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This article studies nonlinear n-resource-consumer autonomous system with age-
structured consumer population. The model of consumer population dynamics is
described by a delayed transport equation, and the dynamics of resource patches
are described by ODE with saturated intake rate. The delay models the digestion
period of generalist consumer and is included in the calorie intake rate, which impacts
the consumer’s fertility and mortality. Saturated intake rate models the inhibition effect
from the behavioral change of the resource patches when they react to the consumer
population growing or from the crowding effect of the consumer. The conditions for
the existence of trivial, semi-trivial, and non-trivial equilibria and their local asymptotic
stability were obtained. The local asymptotic stability/instability of non-trivial equilibrium
of a system with depleted patches is defined by new derived criteria, which relate
the demographic characteristics of consumers with their search rate, growth rate of
resource in patches, and behavioral change of the food resource when consumer
population grows. The digestion period of a generalist consumer does not cause
local asymptotical instabilities of consumer population at the semi-trivial and nontrivial
equilibria. These theoretical results may be used in the study of metapopulation
dynamics, desert locust populations dynamics, prey-predator interactions in fisheries,
etc. The paper uses numerical experiments to confirm and illustrate all dynamical
regimes of the n-resource-consumer population.

Keywords: age-structured model, saturated intake rate, stability analysis, digestion period, resource-consumer
model

INTRODUCTION

Competition between several food patches and common consumers has been thoroughly studied in
the ecological literature (Holt, 1977, 1984; Holt and Kotler, 1987; Martinez, 1991; Holt and Lawton,
1993; Holt et al., 1994; Wootton, 1997; Abrams et al., 1998; Křivan, 2003, 2014; Williams and
Martinez, 2004; Křivan and Eisner, 2006; Vrkoc and Krivan, 2015; Becker and Hall, 2016). Here,
increasing biomass of one food patch causes increases in generalist consumer population, thus a
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negative impact on other resource patches and vice versa.
Thus, apparent competition is similar to exploitative competition
(Levin, 1970) and can reduce the number of coexisting resource
patches. In traditional unstructured Lotka-Volterra ODE models
of population dynamics, many details of life history are neglected
(de Ross and Persson, 2013). The more reasonable approach
in population dynamics modeling is based on physiologically
structured models (Von Foerster, 1959; Gurtin and MacCamy,
1979; Cushing and Saleem, 1982; Elderkin, 1985; Webb, 1985,
2008; Metz and Diekmann, 1986; Cushing, 1998; Bekkal-Brikci
et al., 2007; Hritonenko and Yatsenko, 2007; de Ross and
Persson, 2013; Mohr et al., 2014; Akimenko and Křivan, 2018).
In this article, the apparent competition model of unstructured
resource patches with age-structured consumer population is
studied. This approach allows us to relate foraging to the
life history and demographical characteristics of consumer
population (fertility and mortality).

The dynamic interaction between resources and consumers in
prey-predator models is described by the consumer’s functional
response. Beddington (1975) and DeAngelis et al. (1975)
introduced and analyzed the functional response with saturation,
which is often used now in applied models providing the more
realistic description of prey-predator interaction (Capasso and
Serio, 1978; Qiu et al., 2004; Wang and Zhao, 2004; Han et al.,
2017). The functional response of such “saturated incidence rate”
was first introduced into SIR (susceptible-infected-recovered)
epidemic models in a study of the cholera epidemic spread in
Bari (Capasso and Serio, 1978) and was used later in various
epidemic models (Wang and Zhao, 2004; Han et al., 2017)
and ecological studies (Essington and Hansson, 2004). The
feature of saturated incidence rate is that it tends to saturation
when the population of predators (or infectives in epidemic
models, parasites in parasite-host model, consumers in resource-
consumer models, etc.) gets large and, as a consequence, it
prevents the unboundedness of the contact rate between prey
and predator. Since this functional response considers the
behavioral change of prey (or hosts, susceptibles, resources
in patches, etc.) as a reaction on the predator population
growing or “crowding effect” of predator, the resource-consumer
models with intake rates of such form are more reasonable
in comparison with traditional Lotka-Volterra models. The
resource consumption in biological and ecological models is
often characterized also by the calorie intake rate, which depends
linearly from the amount of food resource taken by one consumer
per unit of time from all patches. This function depends on
the handling time, i.e., the time a consumer needs to handle
and digest a unit of resource. This time period is included in
a model as a time delay parameter. Thus, the resulting model
studied in this article consists of several unstructured resource
patches and a single age-structured consumer population that
forages in these patches including the saturated intake rate,
calorie intake rate, and the digestion period of a generalist
consumer as a time delay parameter. The model is formulated in
Section “Model”.

The conditions of existence of the trivial, semi-trivial, and
non-trivial equilibria of autonomous systems are studied in
Section “Existence of Stationary Equilibria of the Autonomous

System (1)–(5).” The local asymptotic stability of all equilibria is
considered in Section “Local Asymptotic Stability of Equilibria
of the Autonomous System (1)–(5).” Stability analysis is based
on the traditional perturbation theory and linearization of
autonomous system and includes the study of impact of the time
delay parameter on the asymptotic stability of equilibria (Gourley
and Kuang, 2004; Shi, 2013; Mohr et al., 2014; Akimenko,
2017a; Akimenko and Křivan, 2018; Martsenyuk et al., 2018;
Liu et al., 2019).

Research shows that the stability indicator of non-linear
autonomous age-structured models, partial derivative of basic
reproduction number of consumer population by their density
used earlier in Cushing (1998); Akimenko and Křivan (2018),
can be applied only for non-trivial equilibria of system with non-
depleted patches. Local asymptotic stability/instability of non-
trivial equilibrium of system with depleted patches is defined in
the paper by new derived criteria, which relate the demographic
characteristics of consumers with their search rate, growth rate
of resource in patches, and behavioral change of the food
resource when consumer population grows. We show also that
the digestion period of a generalist consumer does not cause
local asymptotical instabilities of consumer population at the
semi-trivial and nontrivial equilibria. These theoretical results
may be used in study of metapopulation dynamics (Nakazawa,
2015; Becker and Hall, 2016), desert locust populations dynamics
(Guttal et al., 2012; Akimenko and Piou, 2018), prey-predator
interactions in fisheries (Essington and Hansson, 2004; Smith and
Smith, 2020), and many others.

