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*e rheological properties of coal (rock) containing water cannot be characterized by the traditional Bingham model. *is
problem was addressed in this study through theoretical analysis and experimental research. Based on fractional calculus theory, a
fractional calculus soft element was introduced into the traditional Binghammodel. An improved Binghammodel creep equation
and a relaxation equation were obtained through theoretical derivations. Triaxial creep experiments of coal (rock) with different
moisture contents were conducted. *e parameters of the improved Bingham model were obtained by the least-squares method.
Conclusions are as follows: (1) in the improved Binghammodel, the stage of nonlinear accelerated creep could be characterized by
the creep curves of the soft element; (2) with the increasingmoisture content of the coal (rock), the transient strain and the slope of
the steady creep stage increased and the total creep time showed a decreasing trend; and (3) the parameters of the creep model
were obtained by nonlinear fitting of experimental data, and the fitted curve could better describe the whole creep process. *e
rationality of the improved creep model was verified. It can provide a theoretical basis for the study and engineering analysis of
coal (rock).

1. Introduction

More than 50% of unstable slope and mining failures are
related to the creep process caused by groundwater
movement [1, 2]. Slope stability evaluation is affected by
groundwater movement and temperature effects, which is
a popular topic in geological engineering [3, 4]. *e waste
solution will be discharged into the stratum by the
groundwater movement [5, 6]. Likewise, if the moisture
content of coal (rock) is excessive, safety and environ-
mental pollution issues will arise. Results of several
studies [7–10] have shown that coal (rock) containing
water exhibits rheological characteristics [11–13], with
creep as the main rheological behaviour [14, 15]. *e
mechanical properties of coal (rock) will be changed after
creep occurs, which will cause deformation and instability
of the coal (rock). *ese are the main factors of major
engineering accidents [16]. As a consequence, it is critical

to investigate the creep properties of coal (rock) con-
taining water.

*e creep characteristics of coal (rock) containing water
have become a popular research topic. As a classic creep
model [17–19], the Bingham model can describe the linear
creep stage of coal (rock). However, it cannot represent the
nonlinear stage of creep. Furthermore, many properties of
the nonlinear creep of coal (rock) are not fully understood,
and its research methods are also limited [20]. Mandelbrot
[21] found that fractal phenomena can be described by
fractional calculus. *e creep of an object between an ideal
solid [22–24] and fluid [25–27] is also a fractal phenomenon.
Based on the moisture content, coal (rock) can show rigid,
plastic, soft, and flow states. *us, coal (rock) containing
water can be considered to be an object between an ideal
solid and fluid.

Many scholars have performed considerable work on
creep models. Liu [28] first introduced fractional calculus
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theory and combined it with the generalized Maxwell
model and the Voigt model in 1994. He used the Laplace
transform algorithm [29, 30] to obtain the stress relaxa-
tion equation of a non-Newtonian fluid and the ap-
proximate analytical solution for the creep behaviour.
*is is the first time that scholars combined fractional
calculus theory with a creep model. Zhang [31] combined
the theory of fractional calculus and the classical model
and derived constitutive equations for the model. Yin [32]
used the fractional calculus theory of Riemann and
Liouville [33] to model a soft element and determine its
constitutive equation. Pavlyuk [34] considered the
problem of stress relaxation of nonlinear viscoelastic
materials under unsteady deformation conditions and
water movement. To describe the deformation process
and temperature effect, a nonlinear creep model of the
Rabotnov type [35–37] with a time-independent non-
linearity was used.

*e issue of the inadequate description of nonlinear
rheological behaviour has been solved by previous re-
search to a certain extent, but there are still errors in the
calculation accuracy. *ere are few examples of frac-
tional calculus theory being applied to creep. *erefore,
this paper introduces soft elements based on the frac-
tional calculus theory and the Bingham model. In order
to describe the nonlinear stage of creep, an improved
Bingham creep model is proposed. Riemann–Liouville
fractional calculus was used to derive a creep equation
and a relaxation equation. Triaxial creep experiments on
coal (rock) with different moisture contents were carried
out, and the rationality of the improved creep model was
verified through parameter identification. *e proposed
equations can be used to establish a theoretical foun-
dation for the study and engineering analysis of coal
(rock).

