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Abstract: The implementation of ex vivo organ machine perfusion (MP) into clinical routine un-
doubtedly helped to increase the donor pool. It enables not just organ assessment, but potentially
regeneration and treatment of marginal organs in the future. During organ procurement, redox-stress
triggered ischemia-reperfusion injury (IRI) is inevitable, which in addition to pre-existing damage
negatively affects such organs. Ex vivo MP enables to study IRI-associated tissue damage and its
underlying mechanisms in a near to physiological setting. However, research using whole organs is
limited and associated with high costs. Here, in vitro models well suited for early stage research or for
studying particular disease mechanisms come into play. While cell lines convince with simplicity, they
do not exert all organ-specific functions. Tissue slice cultures retain the three-dimensional anatomical
architecture and cells remain within their naïve tissue-matrix configuration. Organoids may provide
an even closer modelling of physiologic organ function and spatial orientation. In this review, we
discuss the role of oxidative stress during ex vivo MP and the suitability of currently available in vitro
models to further study the underlying mechanisms and to pretest potential treatment strategies.

Keywords: Ischemia-reperfusion injury; redox-stress; organ transplantation; machine perfusion;
in vitro models

1. Introduction

Organ transplantation remains the ultimate treatment option for terminal organ failure.
However, the number of organs in demand surpasses the number of available organs
leading to a significant organ shortage [1]. Owed to the implementation of advanced
preservation technologies (i.e., machine perfusion), increased-risk organs from extended
criteria donors (ECD) can be considered for transplantation [2–5]. However, these organs
are particularly prone to additional damage during organ retrieval, preservation and
transplantation. In this regard, ischemia-reperfusion injury (IRI) caused by oxidative stress
and subsequent events during early reperfusion negatively affects the short- and long-term
outcome after transplantation, since several molecular downstream pathways are activated,
further aggravating pre-existing damage [6,7]. It could be demonstrated that machine
perfusion (MP) may mitigate oxidative stress mediated injury; however, the underlying
mechanisms are not fully understood at this point [8–10].

In addition to whole organ perfusion experiments, which are expensive, complex
and sophisticated, in vitro models such as cell lines, precision-cut tissue slices (PCTS) and
organoids may be helpful, when addressing specific research questions [11]. Moreover,
awareness about using animals in research has increased over the past decades. Besides
economic reasons, using in vitro models can eliminate animal experiments in compliance
with the 3R (replacement, reduction, refinement) principles [12].
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In this review, we summarize the key mechanisms of oxidative organ damage with
a particular focus on ex vivo organ perfusion, highlight possible treatment strategies and
provide an insight into suitable in vitro models complementary to the in vivo perfusion
setting.

2. IRI Is the Key Event Leading to Oxidative Stress in Organ Transplantation

Broadly, the imbalance between reactive oxygen species (ROS) generated and antioxi-
dants present is known as oxidative stress [13]. In the setting of solid organ transplantation,
one of the most common ROS-related pathologies is IRI [7,11]. IRI is inherently connected
to organ transplantation. It is characterized by obstructed blood flow causing ischemia
during organ retrieval and preservation, followed by a reperfusion phase when the blood
flow is restored in the recipient [10,14–16] (Figure 1).
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Figure 1. Molecular events of ischemia and reperfusion. During ischemia, adenosine triphosphate
(ATP) levels decrease. In turn, ATP-dependent Ca2+, H+ and Na+ pumps fail, causing accumulation
of ions which contributes to cell swelling. pH levels decrease leading to acidosis. Accumulation of
succinate, nicotinamide adenine dinucleotide phosphate (NADPH; resulting from NADP+ and H+)
and hypoxanthine during ischemia prime for excessive ROS release after reperfusion. Additionally,
in mitochondria major reactive oxygen species (ROS) generation occurs. ROS cause direct damage to
biomolecules but also act as signaling molecule. Besides this, opening of the mitochondrial perme-
ability transition pore (mPTP) during reperfusion also triggers cell death by release of cytochrome c
and breakdown of ATP production [5,16].

The organ retrieval process kicks off a cascade of molecular events that eventually
set the basis for ROS release. The interrupted oxygen supply inhibits the mitochondrial
electron transport chain, resulting in a decreased production of adenosine triphosphate
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(ATP) [6,17–19]. The subsequent shift to anaerobic metabolism leads to the retention of hy-
drogen (H+) ions and retained metabolic products such as lactic acid, resulting in metabolic
acidosis. This decreases the cellular pH, which further leads to clumping of chromatin
and impaired enzyme activity. Moreover, the ATP-dependent sodium-potassium, calcium
and sodium-hydrogen pumps fail during ischemia, resulting in increased intracellular H+,
sodium (Na+) and calcium (Ca2+) concentrations, which cause swelling of the cells. The
partial reversal of the malate-aspartate shuttle and degradation of purine nucleotide results
in an excess of fumarate, leading to a reversal of succinate dehydrogenase (SDH), ultimately
causing succinate accumulation [20]. During early reperfusion it is rapidly degraded and
through complex metabolic pathways it contributes to a burst in ROS production at com-
plex I of the ETC. Additionally, nicotinamide adenine dinucleotide phosphate (NADPH)
oxidases, xanthine oxidase and nitric oxidase synthase are also involved to increase ROS
production under these conditions. Thus, while necessary for prolonged organ survival, the
reperfusion phase in the recipient exacerbates cellular injury, which already occurred dur-
ing ischemia [19,21–23]. Reperfusion injury is a progressive condition post-transplantation,
that can last for multiple days, negatively affecting early graft function as well as long-term
graft survival [19].