The numerical algorithms obtained in earlier works
(Akimenko, 2017b,c,d) are used in the Section “Numerical
Experiments” for numerical analysis of dynamical regimes
of autonomous system that were considered in the previous
sections. In the first and second groups of experiments the local
asymptotic stability of the trivial and semi-trivial (i.e., resources
can only exist at positive densities) equilibria for three resource
patches with one generalist consumer is studied. Depending
on the reproduction number of consumers, trajectories of
system are unstable, oscillate in the vicinities of the trivial
and semi-trivial equilibria, or converge asymptotically to the
semi-trivial equilibrium. The further increasing of consumer’s
basic reproduction number or time delay parameter leads
to the consumer population outbreaks in the form of pulse
sequence, which are classified in the quantitative population
ecology as the populations with cyclical eruption dynamics
(Abbott and Dwyer, 2007; Akimenko and Anguelov, 2017). The
results of simulations illustrated the properties of the outbreak
solutions are presented in Section “The Trivial and Semi-Trivial
Equilibria.”

The next group of experiments focuses on the study of
asymptotic behavior of solutions in the vicinity of the non-
trivial equilibrium with one non-depleted and two depleted
resource patches (1st–3rd experiments), three non-depleted
resource patches (4th experiment), and one non-trivial
consumer population. The results of simulations confirm
and illustrate the statements of theorems and exhibit the different
dynamical regimes of system with unstable and asymptotically
stable trajectories for the selected parameters of the model.
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Several concluding remarks are given in Section “Conclusion
and Discussion.”

MODEL

In this article, we study an apparent competition food web
module that consists of n resource patches and consumers that
move freely between these patches. Resource density of i-th
patch is denoted as yi(t), i = 1, ..., n. The resource dynamics
in each patch is described by the logistic model with constant
growth rate ri > 0, and environmental carrying capacity Ki > 0.
The age-specific density of consumer population at age a
and time t is denoted by w(a, t), the quantity of consumers
in population is W0(t) =

∫ ad
0 w(a, t)da (where ad > 0 is the

maximum consumer’s life-span), and a weighted quantity of
consumers at the fixed time t is Ŵ(t) =

∫ ad
0 γ(a)w(a, t)da (where

γ(a) is an age-specific consumer’s preferences in food resource).
The interaction strength between resources and consumers is
a product of the saturated intake rate yi(t)gi(Ŵ(t)), where
gi(Ŵ(t)) evolves to a saturation level when Ŵ(t) gets large, i.e.,

gi(Ŵ(t)) = βiŴ(t)
(

1+ αiŴ(t)
)−1

. Functions gi(Ŵ(t)) have a
form of the Beddington–DeAngelis type of functional responses
(Beddington, 1975; DeAngelis et al., 1975; Qiu et al., 2004) under
assumption that handling time of predator is effectively zero
[Eq. (12) in Beddington, 1975]. Constant βi > 0 is a search
rate of resource i = 1, ..., n. Saturation coefficient αi ≥ 0 is
proportional to the rate of encounter between consumers, related
both to their speed of movement and the range at which they
sense each other and the time wasted by consumer per one
encounter (Beddington, 1975). On the other hand, this coefficient
can consider also the behavioral change of the food resource
when consumer population grows [like in epidemic models for
pair susceptibles-infectives (Capasso and Serio, 1978; Wang and
Zhao, 2004; Han et al., 2017)]. The greater the coefficient αi,
the greater the activity of the food resource in i-th patch and
vice versa. When αi = 0 the saturated intake rate is a bilinear
form of Lotka-Voltera functional response, which considers
the inactive food resource without behavioral reaction on the
consumer population changes. For our convenience we introduce
the food resource classification: the higher activity resource with
αi ≥ r−1

i βi, the lower activity resource with 0 < αi < r−1
i βi and

non-active resource with αi = 0. These assumptions lead to the
following resource population dynamics.

dyi
dt = riyi(t)

(
1− yi(t)K−1

i
)
− yi(t)βiŴ(t)

×

(
1+ αiŴ(t)

)−1
, t ∈ (0,T] , (1)

Consumer population dynamics w(a, t) are governed by
the delayed McKendrick-Von Foerster’s age-structured model
(Von Foerster, 1959; Gurtin and Maccamy, 1974; Gurtin and
MacCamy, 1979):

∂w
∂t
+
∂w
∂a
= −s(a,C(t − τ))w(a, t), (a, t) ∈ Q, (2)

where Q = {(a, t) |a ∈ (0, ad], t ∈ (0,T] }, Q = {(a, t)|a ∈
[0, ad]}, t ∈ [0,T]. Eqs (1, 2) are completed by the following
initial and boundary conditions:

yi(t) = y0i(t), t ∈ [−τ− 0], (3)

w(a, 0) = ϕ(a), a ∈ [0, ad], (4)

w(0, t) =
∫ am

ar

θ(a,C(t − τ))w(a, t)da, t ∈ (0,T], (5)

where ar > 0 is an age of maturation, am > 0 is a maximum
age of reproduction, and ϕ(a) is an initial density of consumers.
Functions s(a,C(t − τ)) in Eq. (2) and θ(a,C(t − τ)) in Eq. (5)
are age and calorie intake rate dependent consumer’s death and
fertility rates, respectively. Consumption of food resources by one
consumer per unit of time is measured by calorie intake rate C(t).
This function is used in Eqs (2, 5) with the time delay parameter
τ> 0, which is a handling time, i.e., the time a consumer needs to
handle and digest a unit of resource. We assume that the calorie
intake rate is a linear function of the amount of food resource
taken by one consumer per unit of time from all patches and is
defined through the resource intake rate:

C(y(t), Ŵ(t)) =
n∑

i=1
Ci(yi(t), Ŵ(t)) =

n∑
i=1

eiyi(t)βi

(
1+ αiŴ(t)

)−1
, (6)

where Ci ≥ 0 is a calorie intake rate for i-th resource
patch, ei > 0 is an efficiency with which the consumed
resource i is transformed to energy. We impose the following
natural restrictions on the consumer’s death and fertility rates,
preferences in food resource:

θ(a,C) ∈ C1([0, ad] × R≥0), θ(a,C) ≥ 0, θ(a, 0) = 0,
∂θ

∂C
> 0,

(7)
s(a,C) ∈ C1([0, ad] × R≥0), s(a,C) > 0,

∂s
∂C

< 0,

γ(a) ∈ (0, 1], γ(a) ∈ L2([0, ad]). (8)

where C1(X) is a space of continuously differentiable functions
defined in domain X, L2([0, ad]) is a space of square-integrable
functions on an interval [0, ad], R≥0 is a set of non-negative real
numbers (Kolmogorov and Fomin, 1999).