2. Bingham Model

*e conventional Bingham model [38, 39] is made up of a
Hooke body and an elastic viscoplastic body in series. *e
mechanical model is shown in Figure 1. *e constitutive
equations are as follows:

σ < σs, σ � Eε,

σ
•

� Eε
•
,

σ ≥ σs, ησ
•

+ E σ − σs( 􏼁 � Eηε
•
,

(1)

where σ and ε are the stress and strain, respectively, σ
•
and ε

•

are the rates of stress and strain, respectively, σs is the yield
stress, E is the elastic modulus, and η is the viscosity
coefficient.

3. Fractional Calculus Theory

3.1. Fractional Calculus. Riemann–Liouville fractional cal-
culus [33] is the earliest defined and most complete frac-
tional calculus. *e integral of order α of a function f(x) is
defined as follows:
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*e fractional derivative is defined as follows:
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*e lower left and lower right indices of D indicate the
range of integration, α is the order number of the fractional
calculus (0< α, m − 1< α<m, m ∈ N∗), and Γ is the
Gamma function, where Γ(z) � 􏽒

∞
0 tz− 1e− tdt �

2􏽒
∞
0 t2z− 1e− t2dt, Γ(1/2) � 2􏽒
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��
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√
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(z)(z ∈ N∗), and Re(z)> 0.
*e Laplace transform formulas for fractional calculus

are as follows:
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where the Laplace transform of f(t) is denoted as f(i).

3.2. Fractional Soft Element. *e state of an object is as-
sumed to be between an ideal solid and fluid. *e rela-
tionship between the stress and strain is expressed by a
fractional derivative, and this object is referred to as a
fractional soft element [32]. *e mechanical model is shown
in Figure 2.

*e constitutive equation of the fractional soft element is
as follows:

σ(t) � ξ
dαε(t)

dt
α , 0< α, m≤ α≤m + 1, m ∈ N

∗
( 􏼁, (5)

where ξ is the inherent coefficient of the soft component.
When α � 1 and σ(t) � ξ · ε

•
(t), ε

•
(t) is the rates of strain,

and the soft element is equivalent to a damper element,
which represents an ideal fluid. When α � 0 and
σ(t) � ξ · ε(t), the soft element is equivalent to a spring
element, which represents an ideal solid.

When σ(t) � const, the soft element describes the creep
behaviour under the condition of a constant stress. Equation
(5) is integrated according to the Riemann–Liouville frac-
tional calculus theory, and the creep equation of the soft
element can be calculated as follows:

σs

η

σ
E

σ

Figure 1: Conventional Bingham model.
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*e gamma function values for different α values were
calculated by Maple [40]:

When α � 0.1, Γ(1 + α) � Γ(1.1) � 􏽒
∞
0 t0.1e− tdt �

0.95135

When α � 0.3, Γ(1 + α) � Γ(1.3) � 􏽒
∞
0 t0.3e− tdt �

0.89747

When α � 0.5, Γ(1 + α) � Γ(1.5) � 􏽒
∞
0 t0.5e− tdt �

0.88622
When α � 0.7, Γ(1 + α) � Γ(1.7) � 􏽒

∞
0 t0.7e− tdt �

0.90863

When α � 0.9, Γ(1 + α) � Γ(1.9) � 􏽒
∞
0 t0.9e− tdt �

0.96176

*e creep curves for different α values asre plotted
according to (6), as shown in Figure 3. *e strain of the
fractional soft element showed a slow upward trend over
time [41]. It does not preserve the linear rise of an ideal fluid,
nor does the strain remain constant as it does for an ideal
solid. *e soft element can reflect the nonlinear gradient
process of the strain.