Free ROS can cause direct damage to biomolecules by oxidation of proteins, oxidation
of nucleic acids or peroxidation of membrane lipids, ultimately resulting in cell death [6].
On the other hand, ROS are also known for their function as signaling molecules. Signaling
proteins can be phosphorylated and thereby activated by ROS. Mitochondrial-activated
protein kinases (MAPK), namely extracellular signal-regulated kinase (ERK1/2), c-Jun
N-terminal kinase (JNK), and p38, play an important role in this cascade [24]. Phosphoryla-
tion and activation of ERK1/2 has been associated with neutrophil infiltration, necrosis,
and apoptosis in rodent models of liver IRI [25,26]. The phosphorylation of JNK can lead
to an increase and activation of apoptosis-promoting molecules such as Bim, Bad, Bax, and
p53 [27–30]. On the other hand, phosphorylation of JNK also causes downregulation of
survival signals involving STAT3 [28,30]. After reperfusion, phosphorylation and hence ac-
tivation of p38 is initiated, which is directly related to apoptosis and necrosis. Its activation
leads to an increase in adiponectin, which in turn enhances ROS release, resulting in tissue
damage [6]. Further, apoptosis is induced by the release of cytochrome c, which in turn
activates caspase-9, resulting in caspase-3 induced apoptosis. Moreover, a cascade of proin-
flammatory signaling pathways is induced by oxidative stress including the generation
of inflammasomes [6]. Consequently, different pro-inflammatory cytokines are secreted,
whereas TNFα is considered as a decisive factor for further triggering the downstream
inflammatory cascade. In addition to this ‘humoral answer’ of the immune system, also the
innate immune system is activated by the release of damage-associated molecular patterns
(DAMPs), triggering the activation of dendritic cells (DCs), macrophages and natural killer
cells (NKs) [31]. These molecular processes in combination with the lower concentration of
antioxidative agents, ATP depletion and calcium dysregulation are considered the main
drivers of IRI [20]. However, ROS release is not harmful by definition. This dose response
phenomenon characterized by a low dose stimulation and a high dose inhibition has been
observed in response to many exogenous stimuli and is referred to as hormesis in the
literature [32,33]. There is growing evidence, that the lack of necessary ROS is detrimental.
Together with the accumulation of reductive equivalents during ischemia, the absence
of ROS is responsible for reductive stress. In this regard, three of the major couples of
the cellular redox network are NAD+/NADH, NADP+/NADPH and GSH/GSSG. Like
oxidative stress, also reductive stress contributes to the overall redox stress resulting in
impaired cellular functions [34,35].

2.1. Molecular Mechanisms Counteracting Oxidative Stress

In order to counteract ROS, organisms exhibit their own enzymatic and non-enzymatic
antioxidant defense systems. Since they may not be sufficient for averting oxidative stress,
several regulatory pathways to counter it exist. They may serve as targets for treatments,
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which will be discussed further below [36]. One of the most important transcription factors
in this regard is the Keap1-Nrf2 pathway [37]. Nuclear factor-erythroid-2 related factor
(Nrf2) is a ubiquitously expressed transcription factor regulated by the repressor protein
Kelch-like ECH associated protein1 (Keap1). Upon oxidative stress, Keap1 dissociates
from Nrf2, and Nrf2 can subsequently enter the nucleus and attaches to antioxidative
response element (ARE). In turn the transcription of antioxidative enzymes like superoxide
dismutase (SOD) or glutathione peroxidase (GPx) is induced [37]. Moreover, mammalian
target of rapamycin (mTOR), which is part of the phosphatidylinositol 3-kinase/protein
kinase B (PI3K/Akt) pathway, as well as forkhead transcription factor O (FOX) have also
been described as part of the antioxidant regulatory system [38,39]. Additionally, proteins
regulated by the transcription factor nuclear factor-κB (NFκB) can be activated upon
degradation of inhibitor of κB (IκB) to regulate the amount of ROS in the cell [40]. However,
in the context of IRI, the role of NFκB is quite controversial. For instance, activation of
NFκB in the liver has been shown to reduce hepatic IRI injury and facilitate orthotopic liver
transplantation [41], while another group observed protection against hepatic IRI injury
upon inactivation of NFκB [42].

Despite technical and therapeutical improvements, oxidative stress-induced IRI re-
mains an inevitable event and still, mechanisms triggered by ROS release are not fully
decrypted. Thus, potential models which help deciphering mechanisms and allow for
testing of therapeutical approaches will be discussed in Sections 3 and 4.

