. In the absence of the external field, the equilibrium configuration of
the Hamiltonian (3) can be determined analytically for any temperature, and the critical
transition temperature Tc separating the paramagnetic from the ferromagnetic phase can
be derived [38]. For a square lattice, Tc satisfies the relation

sinh
(

2Jx

kBTc

)
sinh

(
2Jy

kBTc

)
= 1. (4)

The N-fold way algorithm must be re-adapted to account for anisotropy [39]. Specifically,
each spin is assigned to a distinct class based on the energy variation resulting from its
reversal. The energy variation can be readily determined by considering the spin orientation
(si) and the count of positively oriented neighboring spins in the horizontal (nh) and vertical
directions (nv). In the presence of an external field, a total of 18 classes are necessary to
encompass all possible combinations of si = −1,+1, nh, nv ∈ 0, 1, 2. The class to which
each spin is assigned is explicitly given by the expression 9(si − 1)/2 + 3(nh − 1) + nv.

2.3. Magnetic System with Defects

In order to understand how the presence of defects [16] influences the magnetic
response, we switch off the anisotropy by setting Jij = J for all neighboring i, j. The
adaptation of the N-fold algorithm to the system with defects has been described and
discussed in detail in [16]. The defects are quenched at the beginning of the simulation,
balanced in number (half positive and half negative), and fixed in position.

One of the primary objectives of the current study is to explore the feasibility and
methodology of predicting the dynamic behavior of complex systems by analyzing the
distribution of defects within them. Identifying the suitable parameters for this purpose
paves the way for the potential design of complex systems with specific targeted dynamical
properties. More specifically, in Section 4, we seek correlations between key thermodynamic
properties (dynamic critical temperature, dynamic susceptibility peak) and quantitative
indicators dependent on the number and location of defects. These properties are evaluated
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in relation to the following defect-related geometrical quantities, all of which are computed
while considering periodic boundary conditions:

• A potential index ϕdef, emerging from interpreting the defect configuration as a
charge distribution;

• The dipole moment d of the defect configuration;
• A normalized area index A, extracted from the Delaunay triangulation associated

with the defect network.

2.3.1. Potential Index

The presence of a fixed defect in any specific position immediately influences its
first neighbors. In the long run, defects also impact all the spins in the system, though
clearly their effect is expected to decay as the distance from the defect increases. If we
let Pi = (xi, yi) denote the grid position of the i-th defect, of sign ϵi = ±1, we follow an
electric potential analogy in assuming that its effect on a free-spin location Qj is inversely
proportional to their distance in the lattice d(Pi, Qj). Since there are several defects, the
total potential acting on the free spin Qj is then

ϕ(Qj) = ∑
defects Pi

ϵiL
d(Pi, Qj)

. (5)

The spin–spin distance d(Pi, Qj) equals the length of the shortest path (in the spin network)
linking the free-spin Qj to the defect Pi, also taking into account the periodic boundary
conditions. The factor L is there because it represents the largest possible spin distance
obtained between two locations placed at a distance of L/2 both in the horizontal and in the
vertical directions. In Section 4, we will investigate alternative definitions of the potential ϕ,
wherein the inverse distance in (5) is replaced with some power law or logarithmic function
of the distance. Among these alternatives, it is shown that definition (5) serves as the most
efficient predictor of the properties of the defect configuration.

Clusters of alike charges generate regions with a higher (in absolute value) potential.
They also influence most the behavior of their surrounding spins. By contrast, regions
where charges of opposite signs are mixed are associated with lower potential, as the
charges tend to shield one another. In order to quantify the properties of the distribution,
we define the total potential as the norm of the potential ϕ:

ϕtot =
[

∑
free spins j

ϕ(Qj)
2
]1/2

. (6)

Finally, the potential index ϕdef is defined by dividing ϕtot by the maximum value ϕmax it
may attain:

ϕdef =
ϕtot

ϕmax
∈ [0, 1]. (7)

As we will discuss below (Section 4.1), the configuration providing the maximum potential
ϕmax is obtained by ideally grouping all same-sign defects in two distinct and maximally
separated locations. Similarly, the minimum (null) potential would be obtained by gather-
ing all defects in the same location.