Equations (7, 8) mean that decreasing of calorie intake rate
corresponds to the critical foraging or starvation, and increasing
it corresponds to the sufficient foraging and satiation with
increasing resource intake rate. Increasing of calorie intake rate
provides also maximum comfortable conditions for reproduction
of consumers that corresponds to increasing of birth rate,
and decreasing of calorie intake rate provides the most poor
and unfavorable conditions for reproduction of consumers,
decreasing birth rate.

The basic reproduction number of age-structured model of
consumer population dynamics is a calorie intake rate depending
function:

R(C) =
∫ am

ar

θ(a,C) exp
(
−

∫ a

0
s(ξ,C)dξ

)
da. (9)
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Derivation of Eq. (9) is traditional and is given in works
(Hoppensteadt, 1975; Metz and Diekmann, 1986; Webb, 2008;
de Ross and Persson, 2013; Akimenko and Křivan, 2018).
The novelty of function (9) lies in using the calorie intake
rate depending birth and death rates of consumer population
in integral. This formal substitution of calorie intake rate
emphasizes the foraging-depending demographical processes of
consumer population.

EXISTENCE OF STATIONARY
EQUILIBRIA OF THE AUTONOMOUS
SYSTEM (1)–(5)

We consider the equilibria y∗ = (y∗1, ..., y∗n), w∗(a) of the
autonomous system (1)–(5). Trivial equilibrium y∗ = (0, ..., 0),
w∗(a) ≡ 0 means that all food patches are depleted and consumer
population is empty. Semi-trivial equilibrium y∗ = (K1, ...,Kn),
K = (K1, ...,Kn), w∗(a) ≡ 0 corresponds to the abundant food
patches (with saturated food density) and empty consumer
population. It is easy to verify that trivial and semi-trivial
equilibria of autonomous system (1)–(5) with coefficients
satisfied Eqs (7, 8) always exist.

Non-trivial equilibrium means that there exist a nonempty
set of non-depleted food patches with positive and bounded
equilibrium densities 0 < y∗i < Ki, i ∈ I+, while the remaining
patches are depleted y∗i = 0, i ∈ I0, and the consumer
population is not empty with nonnegative equilibrium
density w∗(a) ≥ 0, positive equilibrium quantity and
weighted quantity of consumers W∗0 =

∫ ad
0 w∗(a)da > 0,

Ŵ∗ =
∫ ad

0 γ(a)w∗(a)da > 0. Symbols I0 and I+ denote
here the bounded non-overlapping sets of integer indexes
such that their union contains the indexes of all patches:
I0 ∩ I+ = ∅, I0 ∪ I+ = {i |i ∈ N, i = 1, ..., n }. This type of
equilibria corresponds to the stationary state of system in which
consumer population coexists with several or all non-depleted
food patches. In this section we study the conditions of existence
of such nontrivial equilibria. Equilibrium y∗i , i = 1, ..., n, satisfies
the equation:

y∗i

(
ri
(
1− y∗i K−1

i
)
− βiŴ∗

(
1+ αiŴ∗

)−1
)
= 0. (10)

Equation (10) has at most two nonnegative solutions:

y∗i = Ki

(
1− r−1

i βiŴ∗
(

1+ αiŴ∗
)−1

)
> 0,

only if Ŵ∗(r−1
i βi − αi) < 1; (11)

y∗i = 0. (12)

Hence, the nontrivial equilibrium of food web contains
the nonempty set of non-depleted patches that necessarily
satisfy condition Ŵ∗(r−1

i βi − αi) < 1 with indexes
i ∈ I+ =

{
i
∣∣∣1 ≤ i ≤ n, Ŵ∗(r−1

i βi − αi) < 1
}

and the set

(empty or not) of depleted patches that can satisfy or not the
condition Ŵ∗(r−1

i βi − αi) ≥ 1 with indexes i ∈ I0.
From Eq. (11) we obtain the positive equilibria Ŵ∗ > 0:

Ŵ∗ =
(
1− y∗i K−1

i
) (

r−1
i βi − αi

(
1− y∗i K−1

i
))−1
= const > 0,

for all i ∈ I+, (13)

or

Ŵ∗ = n−1
0

∑
i∈I+

(
1− y∗i K−1

i
) (

r−1
i βi − αi

(
1− y∗i K−1

i
))−1

, (14)

where n0 is a number of patches of set I+ 6= ∅, 1 ≤ n0 ≤ n.
Substituting Eqs (11) and (13) in Eq. (6) we obtain the
equilibrium calorie intake rate C∗:

C∗ =
∑
i∈I+

eiy∗i βi

(
1+ αiŴ∗

)−1
. (15)

The second equation of equilibrium is obtained from
Eqs (2, 5):

dw∗

da
= −s(a,C∗)w∗(a), (16)

w∗(0) =
∫ am

ar

θ(a,C∗)w∗(a)da. (17)

The general solution of Eq. (16) is
w∗(a) = w∗(0) exp

(
−
∫ a

0 s(υ,C∗)dυ
)
. Substituting Eq. (17)

in this solution yields the integral equation for the equilibrium
density of consumer w∗(a):

w∗(a) = exp
(
−

∫ a

0
s(υ,C∗)dυ

)∫ am

ar

θ(υ,C∗)w∗(υ)dυ. (18)

Integrating Eq. (18) with respect to a from 0 to ad we obtain
expression with the equilibrium quantity of consumers W∗0 :∫ am

ar

θ(υ,C∗)w∗(υ)dυ =

W∗0

(∫ ad

0
exp

(
−

∫ a

0
s(υ,C∗)dυ

)
da
)−1

. (19)

Multiplying both sides of Eq. (18) by γ(a), integrating them with
respect to a from 0 to ad and substituting in obtained equation
the left side of Eq. (19) we obtain W∗0 :