2.2. Biomarkers to Study Oxidative Stress

As direct contributors to oxidative stress, ROS should be considered as potential
biomarkers [6,21]. Direct detection would allow for quantification of oxidative stress.
However, due to the short half-life of ROS, this is currently a very complex method [43].
Instead of tracking ROS itself, their effects on biomolecules can be detected. Alterations
in expression or formation induced by ROS can be used as valuable surrogate biomarkers
for oxidative stress. Roughly, these molecules can be categorized as follows: endogenous
antioxidants, lipid peroxidation, oxidative protein changes and nucleic acid oxidation [44].
Representative examples are listed in Table 1 and discussed in the following sections.

Table 1. Potential biomarkers for oxidative stress.

Category Biomarker Examples Analysed
Material

Detection
Methods Reference

Endogenous
Antioxidants CAT SCS vs. HMP of Human

Kidneys Perfusate Enzymatic activity
measurement [45]

Isolated perfused Rat
Heart Tissue Enzymatic activity

measurement [46]

SOD SCS vs. HMP of Human
Kidneys Perfusate Enzymatic activity

measurement [45]

Patients with coronary
artery by-pass grafting
surgery

Serum Enzymatic activity
measurement [47]

Reperfusion of rat
kidney Tissue Biodiagnostics

assay kit [48]

Isolated perfused Rat
Heart Tissue MTT Assay [46]

GPx SCS vs. HMP of Human
Kidneys Perfusate Enzymatic activity

measurement [45]
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Table 1. Cont.

Category Biomarker Examples Analysed
Material

Detection
Methods Reference

Lipid Peroxidation MDA SCS vs. HMP of Human
Kidneys Perfusate HPLC, ELISA

(MDA-586 kit) [45]

Reperfusion of rat
kidney Tissue Biodiagnostics

assay kit [48]

Isolated perfused Rat
Heart Tissue

Conjugated to
TBARS –
Absorbance at
535nm

[46]

Langendorff-perfused
rat hearts Tissue HPLC/UV-Vis [49]

TBARS SCS vs. HMP of Human
Kidneys Perfusate Fluorometric

Assay [45]

Isolated perfused Rat
Heart Tissue TBARS-Assay [46]

F2 Isoprotanes Transplanted Human
Kidney Plasma Radioimmunoassay [50]

Reperfusion of Porcine
Liver Plasma LQ/MS/MS [51]

Protein Oxidation Nitrotyrosine
Human Donor Livers
before vs. after
Transplantation

Tissue

Western Blot
Analysis; Immuno-
histochemical
Localization

[52]

Reperfusion of Mice
Kidney Tissue Western Blot

Analysis [53]

Protein Carbonyl Transplanted Human
Kidneys Plasma DNPH Method [54]

NMP Porcine Kidney Plasma HPLC, ELISA,
Immunoassays [55]

Langendorff-perfused
rat hearts Tissue HPLC/UV-Vis [49]

Nucleic Acid
Oxidation 8-oxoguanine HMP vs. SCS of canine

hearts Tissue IHC [56]

8-hydroxy-2′-
deoxyguanosine

Transplanted Human
Kidneys Plasma ELISA [54]

Patients with coronary
artery by-pass grafting
surgery

Serum ELISA [47]

Normothermic hepatic
Ischemia/Reperfusion
Model of Rats

Plasma
Tissue HPLC, IHC [57]

Abbreviations: CAT: catalase; DNPH: 2,4-Dinitrophenylhydrazine; ELISA: Enzyme-Linked Immunosorbent
Assay; GPx: Glutathione peroxidase; HMP: Hypothermic Machine Perfusion; HPLC: High Pressure Liquid
Chromatography; IHC: Immunohistochemistry; LQ: Liquid Chromatography; MDA: Malondialdehyde; MS: Mass
Spectrometry; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NMP: Normothermic Machine
Perfusion; SCS: Static Cold Storage; SOD: Superoxide Dismutase; TBARS: thiobarbituric acid substance

These studies undermine distinct patterns in the antioxidative profile between per-
fused and SCS grafts. Complementary to the analysis of those surrogate parameters,
analysis at protein and gene expression levels to evaluate changes in pathway activation
might provide a more comprehensive profile [58]. Moreover, quantification of known
cytokines to be involved in oxidative stress response should be considered.

2.2.1. Endogenous Antioxidants

Organisms possess defense systems against free radicals, one being facilitated by
antioxidant enzymes [13]. These can be quantified and serve as biomarkers. Catalase (CAT)
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is an enzyme found in almost all living organisms that are exposed to oxygen. Within
the field of transplantation, it is most widely used to assess oxidative stress [59]. Another
antioxidant is SOD, an enzyme group that acts as a crucial part of the antioxidant defense
against highly reactive superoxide radicals. It is responsible for splitting (dismutation)
of H2O2 [60]. GPx can reduce H2O2 or organic peroxides to water and alcohol with the
presence of glutathione and is subsequently converted to oxidized glutathione [44].

2.2.2. Lipid Peroxidation

It is known that ROS can promote the formation of fatty acid radicals [58]. These
unstable fatty acid radicals can subsequently react with molecular oxygen to form per-
oxides. Moreover, lipid peroxidation products can lead to the synthesis of, for instance,
malondialdehyde (MDA) [61]. MDA and the reactive thiobarbituric acid substance (TBARS)
are considered basic markers of lipid peroxidation, potentially serving as biomarkers [62].
Additionally, isoprotanes serve as valuable markers, where F2 and F4 isoprotanes should
be distinguished. F2 isoprotanes are formed by free radical catalyzed peroxidation of
arachidonic acid, whereas F4 is a product of the same reaction of docosahexaenoic acid. It
is also interesting to note that F4 isoprotanes exert a strong anti-inflammatory effect, which
underlines the link between oxidative stress and inflammation [63,64].