2.3.2. Dipole Moment

The dipole moment provides a quantitative measure of the distance between the
centers of mass of the positive and the negative defects. To derive a definition that conforms
to the periodic boundary conditions, we consider all possible (L2) configurations resulting
from applying cyclic permutations to the rows and columns of the system. Subsequently,
the dipole moment is defined as the maximum dipole moment among these L2 defect
configurations. In mathematical terms, for a defect configuration P = {P1, . . . , Pdef}, we
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account for all configurations RiCj(P) generated by applying i (j) cyclic permutations to
the rows (columns) of P. The dipole moment of P is then expressed as

d = max
i,j

∣∣∣∣∣ def

∑
k=1

ϵk RiCj
(
OPk

)∣∣∣∣∣, (8)

where ϵk and OPk represent the sign and position vector of the k-th defect.

2.3.3. Area Index

We consider the periodic Delaunay triangulation of the defect configuration (reference [40]
provides an algorithm to construct a Delaunay triangulation complying with the periodic
boundary conditions). For each triangle in this triangulation, we compute its area Ai and
the sum ei ∈ {−3,−1,+1,+3} of the magnetization of the defects located at its vertices.
The normalized area index is then defined as

A =

∑
(triangles)

|ei| Ai

∑
(triangles)

Ai
. (9)

This index varies in the range [+1, +3], depending on the number and size of Delaunay
triangles with three defects at the vertices sharing the same sign.

3. Dynamic Phase Transition

When a ferromagnet is subjected to an oscillating field, two different regimes may
emerge. If the external field is sufficiently strong, sufficiently slow, or, equivalently, the
temperature is sufficiently high, the system magnetization is able to follow the driving field
and oscillates among two oppositely magnetized configurations, as illustrated in the left
panel of Figure 1. When, on the other hand, the external field oscillates rapidly enough
(and/or the temperature is low), the system is not able to complete the reversal transition
and remains trapped in one of the two magnetized configurations, as in the right panel of
Figure 1. The critical temperature/frequency for the crossover between the two regimes
determines the dynamic phase transition (DPT) in the system. Previous studies investigated
the DPT for an isotropic, defect-free Ising system [23,24,41]. It is the aim of the present
study to investigate how the dynamic transition is affected by the system anisotropy and
by the presence of defects. Building upon the analysis presented in [23,41], we apply an
oscillating external field. We anticipate minimal distinctions compared to the square-wave
field case, as both scenarios belong to the same universality class [24]. Quantitatively, the
critical temperature is slightly lower in the square-wave case, as in the latter, the highest
external-field values are applied for larger times, thus favoring the disordered state.

If the system is homogeneous, the order parameter that marks the DPT is the average
magnetization per cycle, defined as

Q∗ =
1
P

∮
m(t) dt (10)

where the integral is performed over a field cycle, P = 2πω−1 is the field period, and
m(t) = N−1 ∑i si(t) is the magnetization. Nonzero values of Q∗ emerge when the system
is not able to follow the oscillating field. When the thermal average of Q∗ is non-null, the
system is said to be in the dynamically ordered phase. On the contrary, when the system
is able to revert its magnetization along the period of oscillation, then ⟨Q∗⟩ = 0, and the
system is said to be in the dynamically disordered phase.
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Figure 1. Time−dependent average magnetization (orange) in presence of an oscillating field (blue)
for different choices of temperature for an isotropic, defect-less Ising system. Left: The magnetization
follows the field, albeit with a time delay. The system is in its dynamically disordered phase (T = 1.9 J).
Right: The magnetization does not reverse its sign, and the system is in its dynamically ordered
phase (here, T = 1.5 J). Simulations over a 2D square system with size L = 200„ averaging 20 cycles
for a field with h0 = 0.3 J and period P = 258. For these values of the parameters, the dynamic critical
temperature is Θc = 1.8 J. The reported magnetic field h(t) is measured in units of J.