W∗0 = Ŵ∗
∫ ad

0
exp

(
−

∫ a

0
s(υ,C∗)dυ

)
da

×

(∫ ad

0
γ(a) exp

(
−

∫ a

0
s(υ,C∗)dυ

)
da
)−1

. (20)

By analogy with Theorem 1 from Hritonenko and Yatsenko
(2007) formulated for harvesting problem, we obtain

Theorem 1. Let coefficients of system (1)–(5) satisfy
conditions (7)–(8). System (11), (12), (18), possess a nontrivial
equilibrium y∗i > 0 (i ∈ I+ ), y∗i = 0 (i ∈ I0 ), and w∗(a) ≥ 0,
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W∗0 =
∫ ad

0 w∗(a)da > 0, if and only if there exists the positive
solution Ŵ∗ > 0 of equation R(C(y∗(Ŵ∗), Ŵ∗)) = 1 with
restrictions Ŵ∗(r−1

i βi − αi) < 1, i ∈ I+. The basic reproduction
number R(C∗), equilibrium y∗i , i ∈ I+, equilibrium calorie intake
rate C∗ and equilibrium quantity of consumers W∗0 are given by
Eqs (9, 11, 15, 20), respectively. The equilibrium distribution of
consumer’s density w∗(a) ∈ C1([0, ad]) is defined by:

w∗(a) =W∗0 exp
(
−

∫ a

0
s(υ,C∗)dυ

)

×

(∫ ad

0
exp

(
−

∫ a

0
s(υ,C∗)dυ

)
da
)−1

. (21)

Proof. Multiplying both sides of Eq. (18) by θ(a,C∗),
integrating them with respect to a from ar to am after a
little algebra we arrive to the equation R(C∗(y∗(Ŵ∗), Ŵ∗)) = 1
[see Eq. (9)]. If this equation has solution Ŵ∗ > 0 satisfied
Ŵ∗(r−1

i βi − αi) < 1 [i ∈ I+, see Eq. (11)], y∗i = 0 (i ∈ I0 ),
we can obtain y∗i , i ∈ I+, [Eq. (11)], C∗ [Eq.(15)], and W∗0
[Eq. (20)]. Conversely, if equation R(C(y∗(Ŵ∗), Ŵ∗)) = 1 does
not have solution Ŵ∗ > 0 satisfied Ŵ∗(r−1

i βi − αi) < 1, i ∈ I+,
y∗i = 0, i ∈ I0, the stationary solution of problem (11), (12), (18),
(20) does not exist.

Substituting the left-hand side of Eq. (19) in Eq. (18)
we obtain the equilibrium distribution of consumer’s density
(21). Since coefficients of system (1)–(5) satisfy conditions
(7)–(8) the equilibrium w∗(a) ∈ C1([0, ad]). Theorem 1 is
proved.

Corollary 1. If some patches have higher activity resources
with αi ≥ r−1

i βi, condition Ŵ∗(r−1
i βi − αi) < 1 holds for them

and such patches always have positive equilibria y∗i > 0 defined
by Eq. (11) (i.e., non-depleted patches).

Theorem 1 imposes the restriction on the basic reproduction
number of consumer population R(C(y∗, Ŵ∗)) at the
equilibrium y∗, Ŵ∗, taking into account the impact of
foraging on the consumer fertility and mortality. The condition
of existence of nontrivial balance between food resource
growing and consumer demographical processes (nontrivial
equilibrium) is given in the form of transcendental integral
equation R(C(y∗(Ŵ∗), Ŵ∗)) = 1. Implementation of such
condition in biological applications is difficult from the technical
point of view. In the next theorem we provide the sufficient
conditions for existence of the nontrivial equilibrium in the
simpler form of restrictions on the coefficients of the system
(1)–(5).

Theorem 2. Let the sets of indexes of the lower and
higher activity resources of non-depleted patches are
Ĭ+ =

{
i
∣∣i ∈ I+, αi < r−1

i βi
}

and
_
I +=

{
i
∣∣i ∈ I+, αi ≥ r−1

i βi
}

,
respectively, constant Ŵc = min

i∈Ĭ+
(r−1

i βi − αi)
−1,

ỹi =

{
Ki

(
1− r−1

i βiŴc(1+ αiŴc)
−1
)
, if i ∈ I+ and Ĭ+ 6= ∅,

Ki
(
1− (riαi)

−1βi
)
, if i ∈ I+ and Ĭ+ = ∅,

(22)

C̃i =


eiβiKi

(
1− r−1

i βiŴc

(
1+ αiŴc

)−1
)(

1+ αiŴc

)−1
,

if i ∈ I+ and Ĭ+ 6= ∅,
0, if i ∈ I+ and Ĭ+ = ∅,

(23)

and coefficients of system (1)–(5) satisfy Eqs (7, 8). Then,
for existence of at least one non-trivial solution of stationary
problem (11), (12), (18) equilibrium y∗i (Ŵ

∗) ∈ (ỹi,Ki), i ∈ I+,
y∗i = 0 (i ∈ I0 ), and w∗(a) ≥ 0, w∗(a) ∈ C1([0, ad]), W∗0 > 0 it
is sufficient that R(C∗sup) > 1 and R(C∗inf) < 1 where the infimum
and supremum of equilibrium calorie intake rate are:

C∗inf =
∑
i∈I+

C̃i,C∗sup =
∑
i∈I+

eiβiKi. (24)

The proof of Theorem 2 is given in Supplementary
Appendix A.
Corollary 1. If all non-depleted patches have only lower
activity resources with αi < r−1

i βi, when Ĭ+ = ∅, from Eq.
(23) it follows that the infimum of equilibrium intake rate
C∗inf =

∑
i∈I+ C̃i = 0, θ(a, 0) = 0 [Eq.(7)] and, consequently,

R(0) = 0. In this case condition R(C∗inf) < 1 is always satisfied
and can be omitted in Theorem 2.

LOCAL ASYMPTOTIC STABILITY OF
EQUILIBRIA OF THE AUTONOMOUS
SYSTEM (1)–(5)

The conditions of local asymptotic stability of the trivial and
semi-trivial equilibria are addressed in Theorem 3.

Theorem 3.
(i) The trivial equilibrium y∗i = 0, i = 1, ..., n, w∗(a) ≡ 0 of

system (1)–(5) is unstable for all τ > 0.
(ii) The semi-trivial equilibrium y∗i = Ki, i = 1, ..., n,

w∗(a) ≡ 0 is unconditionally (i.e., for all τ > 0) locally
asymptotically stable if the consumer’s basic reproduction
number R(K) < 1 whereas it is unstable for all τ > 0 if
R(K) ≥ 1.