2.2.3. Redox Modification of Proteins

When it comes to protein changes due to oxidative stress, 3-nitrotyrosin is considered
as one of the most promising biomarkers [44]. Nitration of protein-bound and free tyrosine
by ROS leads to the formation of this molecule. Besides nitrotyrosines, protein carbonyls
are also widely used as biomarkers for oxidative stress [65,66].

2.2.4. Nucleic Acid Oxidation

Oxidative DNA damage, mostly caused by the hydroxyl radical, generates a variety
of base and sugar modification products [6,67]. DNA damage caused by hydroxyl radicals
occurs much less frequently than oxidative protein changes. However, the consequences
of nucleic acid oxidation, such as mutations, are considerably more harmful. Although
hydroxyl radicals can react with all purine and pyrimidine bases as well as with the de-
oxyribose backbone, the major products of oxidative nucleic acid changes are 8-oxoguanine
and 8-hydroxy-2′deoxyguanosine [68].

Detection of those biomarkers can be performed in tissue samples and plasma, serum
or perfusate. The selection of suitable biomarkers is depending on the study and may
not rely on a single analysis method rather than on supplementary methods. Physiolog-
ical levels of antioxidative enzymes like SOD and GPx and their increase in response to
oxidative stress may be a more sensitive method. In contrast, evaluation of damage to
biomolecules require excessive oxidative stress and may be only detected in more severe
forms of oxidative stress induced damage.

3. Advanced Organ Preservation: Ex Vivo Machine Perfusion

Throughout several decades, the gold standard for organ preservation has been static
cold storage (SCS) at 4 ◦C [69]. Cellular metabolism and oxygen consumption are reduced
at hypothermia, widely preventing damage to the tissue. During the retrieval process,
organs are flushed with cold preservation solution in order to deprive the organ of blood,
while providing cytoprotection. University of Wisconsin (UW®) Cold Storage Solution
and Custodiol®histidine-tryptophan-ketoglutarate (HTK) Solution are most widely used
for cold organ preservation, storage and transport. UW®solution contains glutathione,
allopurinol and adenosine as antioxidative component, while HTK solution utilizes man-
nitol, tryptophan and α-ketoglutarate [2]. In the recent years, dynamic preservation by
machine perfusion has found its way into clinics, which helped to increase the donor
pool for abdominal and thoracic organs. This is of specific interest for, but not limited to,
ECDs. Such marginal organs are often not considered for transplantation otherwise and
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predicting outcome remains difficult. Moreover, logistics and recipient-related issues are
convincing reasons to opt for MP [4,70]. It has been proven that MP technologies are aiding
in tackling problems like IRI and downstream inflammatory processes and improving
graft function early after transplantation as well as long-term survival [71]. Different MP
strategies operating at various temperatures are available and explored to different degrees
(Figure 2).
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Figure 2. Ex vivo organ machine perfusion. Main vessels of an organ are cannulated and constantly
perfused. (A) Hypothermic machine perfusion (HMP) is performed at 4 ◦C and can either take
place without oxygenation (1) or with incorporation of an oxygenator (2), known as hypothermic
oxygenated machine perfusion (HOPE). (B) Normothermic machine perfusion (NMP) is performed
at 37 ◦C with oxygenated perfusion solutions under close-to-physiological conditions [3].

3.1. Hypothermic Machine Perfusion (HMP)

Similar to SCS, HMP is carried out at 4 ◦C. Metabolism is reduced significantly to
about 10%, which decreases energy demand and preserves ATP. Despite residual cellular
function being left, oxygen supply is not routinely used in standard care. However, it
could be demonstrated that the addition of oxygen carriers and providing oxygen supply
to perform the so called hypothermic oxygenated machine perfusion (HOPE) exerts further
beneficial effects. Superior outcome of HMP treated organs over SCS organs could be
demonstrated in the past [3,71,72].

3.2. Subnormothermic Machine Perfusion (SNMP)

SNMP settles in between HMP and normothermic machine perfusion (NMP). Perfu-
sion solutions rely on the physically dissolved oxygen at temperatures between 20–25 ◦C.
Compared to HMP, partial testing of viability is possible during SNMP. However, it is not
widely used and requires more research to assess feasibility [73].
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3.3. Normothermic Machine Perfusion (NMP)

NMP is performed at 37 ◦C to mimic physiological conditions. Aerobic metabolism
is restored in this MP modulation, therefore shortening ischemic time. Moreover, NMP
enables organ assessment at a regular metabolic rate and offers the opportunity for treat-
ment and direct manipulation of a graft prior to transplantation [74]. In order to supply
the organ optimally, oxygenated perfusion solutions are necessary. These solutions can
either be blood-based or acellular, containing hemoglobin-based oxygen carriers. So far,
there is no clear evidence on what option to prefer- however, blood-based perfusates are
the method of choice in most applications. Different protocols are used among the different
research groups, however some common supplements in perfusate protocols are antibiotics,
heparin, bicarbonate, vitamins and prostaglandins [75].