In a system with defects, the definition above does not provide a correct order parame-
ter to study the DPT. Indeed, in the ordered phase, because of the defect clustering, different
domains in the same system may remain trapped in oppositely magnetized states. As a
result, even if few or no spins follow the external field, the averaged order parameter (10)
may vanish or, in fact, assume any value, depending only on the relative sizes of the oppo-
site domains. To overcome this difficulty, we modify the definition of the order parameter
to account for the creation of defect-stabilized domains with opposite magnetization. More
precisely, for each site, we consider a local average magnetization per cycle, as introduced
in [24]:

Qi =
1
P

∮
si(t) dt, (11)

and define the dynamic order parameter

Q =
1
N

N

∑
i=1

|Qi|. (12)

In this way, frozen domains contribute to identifying the ordered phase, independently of
their sign. For homogenous systems, locating the phase transition through either the order
parameter (12) or (10) provides the same results.

For any given driving field intensity and frequency, the critical temperature Θc at
which the system undergoes the DPT can be determined by considering the peak of the
dynamical susceptibility [24]. However, in view of the above order parameter definition,
the definition of dynamic susceptibility must be accordingly modified into

χQ =
N

∑
i=1

(⟨Q2
i ⟩ − ⟨|Qi|⟩2). (13)

In the following, we also monitor the Binder cumulant as initially defined in [23] and
extended according to the definition of order parameter in Equation (12)

UQ = 1 − ∑i⟨Q4
i ⟩

3
(

∑i⟨Q2
i ⟩
)2 . (14)

To facilitate a more meaningful comparison of our results with previous literature [41,42],
which primarily pertains to defect-free, isotropic systems, we set the period to the value
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P = 258, where we recall that we have established the unit of time by fixing the character-
istic time α in the transition probability rates, as described in Equation (2). To ensure the
stability of our results, our simulations excluded the initial Ne = 100 cycles of oscillation to
allow the system to reach a steady state. Subsequently, we calculated the average magne-
tization over Nc = 5000 consecutive periods of oscillation, and defined Q as this average
magnetization over Nc complete cycles. We denote this dynamic critical temperature as Θc,
to distinguish it from the standard thermodynamic critical (Curie) temperature Tc. For all
values of the external parameters, it is important to emphasize that Θc ≤ Tc, as a system in
its paramagnetic phase always retains the ability to follow the external field oscillations,
and thus is in the dynamically disordered phase.

3.1. DPT in Anisotropic Magnetic Systems

We first focus on the anisotropic model described in Section 2.2. To properly scale the
critical temperature, we define the exchange interaction J such that J2

x + J2
y = 2J2, and set

Jx = J
√

2 cos λ, Jy = J
√

2 sin λ, with λ ∈
[
0, π

2
]
. (15)

With the definitions above, the coefficient λ measures the anisotropy, with λ = π
4 corre-

sponding to an isotropic Ising system with exchange interaction J. The fully anisotropic
cases λ = 0 and λ = π

2 represent 1D systems. In these cases, the 2D lattice is composed of
L 1D chains, which do not interact with each other.

Figure 2 presents the average magnetization per cycle, the dynamic susceptibility and
the Binder cumulant for a specific choice of the external field amplitude, h0 = 0.3, and
different values of the anisotropy: λ = 1

4 π (isotropic system), 3
16 π, and 1

8 π. (The Binder
cumulant is reported only for λ = 1

8 π, as the other cases are similar.) The susceptibility
peak was detected using a fifth-order spline to smooth the data points.

For the reported system sizes, the dynamic order parameter, dynamic susceptibility per
site, and Binder cumulant exhibit negligible finite-size effects. This emerges from the curves’
collapse in Figure 2, which presents results for five system sizes. In this figure and in all the
following ones, the external field amplitude and the temperature are measured in units
of J and J/kB, respectively, where J and λ are defined in (15). To investigate the potential
impact of finite−size effects, we extended our analysis to smaller systems, as illustrated in
Figure 3. The findings reveal that only data for L ≲ 30 exhibit weak size dependence. The
remarkable absence of finite-size effects is most likely to be associated with the definition
of the dynamic order parameter (12). This formulation specifically measures the extent to
which sites adhere to external field oscillations and how many remain stuck in a magnetized
state, irrespective of the sign of the trapping magnetized phase. The partitioning of the
system into ordered and disordered domains is therefore found to exhibit greater stability
against variations in system size, compared to the individual analysis of positively and
negatively oriented domains.