Similarly, when ε(t) � const, a fractional soft element
will describe the stress relaxation of creep motion. *e re-
laxation equation of soft element can be derived as follows:

σ(t) � ε · ξ
t
− α

Γ(1 − α)
, m< α<m + 1, m ∈ N

∗
. (7)

*e Gamma function for different values of α was cal-
culated by Maple [40]:

When α � 0.1, Γ(1 − α) � Γ(0.9) � 􏽒
∞
0 t− 0.1e− tdt �

1.06861

When α � 0.3, Γ(1 − α) � Γ(0.7) � 􏽒
∞
0 t− 0.3e− tdt �

1.29805
When α � 0.5, Γ(1 − α) � Γ(0.5) � 􏽒

∞
0 t− 0.5e− tdt �

1.77245
When α � 0.7, Γ(1 − α) � Γ(0.3) � 􏽒

∞
0 t− 0.7e− tdt �

2.99156
When α � 0.9, Γ(1 − α) � Γ(0.1) � 􏽒

∞
0 t− 0.9e− tdt �

9.51350

For a constant strain and various α values, the stress
relaxation curves obtained by (7) are shown in Figure 4.
With the increase in α, the stress gradually approaches 0.*e
soft element becomes a Hooke body. As α decreases, the
stress gradually decreases and finally reaches a stable value.
*e soft element becomes a viscous fluid. *us, the soft
element is a multicharacteristic element, and the strain rate
and stress can be controlled. Traditionally, the strain rate can

only be controlled by the viscosity coefficient of the plastic
element. *e introduction of a soft element into the Bing-
ham model better reflects nonlinear creep behaviour.

4. Improved Bingham Model

To make up for the shortcomings of the traditional Bingham
model, the fractional soft element is introduced. *e frac-
tional soft element is connected with the Bingham model to
form an improved Bingham model. As shown in Figure 5,
there are four elements of this model, labelled 1–4 from left
to right. *e classic creep curve is shown in Figure 6. *e
whole creep process is divided into three stages: primary
creep, steady creep, and accelerated creep.

σ

ξ, α

Figure 2: Fractional soft element.
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α=0.7
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t0

Figure 3: Creep curves of fractional soft component under dif-
ferent α.

α=0.1
α=0.3
α=0.5

α=0.7
α=0.9

σ 
(t)

t0

Figure 4: Stress relaxation curves of fractional soft component
under different values of α.
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*e improved creep model satisfies the following
conditions:

(1) When 0< σ < s
σ , the model is equivalent to the Hooke

body and the fractional soft element connected in
series.*e stress of the coal (rock) has not reached its
yield strength, and the deformation is in the primary
creep period (0⟶ t1). According to the principle
of elements in series, the stress of each element is the
same, and the total strain of the model is equal to the
sum of the strain of each element. *e following
constitutive equation of the improved creep model
can be obtained based on equation (6):

ε(t) �
σ
E

+
σ
ξ1

t
α1

Γ 1 + α1( 􏼁
, (8)

where σ is the initial stress and E is the elastic
modulus.

(2) When σ ≥ σs, all parts of the model are involved in
the creep. *e fractional soft element is connected
with the traditional Bingham model. *e creep
reaches the stage of steady creep and accelerated
creep (t1⟶ t3). Based on equation (6), the con-
stitutive equation of the improved creep model is as
follows:
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σ
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η
t +
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. (9)

Combined with (8) and (9), the total expression of the
fractional creep model is as follows:
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(10)

5. Parameter Identification

To verify the rationality of the improved creep model, pa-
rameter identification of the model was carried out. *e
traditional Bingham model was used to describe the rheo-
logical characteristics. When the initial stress was less than
the yield stress, the model had the characteristics of a solid.
After the stress exceeded the yield stress, it exhibited the
properties of a liquid and generated flow. To test this model,
triaxial creep experiments were carried out on coal (rock)
with different moisture contents.

*e dimensions of the coal (rock) samples were
Ø50mm× 100mm, and the average compressive strength of
coal (rock) was 3.68MPa. *e testing apparatus was a
machine for static oil pressure testing. *e equipment and
schematic diagrams of the experiment are shown in Figure 7.
*e axial compression was controlled to 3MPa. *e
moisture contents of the coal (rock) after various hydration
times are shown in Table 1.

*e triaxial creep experiment data curves under different
moisture contents are shown in Figure 8. *e improved
creep model parameters were obtained by the least-squares
method. *e parameter E was calculated from the transient
strain ε0. In the primary creep stage, the parameters α1 and
ξ1 were obtained by nonlinear fitting with the Origin
software. *e parameter η was obtained by linear fitting in
the steady creep stage. For the accelerated creep stage, the
same nonlinear fitting method was used to obtain the pa-
rameters α2 and ξ2. *e creep parameters are shown in
Table 2.