3.4. Influence of Perfusion Modalities on Oxidative Stress-Induced Tissue Damage

With regard to MP modalities and protocols, temperature, oxygenation and perfusate
composition are the parameters of interest to adjust [76]. Lower temperatures decrease the
mitochondrial oxygen consumption as well as the activity of other enzyme systems, which
may result in a short-term beneficial effect of HMP [77,78]. In a study by Schlegel et al. it
was demonstrated, that in HMP preserved DCD livers the mitochondrial redox state is
altered, leading to decreased initial ROS release during reperfusion. Following that, less
nuclear cell injury has been observed [8]. In HMP preserved kidneys the extent of oxidative
stress was significantly reduced compared to the SCS group, indicated by significantly
lower levels of glutathione peroxidase and malondialdehyde and superior graft function
after transplantation [45]. In line with this, Venema et al. found reduced thiobarbituric
acid-reactive substances (TBARS) in their study for HMP preserved kidneys [9]. However,
Hendriks et al. report on higher oxidative stress levels at cold temperatures and decreased
ROS scavenging capacity compared to 37 ◦C in a kidney perfusion model [79]. Even at
4 ◦C, the metabolic rate remains at around 10%, thus oxygenation during hypothermic
preservation should be considered. In a multicenter clinical trial, superiority of HOPE
in contrast to HMP was demonstrated for deceased kidneys [72]. On the other hand,
NMP enables restoration of metabolic activity during preservation and therefore is the MP
type of choice for functionality testing [2,77]. Falk et al. report on decreased IRI induced
damage in human hearts preserved under normothermic conditions, indicated by decreased
IRI-related inflammatory cytokines [80]. Moreover, technical feasibility to perform IRI-
free organ transplantation by incorporating NMP devices could be demonstrated for the
liver [81] and the kidney [82]. However, due to highly complex logistics and extremely
high demand of human resources, this has not yet found its way into clinical routine.

3.5. Further Extension of the Donor Pool: Targeting Pre-Existing and Preservation-
Induced Damage

Treatment of pre-existing morbidities and IRI induced damage during long-term perfu-
sion may help to overcome organ shortage. NMP is the perfusion modality of choice, due to
the restored metabolic activity during preservation [83–85]. Treatment approaches therefore
require MP protocols that enable a sufficiently long therapeutic window. The Zurich group
achieved a 7-day-NMP of discarded human livers without subsequent transplantation [86]
and recently reported on a 3-day-NMP followed by successful transplantation [87]. Human
graft ex vivo lung perfusion (EVLP) with subsequent transplantation was reported success-
ful for three days in a pig model [88]. Most recently, NMP of human kidneys was shown
feasible for 48 h [89], while in contrast heart MP is only possible for a few hours [90].

In line with preservation solutions utilized for SCS, perfusate composition and sup-
plementation with protective agents like antioxidants can be considered to avoid and
ameliorate oxidative stress during ex vivo organ perfusion. Antioxidants have the poten-
tial to scavenge ROS and thereby dampen oxidative stress. Some commonly used organ
preservation solutions are supplemented with antioxidants for that reason. For example,
allopurinol and glutathione are responsible for the antioxidant activity in Institute George
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Lopez-1 (IGL-1) preservation solutions [2,3]. The newer version of IGL-1, IGL-2, exhibits an
even bigger antioxidant capacity by containing 3-fold increased glutathione levels. IGL-2
was utilized in a recent rat liver HOPE study where the authors could demonstrate su-
periority of IGL-2 vs. UW as perfusion solution. Hepatic endothelial glycocalyx were
preserved and levels of caspase-3 and High mobility group protein B1 (HMGB1) were sig-
nificantly reduced, underlining a protective effect of IGL-2 [91]. The group of Ehrsam et al.
supplemented the perfusate for their rat lung perfusion with 2000 µM of β-nicotinamide
adenine dinucleotide (NAD+), a coenzyme which is involved in removal of ROS and found
reduced levels of pro-inflammatory cytokines and enhanced levels of anti-inflammatory
cytokines [92]. In contrast, the addition of ascorbic acid during porcine kidney NMP did
not significantly reduce oxidative stress [93]. Moreover, a variety of different agents with
antioxidant properties may be suitable for application during MP to exert a beneficial effect
on organ function and cell viability. These substances have been reviewed in detail recently
elsewhere [94].

Another possible strategy to counteract IRI might be pharmacological inhibition of
complex I prior and during MP to prevent ROS production by blocking this exact mecha-
nism. Potential inhibitors are rotenone, metformin and small-molecule inhibitors [95,96].
Moreover, different groups report that targeting of the SDH dependent mechanism exhibits
protective effects in IRI [97–100] and blocking of p38 has been shown to reduce IRI-induced
necrosis and apoptosis [101–103].