Figure 4 summarizes our findings for different choices of the external field h0 and
anisotropy λ. It is confirmed that anisotropy lowers the critical temperature regardless
of the field amplitude. In particular, the fully anisotropic (1D) system does not exhibit
any ordered phase at any finite temperature. This same trend is shared by the Curie
temperature (4), which is represented by the upper solid line in the left panel of Figure 4.
When the external field amplitude is sufficiently low, all the Θc(λ) curves exhibit a very
similar shape. For any h0, we tested the scaling law

Θc(λ, h0) = g(h0)Tc(λ), with 0 < g(h0) ≤ 1, (16)

and we determined the most likely scaling factor g(h0) by performing a least-squares fit
with the computed data. We then represented the best fit as a solid line (with the same color
as the data points) in the left panel of Figure 4. Finally, the right panel of Figure 4 shows that
the scaling factor g depends linearly on h0 for low to moderate field amplitudes (h0 ≲ 0.5).
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In particular, g(0) approaches unity, thus confirming that, in the presence of a very small
driving field, the dynamic magnetic response coincides with the thermodynamic one.

Figure 2. DPT in an anisotropic Ising system. Top left: Average magnetization per cycle as a function
of temperature for heating/cooling experiments (no hysteresis effects). The external field amplitude is
set to h0 = 0.3, the values chosen for the anisotropy λ are displayed in the inset, and the points’ shapes
correspond to different system sizes: L = 60 (∗), 100 (+), 140 (◦), 180 (△), and 220 (◁). Finite-size
effects are not relevant, as all points collapse into the same curves. Top right: Susceptibility curve
as a function of temperature. The peak spots the critical temperature for the DPT. Bottom: Binder
cumulant as a function of temperature for a fixed anisotropy λ = 3/16π. The inset shows the
separation of the curves for systems with different sizes in the vicinity of the critical temperature.

Figure 3. Dynamic critical temperature as a function of the inverse system size for the anisotropic
Ising model. For each choice of anisotropy, a solid line is shown to guide the eye. For L ≳ 60, no
significant variation in the critical temperature is seen.
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Figure 4. Critical temperature Θc for the DPT for a 2D anisotropic Ising model, as a function of the
anisotropy coefficient λ. The black dotted line represents the static critical temperature as derived
in [38]. For each value of h0, the factor g(h0), introduced in (16) and reported in the right panel, has
been computed by minimizing the residual error ∑λ

(
Θc(λ)− g(h0)Tc(λ)

)2. The continuous plot
corresponds to the thermodynamical critical temperature, computed from the analytical solution
obtained in the absence of an oscillating field.

3.2. DPT in Magnetic Systems with Defects

We now proceed with the analysis of the model with the defects introduced in
Section 2.3. Figure 5 presents the evidence of the dynamic phase transition for various
values of the defect fraction ( f ) and system size (L). The plots report the average magnetiza-
tion per cycle, defined as in Equation (12), thus providing a clear indication that increasing
the defect fraction has a smoothing effect on the transition and subsequently reduces the
peak in dynamic susceptibility. The data are derived from the averaging of results obtained
from Nr = 50 distinct random replicas of the defect configurations, sharing the same value
of the defect fraction. For each replica and temperature, we maintained the same values of
Ne and Nc as employed in anisotropic systems.

For each specific combination of system size and defect fraction and for each replica, we
determined the transition temperature by identifying the peak in the dynamic susceptibility.
As for the anisotropic case, a fifth-order spline was used to smooth the data points for the
detection of the susceptibility peak. Subsequently, we computed the critical temperature
Θc by averaging the critical temperatures obtained from each replica. The top-right panel
of Figure 5 evidences that the introduction of randomness generates some finite-size effects,
as curves corresponding to different values of L do not collapse on a universal curve.
Therefore, we conducted a finite-size analysis on the dynamic critical temperature Θc(L),
as illustrated in Figure 6. The linear fit confirms that Θc(∞)− Θc(L) ∼ L−1, with a critical
exponent in accordance with the literature [24]. Increasing randomness leads to lower
critical temperatures. This observation aligns with the qualitative expectation that defects
may serve as nucleation sites, thereby facilitating the alignment of free spins with external
field oscillations [15,16,43].