The proof of Theorem 3 is given in Supplementary
Appendix B.

Remark 1. If consumer population is fully extinct and
cannot renew the reproduction, the Eq. (47) (Supplementary
Appendix B) has only the trivial solution ξ̃ (a) ≡ 0. The roots
of Eq. (46) (Supplementary Appendix B) are always negative
λ∗ = −ri < 0, that is the perturbations ζi(t)→ 0 and the
semi-trivial equilibrium is locally asymptotically stable. The
examples of the nonlinear age-structured models of population
dynamics in the form of a single pulse–population outbreak with
following extinction were obtained in works (Akimenko, 2017d;
Akimenko and Anguelov, 2017).

The conditions of local asymptotic stability of the nontrivial
equilibrium are addressed in Theorem 4.

Theorem 4. Let coefficients of the system (1)–(6) satisfy
conditions (7), (8), the nontrivial equilibrium y∗i > 0
(i ∈ I+ 6= ∅ ), y∗i = 0 (i ∈ I0 ), w∗(a) ≥ 0, W∗0 > 0, Ŵ∗ > 0
of autonomous system (1)–(5) is a solution of the equation
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R(C(y∗(Ŵ∗), Ŵ∗)) = 1 with restrictions Ŵ∗(r−1
i βi − αi) < 1

(i ∈ I+ ) satisfied Eqs (11, 12, 20, 21).
This equilibrium is unstable for all τ > 0 if I0 6= ∅ and at least

one of two following statements is true:
(i) ∃i ∈ I0 for which αi ≥ r−1

i βi, or
(ii) αi < r−1

i βi for all i ∈ I0, and Ŵ∗ ≤ max
i∈I0

(
r−1

i βi − αi
)−1.

This equilibrium is unconditionally locally asymptotically
stable (for all τ> 0) if one of two following statements is true:

(iii) I0 6= ∅, αi < r−1
i βi for all i ∈ I0 and

Ŵ∗ > max
i∈I0

(
r−1

i βi − αi
)−1, or

(iv) I0 = ∅.
Digestion period of generalist consumer τ does not cause

local asymptotical instabilities of consumer population at the
nontrivial equilibria.

The proof of Theorem 4 is given in Supplementary
Appendix C.

Remark 1. According to the statement (iv) of Theorem
4 the nontrivial equilibrium with non-depleted food patches
(I0 = ∅) is always locally asymptotically stable. That means that
there exists a balance between resource growing, demographical
process of consumer population and their consumption
regime (within the framework of the considered model),
which guarantees the steady coexistence of all non-depleted
resource patches with non-empty consumer population.
The local asymptotic stability of the nontrivial equilibria of
nonlinear age-structured models with density dependent fertility
and death rates is well predicted by the partial derivative
of basic reproduction number (Cushing, 1998; Akimenko
and Křivan, 2018). Such stability indicator of non-trivial
equilibrium with non-depleted patches of system (1)–(5) has the
form:

∂R(y∗(Ŵ∗), Ŵ∗)
∂Ŵ∗

= −

∫ am

ar

exp
(
−

∫ a

0
s(υ,C∗)dυ

)
×

(
∂θ(a,C∗)
∂C∗

− θ(a,C∗)
∫ a

0

∂s(υ,C∗)
∂C∗

dυ

)
da

×

n∑
i=1

eiβiKi

(
1+ αiŴ∗

)−3

×

(
r−1

i βi + αi

(
1− Ŵ∗

(
r−1

i βi − αi
)))

< 0. (25)

The negative value of this expression indicates the
local asymptotic stability of the nontrivial equilibrium
(see Cushing, 1998; Akimenko and Křivan, 2018) with
non-depleted patches that confirms the statement (iv) of
Theorem 4. On the other hand, this stability indicator
cannot be used for analysis of local asymptotic stability
of nontrivial equilibria with depleted patches [cases (i),
(ii), (iii) of Theorem 4], because equilibrium calorie intake
rate C∗ [Eq. (15)] depends only from the equilibrium of
non-depleted patches y∗i ∈ I+ and stability indicator (25) is
negative for all non-trivial equilibria. That is why we will
use in the next section the conditions of local asymptotic

stability of non-trivial equilibria given in Theorem 4 instead
of indicator (25).

NUMERICAL EXPERIMENTS

Parameterization of the Autonomous
System (1)–(5)
We assume that the consumer fertility rate is increasing with a
saturation monotone function and the death rate is a decreasing
with extinction monotone function of calorie intake rate satisfied
Eqs (7, 8). They are defined on the parametrized classes of
algebraic functions:

s(a,C(t)) = 0.5s0
(
0.5+ π−1 arctan(4(a− am))+

4 exp(−4C(t))
)
, a ∈ [0, ad] , (26)

θ(a,C(t)) = θ0
(
1− exp(−0.5 C(t))

)
, a ∈ [ar, am] , (27)

where s0, θ0 are given constants. The generalist consumer
population is partitioned into three age-structured groups
with young, matured, and senile individuals with a
number of individuals in each group Wr(t) =

∫ ar
0 w(a, t)dt,

Wm(t) =
∫ am

ar
w(a, t)dt, and Wd(t) =

∫ ad
am

w(a, t)dt, respectively.
We use the following piece-constant function of resource
intake weighted coefficient among age-structured groups
[γ(a) ∈ L2([0, ad]), Eq. (8)]:

γ(a) =


γr, if a ∈ [0, ar] ,
γm, if a ∈ [ar, am] ,
γd, if a ∈ [am, ad] .

(28)

where 0 < γr < γd < γm < 1 the set of constant dimensionless
weights of resource intake for young, senile, and matured
consumers, respectively. The biggest value of γm in comparison
with γd and γr means that one matured consumer takes more
resource biomass than young or senile consumer.

For illustration of theoretical results obtained in Theorems 3
and 4, we consider the minimal set of three food resource patches
in all experiments in the vicinities of stationary equilibria. The
values of coefficients of Eqs (1, 6), and initial values (3, 4) vary in
each experiment depending on the conditions of Theorems 3, 4.