4. Studying Oxidative Stress

Even though MP was adopted in the clinical routine some time ago, valuable small-
scale models are needed to study isolated processes in more detail. While they are not
comparable, they are not mutually exclusive. 2D and 3D models can be used to study
molecular mechanisms during IRI to further understand which interventions during MP
are required or helpful to protect an organ (Figure 3). In order to induce the ischemic
state, hypoxia together with acidosis, ATP depletion and accumulation of waste products
are required [104,105]. Next, normoxic conditions and supply of nutrients are restored
to allow for ROS generation- resembling the reperfusion state. In regard to IRI, shear
stress induced by blood flow should also be taken into account in in vitro systems [105].
Connecting conventional cell culture plates to peristaltic or pulsatile pumps and thereby
generating flow, has been described [106,107]. Following models discussed below focus on
in vitro models that can be translated to MP research to test hypotheses in a more complex
approach.
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4.1. Cell Lines

In general, cell culture models are widely used to study different research questions.
Most importantly, immortalized and primary cell lines are to be distinguished (Figure 3A).
Immortalized cell lines are able to proliferate indefinitely, as they are mostly obtained
from tumors. However, also methods for the immortalization of primary cells have been
established [108]. Cell isolation involving enzymatic or mechanical disruption and further
cultivation are frequently accompanied with the loss of some cell intrinsic features. In
contrast, primary cells are directly isolated from tissue. However, they exhibit biological
variability and can only be used for a limited duration due to a shorter life-span and
cultivation-induced changes. In addition to typical 2D cell culture models, 3D techniques
allow cells to grow into so-called spheroids. Cell–cell adhesion features are retained in
those [106,108,111].

For most pathologies, a suitable cell line model is available nowadays. Induction of
IRI has been successfully reported in cell lines of kidney, liver, heart and lung [112–115].
Módis et al. used the immortalized HepG2 liver cell line to study the cryoprotective
effects of adenosine and inosine on liver IRI. The cells were first pretreated with adenosine
and inosine, before glucose and oxygen deprivation were induced by medium change
and alteration of the atmosphere in the incubator (to 95% N2:5% CO2 mixture). The
following re-oxygenation phase was prompted by restoring normal culture conditions (5%
CO2 atmosphere, 20% O2). Cell viability and cell cytotoxicity assays both showed, that
adenosine and inosine exert cryoprotective effects [112]. Cell lines have been also widely
used to study targeting of the protective mechanisms to counteract IRI. Several studies
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have been performed using a hypoxia/reoxygenation model of cells to investigate the
Nrf2 pathway [116–118]. Ge et al. examined the relationship between Brahma-related
gene-1 (Brg1), Nrf2/HO-1 signaling, and IRI. They showed that restoration of Brg1 during
reperfusion can enhance Nrf2-mediated inducible expression of HO-1 during hepatic
ischemia reperfusion. This resulted in increased antioxidant capacity to combat hepatocyte
injury [116]. Using a different hypoxia/reoxygenation model, the protective effect of
sevoflurane against hepatic IRI was demonstrated through regulation of the Nrf2/HO-1
pathway [117]. Moreover, the protective effect of activation of the PI3/AKT pathway in
IRI has been repeatedly investigated using hypoxia/reoxygenation HK2 and H9c2 cell
lines [119–121].

However, models representing IRI in the context of extracorporeal (re-) perfusion
and MP require more than control of O2 levels. Mechanistic impacts of changes in flow
and oxygenation parameters during retrieval and transplantation are of great importance
and so is perfusate composition. In vitro models that take into account vessel type, size,
pressure and size of the animal were developed to represent physiologic shear stress
values. Depending on hypothesis, laminar, pulsatile laminar or perturbated flow are
applied [122–126]. Despite the disadvantage of cell lines not recapitulating the complexity
of solid tissue, they allow for easy and high-throughput testing of different drugs. Therefore,
cell lines might be not the model of choice to study complex whole-organ mechanisms,
but potentially serve as a model to test oxidative stress treatment strategies which can be
applied during ex vivo machine.

4.2. Precision-Cut Tissue Slices (PCTS)

As viable ex vivo explants of the studied organ, precision-cut tissue slices (PCTS) offer
preservation of the complex anatomical architecture with all different cell types in their
native environment. As a result, original intracellular, cell–cell and cell-matrix interactions
remain intact, which is a major advantage over conventional in vitro models [109,127].
The original production of slices with hand-held blades has evolved significantly to the
point where reproducible and comparable slices can be generated with a thickness of
200–300 µm [128]. In 1980, Krumdieck and colleagues presented a device for producing
tissue slices that were thin enough for all cell layers to be sufficiently supplied with
oxygen and nutrients. Therefore, they were considered mini-models of the organ under
study. Notably, they can be prepared of liver, kidney, heart and lung tissue [129–132]. In
2010, Graaf et al. published a protocol, which still serves as gold standard to date [109].
Once PCTS are transferred into cell culture, their handling is as simple as culturing cells.
Conventional cell culture plates can be utilized. Ideally, the incubator should be equipped
with a shaking platform, in order to improve oxygen and nutrient distribution. Viability and
metabolic activity of are mostly monitored by investigating ATP content and assessment
of the NADPH-dependent oxidoreductase enzymes by 3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, but not limited to
these. Cell damage may be evaluated by analysis of lactate-dehyrogenase (LDH), aspartate
aminotransferase (AST) and alanine transaminase (ALT) in the supernatant. In general,
analysis of PCTS supernatant can be conducted analogous to MP supernatant [127].