The bottom panel of Figure 5 illustrates the Binder cumulant, as defined in Equation (14),
averaged across all considered replicas, with a fixed fraction of defects f = 1%. Similar to
the anisotropic case, the curves exhibit a collapse, albeit some finite size effects can still
be observed. The inset provides a detailed view of the intersection among the curves for
different system sizes. In general, the tiny variations in the temperature dependence of the
Binder cumulant across varying system sizes suggest that the most reliable indicator for
identifying the critical temperature remains the dynamic susceptibility peak.
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Figure 5. Top Left: Average magnetization per cycle as a function of temperature for a fixed external
field amplitude h0 = 0.3, with three choices of the fraction of defects f and different system sizes:
L = 60 (∗), 100 (+), 180 (◦), 260 (△). Top Right: Dynamic susceptibility as a function of temperature.
Their peaks locate the dynamic critical temperature. Bottom: Binder cumulant as a function of
temperature for the system with defects f = 1%. The inset shows a zoomed-in region of the
intersection of the curves.

Figure 6. Dynamic critical temperature as a function of the inverse system size. Different choices
of the fraction of defects are displayed for the case h0 = 0.3. The dynamic critical temperature is
determined in the thermodynamic limit by using a linear interpolation, in accordance with [24].
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To assess the influence of defect fraction and external field amplitude on the dynamic
critical temperature, we present the results in Figure 7 for various values of the field
amplitude (h0 = 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7) and different defect fractions ( f = 0.5%,
1%, 2%, 3%, and 4%). These critical temperatures are determined through finite-size
analysis, similar to the approach shown in Figure 6. For small defect fractions and low field
amplitudes, the dynamic critical temperature exhibits a linear dependence on both h0 and
f . Notably, the zero-field extrapolation of these linear fits aligns with the thermodynamic
(Curie) critical temperature Tc. It is noteworthy that the influence of the field amplitude is
significantly more pronounced than the effect of the defect fraction.

Figure 7. Left: Dynamical critical temperature as a function of the defect fraction. The linear
extrapolation for f → 0 in the h0 = 0.3 case coincides with the defect-free critical temperature derived
in [24]. Right: Dynamical critical temperature as a function of the external field amplitude. The linear
extrapolation for h0 → 0 is compatible with the Curie temperature for all the data series.

4. Understanding the Dynamic Behavior of Random Systems

In the previous section, we noted that systems with a similar number of defects might
display divergent behavior, as the distribution of defects has the ability to impact the
system’s behavior. In this section, we will further explore this aspect and aim to identify
the geometric parameters that can predict the dynamic response, particularly concerning
the dynamic critical temperature and the dynamic susceptibility peak for specific random
samples. This analysis may offer insights into configuring defect arrangements with specific
desired dynamical properties.

4.1. Defect Potential

Our starting point is the defect potential introduced in Section 2.3, which yields to the
index defined in (7). The potential ϕ, as defined in Equation (5), provides local information
about the extent to which a free spin is influenced by its neighboring defects. In qualitative
terms, we anticipate that free spins situated in low-potential lattice sites will be more
adept at aligning with the external field. Conversely, free spins located in high-potential
regions are more likely to become trapped in the pure state and magnetized according to
the surrounding defects.