The Trivial and Semi-Trivial Equilibria
The numerical method based on the method of characteristics
(Akimenko, 2017b,c,d) is used here for study the dynamical
regimes of autonomous system (1)–(5) in the vicinities of all
equilibria considered in “Local Asymptotic Stability of Equilibria
of the Autonomous System (1)–(5).”

In the first group of experiments we study the asymptotic
behavior of solutions in the vicinity of the trivial and semi-
trivial equilibria with fixed small value of time delay τ = 0.001ad.
The dynamics of mean resource density Y(t) = n−1 ∑n

i=1 yi(t),
the quantity of consumers W0(t) =

∫ ad
0 w(a, t)da, and the basic

reproduction number R(t) are shown in Figure 1. The numerical
simulations illustrate the results obtained in Theorem 3.
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FIGURE 1 | Graphs of asymptotic convergence of solutions with R(K) < 1 (curve 1), R(K) > 1 (curve 2), and R(K) >> 1 (curve 3). Y(t) - mean resource density (A),
W0(t) - quantity of consumers (B), R(t) - consumer’s basic reproduction number (C).

Case (i) of Theorem 3: in this experiment the trivial
equilibrium is unstable (all curves in Figure 1), Y(t) and W0(t)
evolve to the semi-trivial equilibrium (curves 1 in Figures 1A,B,
consumer population becomes extinct while the resource biomass
in all patches saturates, R(K) < 1) or evolve to the nontrivial
equilibrium (curves 2 and 3 in Figures 1A,B, R(K) > 1).

Case (ii) of Theorem 3: in this experiment the semi-trivial
equilibrium is asymptotically stable with R(K) < 1 (curves 1 in
Figure 1) whereas it is unstable with R(K) > 1 (graphs 2 in
Figure 1).

For the very large basic reproduction number R(K) >> 1
obtained with large value of θ0 [Eq. (86)] we observe the
oscillatory regime of the system with asymptotic convergence
of solution to the steady state (curve 3 in Figure 1). The
existence of such periodic solutions of some Lotka-Volterra prey-
predator models was proved in theoretical work (Xu et al.,
2004) and was observed in numerical experiments in Akimenko
(2017d) and Akimenko and Anguelov (2017).

Further increasing of basic reproduction number by
parameter θ0 causes the consumer population outbreaks (special
dynamical regimes of population, see Abbott and Dwyer, 2007;
Akimenko and Anguelov, 2017; Akimenko and Piou, 2018).
The pulse sequence or sequence of outbreaks (Figure 2) of
consumers population and resource densities describe the
quasi-periodic dynamical regime in the vicinities of the trivial
and semi-trivial equilibria. The fast growing of consumer
population is accompanied by huge resource consumption,
and as a consequence, by resource extinction and following
decreasing of consumer population density to minimal but not
critical values. Although this minimal value cannot be seen on
the graphs due to their small scale, we observe a quasi-periodic
recovery and renewal of customer population that would be
impossible with the complete disappearance of reproductive
individuals in the population.

The system moves to the trivial equilibrium from the vicinity
of unstable semi-trivial equilibrium (R(K) >> 1, statement
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FIGURE 2 | Graphs of periodic population outbreaks with R(K) >> 1, τ = 0.001ad . Y(t) - mean resource density (A), W0(t) - quantity of consumers (B), R(t) -
consumer’s basic reproduction number (C).

(ii) of Theorem 2). But, since the trivial equilibrium is
unstable too (statement (i) of Theorem 2), and the minimal
number of consumers is sufficient for the following renewal
of population, system moves to the semi-trivial equilibrium
again. This process is repeated at quasi-periodic time intervals
and results in the pulse sequence of consumer population
and resource densities. The same regimes were obtained in
work (Akimenko, 2017d) for the nonlinear age-structured
model of population dynamics with density-dependent delayed
death rate only for the big values of delay parameter
and/or for the periodic time-dependent death and fertility
rates. Since in this experiment the impact of the time
delay parameter is insignificant and all coefficients of the
model are time-independent the dynamical regimes of periodic
outbreaks are result of the repeating dynamical interaction

between total resource consumption and its renewing from
the one hand and consumer population growth and extinction
from the other hand.

Further increasing of parameter θ0 leads to the consumer
population outbreaks of the single pulse form (Figures 3A,B).
The same rapid consumer population growth like in the previous
experiment is accompanied by huge resource consumption and
resource extinction but with following decreasing of consumer
population density up to critical values when population is
not able to renew the reproduction and becomes fully extinct
(see Remark 1 to Theorem 3). The food resources in all
patches saturate with time and system evolves eventually to the
asymptotically stable semi-trivial equilibrium (Figure 3A).

In the second group of experiments we study the dynamical
regimes of autonomous system (1)–(5) in the vicinity of the
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FIGURE 3 | Graphs of population single outbreak and extinction, τ = 0.001ad . Y(t) - mean resource density (A), W0(t) - quantity of consumers (B).

trivial and semi-trivial equilibria with different values of time
delay from interval τ = 0.001ad, . . ., τ = 0.03ad, and large basic
reproduction number R(K) >> 1. Solution of the autonomous
system (1)–(5) oscillates with bounded magnitude in the vicinity
of the semi-trivial equilibrium in all experiments with different
value of time delay (Figures 4–6). For the small value of
τ = 0.001ad the trajectories of system have the magnitude with
exctincted oscillations and converge to the positive equilibrium
(curve 3 in Figure 1). The bigger value of τ = 0.005ad causes the
periodic dynamics of Y(t) and W0(t) with bigger magnitudes,
shown in Figure 4. Further increasing of time delay leads to
the periodic outbreakes of Y(t) and W0(t) with τ = 0.015ad
(Figure 5) and single outbreak of W0(t)with saturating Y(t)with
τ = 0.03ad (Figure 6).