Nowadays, PCTS are not only a useful tool for biochemical functions and toxicological
studies, but also to study physiology and pathogenesis. Quick and reproducible results,
as well as the presence of spatial heterogenicity with nutrient and oxygen gradients make
PCTS a very sophisticated yet feasible model approach. In contrast, when using discarded
human organs with a broad variety of pre-existing tissue damage and/or diseases, the
heterogeneity of tissue slices is a major limiting factor. Healthy human tissue is most often
only sporadically available, which complicates experiments and makes it difficult to obtain
comparable, standardized cohorts. Furthermore, studying chronic and long-term effects is
not possible to date due to limited cultivation periods [109,115].

PCTS they have gained increasing attention to investigate the effects of IRI [132–134].
As early as 1996, isolated hepatocytes and precision-cut-liver slices (PCLS) were compared
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to investigate the advantages and disadvantages in studying liver hypothermic preserva-
tion and reperfusion injury [133]. The utilization of PCTS as a model to study mechanisms
has been reported by further groups in the recent decade. Hart et al. demonstrated that
PCLS are a suitable in vitro model to study the consequences of ischemia and reperfusion.
Thereby, the effects of different during hypothermic machine perfusion were investigated.
Subsequently, it was concluded, that with an O2 saturation of 21%, the cultivation medium
provides the best preservation technique [135]. Precision cut lung slices were developed as
a hybrid model consisting of an in vivo ischemia period, followed by an in vitro reoxygena-
tion to mimic cardiac death in lung transplantation [136] and myocardial rat slices have
been utilized for studying biochemical and inflammatory processes during cold storage
and after reperfusion [137,138]. Recently, also precision-cut kidney slices (PCKS) were
described as a model for reperfusion injury [132]. Porcine kidneys previously subjected to
30 min of warm ischemia were utilized and different conditions were tested to eventually
produce PCKS that are viable for 72 h [132]. PCTS offer an opportunity to study protec-
tive agents like antioxidants or potential pharmacological treatments to target different
IRI-related mechanisms. In contrast to MP, a significantly lower dose of drugs and agents
is needed and treatment and concentration protocols can be evaluated simultaneously.
Smail et al. applied precision cut lung slices to analyze the role of inflammation in IRI
in the lung, further investigating the protective role of adenosine. Lymphocytes were
shown to enhance the inflammatory response and histological lesions after 4 h of warm
ischemia [134]. Moreover, Schisandrin B has been shown to exert a protective function in
IRI of the myocardium when applied on myocardial rat slices. It reduced the oxidative
response, attenuated Activating transcription factor 6 (ATF6) and PKR-like endoplasmic
reticulum (ER) kinase (PERK) signaling, and decreased ER stress-induced apoptosis [139].

4.3. Organoids

Organoids are defined as 3D tissue structures grown from stem cells, posing an addi-
tional in vitro method that facilitates the study of oxidative stress in IRI. These structures
consist of tissue-specific cell types that self-organize by cell arrangement and spatially
restricted lineage commitment. They are either generated from either pluripotent embry-
onic stem (ES) cells, their synthetic counterparts induced pluripotent stem (iPS) cells or
organ-restricted adult stem (aSC) cells. Moreover, patient-to-patient variability (present in,
e.g., PCTS) can be circumvented while providing realistic microanatomy with a biomimetic
environment [110]. Organoids are of particular interest in reproducing pathophysiolog-
ical conditions and in studying the complexity of cellular interactions in various fields
including IRI [110,140–142]. For example, Kip et al. have exposed intestinal organoids to
hypoxia and reoxygenation, applying organoids as in vitro model for IRI. Subsequently,
mass-spectrometry-based proteomics were conducted and protein dynamics and specific
molecular mechanisms of IRI investigated [143]. Atypical physiology, limited maturation
and lack of high-fidelity cells are a major hurdle to be overcome in this model. Organoids
cannot be compared with normal tissue, as they lack vasculature and a functional immune
system. Especially the lack of vasculature results in uneven spatiotemporal distribution
of nutrients and oxygen. Moreover, that, cell-to-cell, batch-to-batch, organoid-to-organoid
(within the same batch) and region-to-region variability (within the same organoid) are
major drawbacks [141,142].

4.4. Organ-on-a-Chip

Organ-on-a-chip technology is a comparably new in vitro organ model system. It
is a microfluidic device capable of mimicking the physical and chemical environment
and thus, allow the different cell types of the respective organs to grow in an in vitro-like
environment. This allows for drug testing within the pathophysiological conditions. More
advantages of this model are longer shelf life, better hemodynamic and biocompatibility
profiles, higher gas permeability as well as chemical sensitivity. Moreover, organ-on-a-chip
is a rather cheap in vitro method. However, flow control and cell-to-liquid ratio are to
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be explored better, as low laminar flows are accompanied with little mixing. Moreover,
that, surface effects may dominate volume effects, having an impact on adsorption of
certain components to the surface. The surface itself may degrade during longer cultivation
periods, affecting viability of studied cells. Organs-on-a-chip has been shown useful in
studying IRI in the context of MP, since temperature, oxygenation and shear stress can be
modelled to a degree [111,144,145].