To quantitatively assess the extent to which the potential defined in Equation (5)
correlates with a site’s ability to respond to the external field, we examine the local average
magnetization per cycle Qi, defined in (11), for systems precisely set at the dynamic critical
temperature Θc. This serves as a means to identify a situation in which the transition
between quenched and oscillating spins is in progress. Figure 8 presents the correlation
between Qi and the local potential ϕ for a system with L = 260 and h0 = 0.3, considering
various defect fractions: 1%, 2%, 3%, and 4%. The plot is obtained by creating a scatter
plot to which each site in each system from Nr = 30 replicas contributes its (Qi, ϕ) value.
Subsequently, we divide the Qi range into 200 bins and display, for each bin, the average
value (continuous curves) of the potential for the sites in that bin, along with the standard
deviation (dashed lines) of the potential distribution within the same bin.
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The result is noteworthy: it reveals a strong, universal correlation between the local
magnetization per cycle and the local potential, with a Spearman correlation coefficient
exceeding 0.9. This correlation is consistent across systems with different defect fractions as
well. We used this correlation measure to explore alternative definitions of the potential by
considering functions other than 1/d in Equation (5), such as the logarithm of the distance
or a non-integer power of the distance. The outcome of this test indicates that the definition
in Equation (5) optimizes the Spearman coefficient between the studied quantities.

Figure 8. Correlation between the potential ϕ and the local average magnetization per cycle Qi at the
dynamic critical temperature for a system with L = 260. The solid line represents the average value,
while dashed lines delimit the standard deviation of the potential distribution of sites exhibiting the
same value of Qi.

To gain a deeper insight into the collective response of magnetic systems containing
defects, we now direct our focus towards the potential index ϕdef, defined in (7). In order to
also explore extreme configurations, we developed a numerical algorithm tailored to create
defect distributions with predefined, targeted values ϕ̂def for the potential index. This can
be accomplished through a simulated annealing procedure designed to minimize the target
function ψ = (ϕdef − ϕ̂def)

2.
Figure 9 illustrates a series of typical defect distributions, each corresponding to

varying values of the potential index, spanning from very low (top left) to very high
(bottom right) values. Low-potential configurations emerge when defects aggregate in pairs
(or multipoles) of clusters of opposing signs, leading to the formation of neutral clusters.
As we will discuss in what follows, the upper-right panel (corresponding to a potential
of ϕdef ≈ 0.13) can be considered a representative example of a random configuration.
The lower row shows that the potential increases as the defects form two super-clusters
of similar defects. In a high, though not the highest, potential regime, the two super-
clusters occupy approximately half of the available space each, as evidenced in the bottom-
center configuration. Extreme configurations are obtained when the two super-clusters
coalesce and position themselves as far apart as possible, as observed in the bottom-right
configuration. It is useful to recall that, due to the periodic boundary conditions, the
greatest distance between two spins (or defects) is achieved when they are positioned at a
distance of L/2 in both the horizontal and vertical directions.
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Figure 9. Sequence of defect configurations with increasing values of the potential index for a system
with L = 100 and a defect fraction f = 2%. In the top row (from left to right): ϕdef = 0.049, 0.065,
and 0.13. In the bottom row (again, from left to right): ϕdef = 0.26, 0.52, and 0.98. The color code of
the plots is determined by the local potential ϕ. The color scale has been adjusted across the images;
otherwise, the upper configurations would have all appeared predominantly orange. Yellow (black)
squares represent positive (negative) defects.

To better understand where random configurations are expected to be located in
terms of potential index, we investigated the potential associated with randomly generated
configurations, which are then employed in our simulations. Figure 10 reports our findings.
Different colors represent the defect fractions indicated in the plot legend. The data
series in the panel to the left illustrates the average potential index ϕdef for randomly
generated distributions. The accompanying (minor) error bars in these data points are
determined by the standard deviation of the potential distribution observed for random
defect configurations, with the standard deviation σϕ value also provided in the right panel.
It is significant that both the potential index and its standard deviation obey a power law
scaling law for random configurations with

σϕ, ϕdef

∣∣∣
(random confs.)

∼ f−0.3 L−1. (17)

The critical power law dependence of the potential on f is evident in both insets of Figure 10,
where the data series collapse onto a single line when we normalize the potential by f−0.3,
in accordance with the critical exponents defined in (17). The power law relationship with
respect to the system size L is illustrated by the alignment of data points in the log–log plot.
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Figure 10. Log–log plot of the average potential index ϕdef (left) and its standard deviation σϕ (right),
as a function of both the system size L and the defect fraction f . The two insets show that data
associated with different values of f collapse into a universal curve by plotting ϕdef f 0.3 and σϕ f 0.3.