In all experiments of the second group the graphs of
mean resource density Y(t) and quantity of consumers W0(t)
oscillate in antiphase. This is a traditional form of dynamics
of prey-predator interaction. It means that increasing biomass
of food patches stimulates the reproduction of consumers and
decreasing of their mortality and leads to increasing size of
consumer population. In this case resource consumption is
rapidly increasing and, eventually, leads to the depletion of
food patches. The growing deficit of food resource causes the
decreasing consumer reproduction, increasing their mortality,
and, eventually, decreasing size of consumer population up to the
complete disappearance. Since the model considers the renewable
food resource the food biomass in patches starts for growing
again after consumer population decreasing or disappearance.
The different growth rates ri and carrying capacities Ki in three
food patches cause the rounded smooth steps on the graphs
of Y(t) in Figures 4A, 5A, 6A. If the consumer population
does not extinct this process repeats again and we obtain the
quasiperiodical dynamics of consumer population [graphs of
W0(t) in Figures 4B, 5B]. Otherwise we observe the consumer
population outbreak in the form of single pulse with following
extinction (Figure 6B). In some insect and animal populations
the cannibalism can be a common response to nutritional
deficiency when the food patches are limited in resources or

depleted (Richardson et al., 2010; Guttal et al., 2012). For
example, if some population of locusts cannot migrate to
new food patch and suffers from the lack of food resource
in depleted patches the gregarious locusts can cannibalize
each other (Guttal et al., 2012). The survivor and solitarious
locusts in this population eventually die of starvation. The
graphs shown in Figures 4, 5 correspond to the regimes of
population outbreaks obtained in the previous experiments
(Figures 2, 3). Similar dynamical regimes were obtained and
described in works (Akimenko, 2017d; Akimenko and Anguelov,
2017) for the age-structured model with density-dependent
delayed death rate and discussed in work (Akimenko and Piou,
2018) for the two-compartment age-structured model of locust
population dynamics.

Comparison of graphs of Y(t), W0(t) on Figures 4, 5
reveals that an increasing value of digestion period of generalist
consumer τ leads to the growth of consumer population size
and increase in the time period of its outbreaks. Consumers with
bigger digestion periods extend the pause between foraging that
allows patches to use this time to increase their resource up to
satiation. Increasing of food resource in patches leads eventually
to the growth in consumer population size and resource
food consumption. Larger consumer population consumes
more resource emptying food patches, resulting in nutritional
deficiency and increasing in the mortality of the consumer
population (starvation, cannibalism, etc.). If consumers of
reproductive age survive, they recover and renew the consumer
population with a larger time period (graphs of W0(t) in
Figures 4B, 5B), otherwise consumer population cannot recover
band extinct (graph of W0(t) in Figure 6B).

The results of this group of experiments illustrate also that
digestion period of generalist consumer τ does not lead to the
high-frequency oscillations of the solution in the vicinity of the
semi-trivial equilibrium known as deterministic chaos.

The Nontrivial Equilibria
The third group of numerical experiments focuses on the
study of asymptotic behavior of solutions in the vicinity of
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FIGURE 4 | Graphs of periodic dynamics of Y(t) and W0(t), τ = 0.005ad . Y(t) - mean resource density (A), W0(t) - quantity of consumers (B).

FIGURE 5 | Graphs of periodic outbreaks of Y(t) and W0(t), τ = 0.015ad . Y(t) - mean resource density (A), W0(t) - quantity of consumers (B).

FIGURE 6 | Graphs of asymptotic saturation of Y(t) (A), single outbreak of W0(t) (B), τ = 0.03ad .
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FIGURE 7 | (A) Case (i). Resource densities yi(t) (i = 1,2,3). y1* is a computed equilibrium of the first resource. (B) Weighted number of consumers Ŵ(t). Ŵ∗ is a
computed equilibrium of Ŵ(t).

FIGURE 8 | (A) Case (ii). Resource densities yi(t) (i = 1,2,3). y1* is a computed equilibrium of the first resource. (B) Weighted number of consumers Ŵ(t). Ŵ∗ is a
computed equilibrium of Ŵ(t).

FIGURE 9 | (A) Case (iii). Resource densities yi(t) (i = 1,2,3). y1* is a computed equilibrium of the first resource. (B) Weighted number of consumers Ŵ(t). Ŵ∗ is a
computed equilibrium of Ŵ(t).

the non-trivial equilibrium where some patches are depleted,
i.e., y∗i > 0 (i = 1, ..., n0), y∗i = 0 (i = n0 + 1, ..., n), n0 ≤ n,
w∗(a) ≥ 0, W∗0 > 0. In all experiments n = 3, but n0 varies

in each experiment depending from the condition of Theorem
4. For the fixed values of n, n0 the root of transcendental
equation R(C(y∗(Ŵ∗), Ŵ∗)) = 1 is defined numerically by the
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FIGURE 10 | (A) Case (iv). Resource densities yi(t) (i = 1,2,3). y1* is a computed equilibrium of the i-th resource, i = 1,2,3. (B) Weighted number of consumers
Ŵ(t). Ŵ∗ is a computed equilibrium of Ŵ(t).

bisection method with restrictions Ŵ∗(r−1
i βi − αi) < 1, i ∈ I+.

The equilibrium values y∗i , W∗0 , w∗(a) are defined by Eqs (11,
20, 21) respectively. The value of Ŵ∗ is used also in figures
for illustration of asymptotic convergence of trajectories to
the equilibrium.

Case (i) of Theorem 4. In the first experiment we study
the positive equilibrium with one non-depleted patch, less
active and more active depleted patches: n0 = 1, α1 < r−1

1 β1,
α2 > r−1

2 β2, α3 > r−1
3 β3. In equation R(C(y∗(Ŵ∗), Ŵ∗)) = 1

we use y∗1 > 0, y∗2 = 0, y∗3 = 0, for which Ŵ∗(r−1
1 β1 − α1) < 1,

Ŵ∗(r−1
2 β2 − α2) < 1, Ŵ∗(r−1

3 β3 − α3) < 1. The dynamics of
resource densities yi(t) (i = 1, 2, 3) and consumer weighted
quantity Ŵ(t) are shown in Figure 7. The density of first food
patch y1(t) does not evolve to the equilibrium y∗1 (curve 1 in
Figure 7A), patches y2(t) and y3(t) are not depleted (curves 2
and 3 in Figure 7A), and consumer weighted quantity Ŵ(t) does
not evolve to the equilibrium Ŵ∗ (Figure 7B), i.e., the nontrivial
equilibrium is unstable.