There are already some reports available using this model in the context of IRI research.
A microfluidics-based model for renal injury due to hypoxia and reperfusion was recently
reported by Chethikkattuveli Salih et al. They cultivated primary human renal proximal
tubule epithelial cells and primary human endothelial cells on the apical and basal sides of a
porous membrane exposing them to hypoxic conditions [146]. Nemcovsky et al. presented
a microfluidic IRI model with human endothelial cells. They demonstrated a significant
increase in the expression of the inflammatory surface receptors, E-selectin and Intercellular
adhesion molecule 1 (ICAM-1), in response to hypoxia. After reperfusion, an increase
in ICAM-1 levels was recorded [147]. However, in this model volumes are very limited
causing the surface effect to dominate the volume effect. Accordingly, this may translate
into poorer quality of analysis. In addition, the liquids in question may not mix properly
due to laminar flow at the intersection of several liquids [148].

5. Conclusions

Dynamic organ preservation has increased the number of organs available for trans-
plantation. Oxidative stress-induced IRI remains a key event during organ retrieval, preser-
vation and reperfusion, and profound understanding of the underlying mechanisms,
especially during MP, is still missing. Research in the field of transplantation has been
widely focused on in vivo studies both, in humans and animals. Of all the various MP meth-
ods mentioned above, normothermic machine perfusion of whole organs best mimics the
in vivo setting by providing near physiologic conditions. However, access to human organs
for research is very limited and animal models should be kept to a minimum following the
3R principles. Additionally, complex logistics, and the need for large human and financial
resources associated with MP experiments underscore the need for reductionist in vitro
models, which are suitable to study particular early aspects of redox stress-associated
damage and to pretest potential therapeutic interventions. Several in vitro models posing
valuable alternatives are listed in this review. Depending on research subject, there is a
suitable model that allows for studying particular features, conditions and/or treatments in
parallel. Isolated mechanisms can be assessed in a controlled, planned manner and in the
absence of systemic influences. More often models are combined, in order to first explore,
e.g., therapeutic agents and later apply them in ex vivo MP studies [149]. Different cul-
turing and tissue engineering approaches for in vitro models have been reported to study
IRI in more detail. So far, only a limited number of studies take MP specific requirements
into account, however technical feasibility to study oxidative stress in the context of IRI
was already demonstrated. This reinforces the need for further research and development
in this field. By further deciphering of the mechanisms, novel strategies to prevent and
counteract oxidative stress could be developed which may help to increase the number of
organs available for transplantation.
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Abbreviations

ALT Alanine Transaminase
aSC Adult Stem Cells
AST Aspartate Aminotransferase
ATF6 Activating Transcription Factor 6
ATP Adenosine Triphosphate
Brg1 Brahma-related gene-1
CAT Catalase
DAMP Damage-Associated Molecular Pattern
DC Dentritic Cell
DNPH 2,4-Dinitrophenylhydrazine
ECD Extended Criteria Donor
ELISA Enzyme-linked Immunosorbent Assay
ER Endoplasmativ Reticulum
ERK Extracellular Signal-regulated Kinase
ES Embryonic Stem Cells
EVLP Ex vivo Lung Perfusion
FOX Forkhead Transcription Factor O
GPx Glutathione peroxidase
HMGB1 High Mobility Group protein B1
HMP Hypothermic Machine Perfusion
HO-1 Isoform Hämoxygenase-1
HOPE Hypothermic Oxygenated Machine Perfusion
HPLC High Pressure Liquid Chromatography
HTK Histidine-Tryptophan-Ketoglutarate
I HC Immunohistochemistry
ICAM-1 Intercellular Adhesion Molecule 1
IGL-1 Institute George Lopez-1
IκB Inhibitor of κB Kinases
iPSC Induced Pluripotent Stem Cells
IRI Ischemia Reperfusion Injury
JNK c-Jun N-terminal kinase
Keap1 Kelch-like ECH associated protein1
LDH Lactate-Dehyrogenase
LQ Liquid Chromatography
MAPK Mitochondrial-activated Protein Kinases
MDA Malondialdehyde
MP Machine Perfusion
MS Mass Spectrometry
mTOR Mammalian Target of Rapamycin
MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide
NAD+ β-nicotinamide Adenine Dinucleotide
NFκB Nuclear Factor-κB
NK Natural Killer Cell
NMP Normothermic Machine Perfusion
Nrf2 Nuclear factor-erythroid-2 Related Factor 2
PCKS Precision-Cut Kidney Slices
PCLS Precision-Cut Liver Slices
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PCTS Precision-Cut Tissue Slices
PERK PKR-like Endoplasmic Reticulum Kinase
PI3/Akt Phosphatidylinositol 3-kinase/Protein kinase B
ROS Reactive Oxygen Species
SCS Static Cold Storage
SDH Succinate Dehydrogenase
SNMP Subnormothermic Machine Perfusion
SOD Superoxide Dismutase
TBARS Thiobarbituric Acid Substance
UW University of Wisconsin
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