4.2. A Priori Estimates of the Dynamic Response

In this section, we investigate the feasibility of predicting the dynamic behavior of
random systems by analyzing the arrangement of defects within them. Specifically, we
seek to establish correlations between key thermodynamic properties (dynamic critical
temperature, dynamic susceptibility peak) and the quantitative indicators introduced in
Section 2.3: the potential index, the defect dipole moment, and the normalized area index.
To better illustrate the latter, Figure 11 shows the Delaunay triangulation, and the area
index values associated with the defect configurations shown in Figure 9.

Figure 11. Graphical representation of the Delaunay triangulation for the same realizations of defects
shown in Figure 9. We obtain, respectively, the values for the configuration index: A = 1.42, 1.38,
and 1.46 for the top row, and A = 1.76, 2.17, and 1.46 for the bottom row. The colors specify triangles
with different values of ei: dark blue for ei = −3, light blue for ei = −1, orange for ei = 1, and red for
ei = 3.
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To explore the correlations between these physical and geometrical quantities, we
fixed the system size and the defect fraction (L = 100, f = 2%) and considered 200 different
systems generated in order to span the potential index values, as described in the previous
section. For each of them, we studied the response over Nc = 5000 cycles to an oscillating
field of amplitude h0 = 0.3, within a temperature range encompassing the dynamic phase
transition. By analyzing the cycles performed at each temperature, we derived the dynamic
critical temperature and the peak height of the dynamic susceptibility.

The four panels of Figure 12 summarize the results we obtained. The left and right
columns illustrate the relationship between dynamic critical temperature (left) and dy-
namic susceptibility peak (right) and two parameters: the potential index (top row) and the
normalized area index (bottom row). In all the plots, an orange-shaded region is used to
highlight the locations where random defect configurations are typically observed. The
location and width of this window are provided by the average value and the standard
deviation of the quantity plotted on the horizontal axis for these random defect configura-
tions. The inset of the top-left panel shows the correlation between the dipole moment and
the potential index, obtained from the processing of the same 200 configurations. Due to
the high correlation between these two quantities, we do not show the relationship between
the dynamic quantities and the magnitude of the dipole moment.

We begin by examining the impact of the potential index, shown in the first row of
Figure 12. The red dot on the vertical axis marks the dynamic phase transition point, as
computed for a defect-free system in [24]. Among all defect configurations, random config-
urations exhibit the most significant reduction in dynamic critical temperature. Therefore,
distributing defects randomly emerges as the most effective strategy to prevent a magnetic
system from becoming trapped in a magnetized state. Another noteworthy observation
from the top-left panel in Figure 12 is that the maximum dynamic critical temperature is
associated with distributions featuring a high, but not the highest, potential index. This
observation can be better understood by comparing the two final panels in Figure 9 (center
and right-bottom). High potentials are achieved by spreading positive and negative defects
into two separate portions of the system. This arrangement results in a substantial portion
of free spins being directly influenced by defects of the same sign, thereby increasing the
dynamic critical temperature. If the total potential is further increased, two collapsed
defect clusters form, and a significant portion of free spins interact similarly with both
clusters. As a result, the systems with the smallest and largest potentials, respectively
resembling a super-multipole of shielded defects and two opposing super-clusters, share a
dynamic critical temperature similar to that of the defect-free system. The top-right panel
of Figure 12 shows that the highest magnetic susceptibility peak is found in defect-free
(or shielded defect) systems. This indicates that an effect of any defect distribution is a
smoothing of the phase transition.