As shown in Figures 8 and 9, the transient strains of the
coal (rock) samples with moisture contents of 0%, 0.71%,
1.45%, 1.83%, and 3.67% were 0.010, 0.024, 0.033, 0.044, and
0.053, respectively. With the increase in the moisture con-
tent of the coal (rock), the transient strain showed an in-
creasing trend.*e slope of the curve during the steady creep
increased from 0.0001 to 0.0007. *e steady creep was
accelerated by the increase in the moisture content of coal
(rock). *e creep time was gradually reduced from 150min
to about 50min. *e total creep time of the coal (rock)
showed a decreasing trend. In the accelerated creep stage, the
time required for the coal (rock) to enter the nonlinear creep
stage was gradually shortened with the increase in the
moisture content. *e rate of coal (rock) creep was also
accelerated by the increase in the moisture content. *e
overall results showed that the idea of combining coal (rock)
and water to model creep was reasonable.

σs

η
σ

E
σ

ξ, α

1

3

2
4

Figure 5: Improved Bingham model.
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Figure 6: Classical creep curve.
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Compared with the fitting curve of the traditional
Bingham model, the fitted curve of the improved Bingham
model was more consistent with the three stages of coal
(rock) creep, especially the nonlinear creep stage. *e

primary, steady, and accelerated creep stages followed power
function, linear function, and power function trends, re-
spectively. *e analytical formulas of the functions are
consistent with the established model, and the fitted

(a)

P

Lever 1

Lever 2

displacement
gauge

coal (rock)

oil filler and pressure oil
outlet of manual pump

(b)

Figure 7: Equipment and schematic diagram of the experiment: (a) machine for static oil pressure testing; (b) schematic diagram of the
creep test.

Table 1: Moisture contents and hydration times.

Moisture content (%) 0 0.71 1.45 1.83 3.67
Hydration time (h) — 0 12 24 96
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Figure 8: Experimental triaxial creep data under different moisture content conditions.

Advances in Materials Science and Engineering 5



0 15 30 45 60 75 90 105 120 135 150

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

ε=0.042+3.37*10-11t 4.174

ε=0.037+0.0001 t

experimental data
primary creep
accelerated creep

steady creep
m

t (h)

ε=-0.014+0.033 t 0.164

ε

(a)

experimental data
primary creep
accelerated creep

steady creep
m

0 15 30 45 60 75 90 105 120 135 150

0.02

0.04

0.06

0.08

0.10

0.12

ε=0.055+0.0002 t

ε=0.075+3.38*10-15t 6.150

ε=-0.273+0.305 t 0.023

t (h)

ε

(b)

experimental data
primary creep
accelerated creep

steady creep
m

t (h)
0 20 40 60 80 100 120

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ε=0.057+0.0004 t

ε=0.087+7.62*10-14t 5.862

ε=-0.057+0.097 t 0.084

ε

(c)

experimental data

primary creep

accelerated creep
steady creep m

t (h)
0 10 20 30 40 50 60 70 80 90

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ε=0.077+1.94*10-6t 2.361

ε=0.064+0.0006 t

ε=0.033+0.018 t0.310

ε

(d)

Figure 9: Continued.
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correlation coefficients were greater than 0.9. In summary,
the improved Bingham model is reasonable.

6. Conclusion

(1) By incorporating a fractional soft element, an im-
proved Bingham model was obtained. Rie-
mann–Liouville fractional calculus theory was used
to obtain the creep and relaxation equations of the
revised Bingham model.

(2) *e analysis of the experimental data demonstrated
that when the moisture content of coal (rock) in-
creased, so did the transient strain and the slope of
the steady creep stage, while the overall creep du-
ration decreased. *e rate of coal (rock) creep also
increased. *e overall results indicated that the idea
of combining coal (rock) and water to model creep is
realistic.

(3) *e least-squares method was used to determine the
modified Bingham model parameters based on data
from triaxial creep experiments of coal (rock) with
various moisture contents. *e fitted curve, in
particular, the nonlinear creep stage, can charac-
terize the creep stage of coal (rock) containing water.
*is validated the proposed modified creep model.
*ese results can be used to establish a theoretical
foundation for the study and engineering analysis of
coal (rock).
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