In the second row, we observe that the normalized area index holds significant infor-
mation regarding the dynamic phase transition. The right panel clearly illustrates that the
magnetic susceptibility peak decreases roughly linearly with A. This behavior underscores
the fact that the number and size of the most influenced triangles (that is, those with
same-sign defects as first neighbors) serve as a robust indicator of the steepness of the
dynamic phase transition. The absence of a reduction in the dynamic critical temperature
for large area–index values confirms that this metric effectively captures the crucial dif-
ference between, on the one hand, configurations with clustered defects that exert strong
influence on their neighbors but leave a substantial area unattended, and, on the other
hand, configurations with more evenly distributed defects that efficiently “control” half of
the system each.
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Figure 12. Correlations between dynamic critical temperature (left column) and dynamic suscep-
tibility peak (right column) and two geometric parameters: the total potential (top row) and the
normalized area index (bottom row). For the total potential, each point represents the average over
10 realizations of defects with the specified target potential. The error bar represents the standard
deviation. For the normalized area index, all 200 realizations have been analyzed, with a data binning
procedure of 18 bins. The point represents the average dynamical property for each bin, and the
error bar is its standard deviation. In all the panels, the orange window locates the interval of values
where most random configurations can be found, as the position and width of the window are
determined by the average and standard deviation of the geometric quantity as computed among
random configurations. The thermodynamic properties were obtained by following 20 systems across
Nc = 5000 cycles under an oscillating magnetic field with intensity h0 = 0.3 for a system of size
L = 100.

5. Conclusions

We explored the impact of interaction anisotropy or the presence of quenched defects
on the dynamic response of planar magnetic systems to oscillating fields. In the ordered
phase, the defects stabilize coexisting magnetized domains of opposite signs. To identify
the presence and quantify the magnitude of these regions, the dynamic order parameter
definition requires a readjustment, here discussed in Section 3 (see Equation (12)). The
dynamic critical temperature was then determined by examining the peak of the dynamic
susceptibility, and our measurements were subsequently corrected by quantifying and
accounting for finite-size effects.

Both anisotropy and defects reduce the dynamic critical temperature, thus indicat-
ing that breaking the system’s symmetry is a reliable strategy for generating nucleation
regions. These regions, in turn, support the system in escaping from metastable states.
The dynamic critical temperature is influenced by the external field intensity in both cases
under investigation. The reduction with increasing field intensity is linear up to moderate
field intensities and is notable in both scenarios. This observation is evident in the right
panels of Figures 4 and 7, where it is demonstrated that the dynamic critical temperature is
halved when h0 ≃ 0.6J. The presence of defects reduces Θc as well, and this reduction is
also linear, as the left panel of Figure 7 shows.



Entropy 2024, 26, 120 17 of 19

In Section 4, we investigated the possibility of predicting the impact of a specific
distribution of quenched defects on the thermodynamic response. For this purpose, we
examined the potential index, which measures the clustering properties of the distribution,
the configuration’s defect dipole, and an area index obtained from the Delaunay triangula-
tion. The potential index, as defined in Equation (5), proved to be an excellent predictor for
understanding which sites are more likely to align with the external field and which, in
turn, are more prone to remaining trapped in a pure state (refer to Figure 8).

The main finding is that the geometric quantities we investigated are strongly cor-
related with the system’s response. A notable result, as illustrated in Figure 12, is that a
random distribution of defects corresponds to the lowest critical temperature, indicating
that these systems are most likely to follow external fields. Conversely, the highest critical
temperatures (associated with the highest area indices) are achieved when the system’s
area is divided into two domains, each containing same-sign defects, as in the configuration
shown in the center-bottom panel of Figures 9 and 11.

Beyond a theoretical analysis of the properties of phase transitions in systems with
quenched randomness, our study of the model with defects enhances our understanding
of real and commonly employed magnetic systems, such as 2D magneto-optical storage
media [44]. The ability to strategically engineer and design magnetic systems with defects,
positioned to achieve specific dynamic characteristics (such as varying critical temper-
ature or increasing transition speed), paves the way for potential improvements in the
aforementioned devices.

Future research related to the present work could involve gaining insights into the
role of quenched defects in metamagnetic anomalies [28]. These anomalies manifest when
the system is exposed to a biased external field, characterized by oscillations around a
small yet non-null average value. Furthermore, it is worthwhile to investigate the influence,
including its impact on the introduced defect indices, of network topology [45] or the
presence of a magnetic binary alloy [46].
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