Case (ii) of Theorem 4. In the second experiment we study
positive equilibrium with one non-depleted patch and two
less active depleted patches with Ŵ∗ ≤ max

i∈I0

(
r−1

i βi − αi
)−1:

n0 = 1, α1 < r−1
1 β1, α2 < r−1

2 β2, α3 < r−1
3 β3. In equation

R(C(y∗(Ŵ∗), Ŵ∗)) = 1 we use y∗1 > 0, y∗2 = 0, y∗3 = 0,
for which Ŵ∗(r−1

1 β1 − α1) < 1, Ŵ∗(r−1
2 β2 − α2) < 1,

Ŵ∗(r−1
3 β3 − α3) > 1. The density of first food patch y1(t)

does not evolve to the equilibrium y∗1 (curve 1 in Figure 8A),
second patch is not depleted [y2(t), curve 2 in Figure 8A], y3(t)
converges to the trivial equilibrium and becomes depleted [curve
3 in Figure 8A], and consumer weighted quantity Ŵ(t) does not
evolve to the equilibrium Ŵ∗ (Figure 8B), i.e., the nontrivial
equilibrium of food web is unstable.

Case (iii) of Theorem 4. In the third experiment we study
the positive equilibrium with one non-depleted patch, two
less active depleted patches with Ŵ∗ > max

i∈I0

(
r−1

i βi − αi
)−1:

n0 = 1, α1 < r−1
1 β1, α2 < r−1

2 β2, α3 < r−1
3 β3. In equation

R(C(y∗(Ŵ∗), Ŵ∗)) = 1 we use y∗1 > 0, y∗2 = 0, y∗3 = 0,
for which Ŵ∗(r−1

1 β1 − α1) < 1, Ŵ∗(r−1
2 β2 − α2) > 1,

Ŵ∗(r−1
3 β3 − α3) > 1. The density of first food patch y1(t) in this

case evolves to the positive equilibrium y∗1 (curve 1 in Figure 8A),
the densities of the other patches y2(t) and y3(t) evolve to the
trivial equilibrium (y∗2 = 0, y∗3 = 0), and become depleted
(curves 2 and 3 in Figure 8A). Consumer weighted quantity
Ŵ(t) evolves to the positive equilibrium Ŵ∗ (Figure 8B), i.e.,
the nontrivial equilibrium with one non-depleted patch and two
depleted patches is locally asymptotically stable.

Case (iv) of Theorem 4. In the last fourth experiment we
study the positive equilibrium with three non-depleted patches
and nontrivial consumer population: n0 = 3, α1 < r−1

1 β1,
α2 < r−1

2 β2, α3 < r−1
3 β3. In equation R(C(y∗(Ŵ∗), Ŵ∗)) = 1

we use y∗1 > 0, y∗2 > 0, y∗3 > 0, for which Ŵ∗(r−1
1 β1 − α1) < 1,

Ŵ∗(r−1
2 β2 − α2) < 1, Ŵ∗(r−1

3 β3 − α3) < 1. The densities of
food patches yi(t) evolve to the corresponding positive equilibria
y∗i , (i = 1, 2, 3) (curves 1, 2, 3 in Figure 10A), consumer
weighted quantity Ŵ(t) evolves to the positive equilibrium
Ŵ∗ (Figure 10B), i.e., the nontrivial equilibrium with all non-
depleted patches is locally asymptotically stable.

In the third experiment the nontrivial equilibrium with
one non-depleted patch and two depleted patches (I0 6= ∅)
and in the fourth experiment the nontrivial equilibrium with
three non-depleted patches (I0 = ∅) are locally asymptotically
stable (Figures 9, 10). Overall, we can conclude that stability
indicators obtained in Theorem 3 and 4 correctly predict
the asymptotic stability or instability of trivial, semi-trivial
and non-trivial equilibria of system (1)–(5) in all numerical
experiments.

CONCLUSION AND DISCUSSION

In this work an autonomous system was studied–a resource-
consumer model in a heterogenous environment consisting of
several food patches with active resource. Food resources do

Frontiers in Ecology and Evolution | www.frontiersin.org 12 February 2021 | Volume 9 | Article 531833

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-531833 February 12, 2021 Time: 18:53 # 13

Akimenko Age-Structured Resource Consumer Model

not disperse between patches, while consumers do disperse. The
model of food resources is unstructured while the model of
consumer population is age-structured. The relationship between
the consumed food resource and consumer demographic
parameters (fertility and death rates) is modeled by means of a
calorie intake rate that describes the amount of energy obtained
by consumer at a given age from all food patches per unit
of time. In biological applications calorie intake rate can be
obtained from the observations, or foraging experiments focusing
on age-structured consumer behavior. The consumer calorie
intake rate is proportional to the saturated intake rate (where
the coefficient of saturation is a behavioral parameter of food
resource) and depends on the time period a consumer needs
to handle and digest a unit of resource (delayed parameter).
Thus, the model considered in this paper extends the classic
apparent competition models (Holt, 1984; Holt and Kotler,
1987; Holt and Lawton, 1993; Holt et al., 1994; Křivan, 2014)
to a structured consumer population with time delay and
active food resources.

All types of possible equilibria: trivial (depleted all n
resource patches and extinct consumer population), semi-trivial
(abundant all n resource patches with satiated density and
extinct consumer population), and non-trivial equilibria (food
web with at least one non-depleted patch, at most (n− 1)
depleted patches and consumer population) were studied. All
theorems used a new condition of sign-preserving partial
derivatives of calorie intake rate-dependent fertility and mortality
rates of consumer: ∂θ

∂C > 0, ∂s
∂C < 0. The trivial and semi-

trivial equilibria of the nonlinear autonomous system always
exist while the non-trivial equilibria exist if and only if the
basic reproduction number of the consumer population R = 1.
Since this condition leads actually to a complex nonlinear
equation, derivation of conditions for the existence of non-
trivial equilibria in practice is not an easy problem. For
facilitation of this problem, the additional sufficient conditions
for existence of the nontrivial equilibria were obtained in this
paper in the form of simple constraints on the coefficients of the
autonomous system.

The conditions of local asymptotic stability/instability of
trivial and semi-trivial equilibrium were formulated in terms
of the consumer’s basic reproduction number. These conditions
were derived on the basis of the perturbation theory and
linearization methods. Unfortunately, the well-known stability
indicator of equilibria of nonlinear age-structured models–partial
derivative of density-dependent basic reproduction number of
consumer population (Cushing, 1998; Akimenko and Křivan,
2018) cannot be used for stability analysis of nontrivial equilibria
of resource-consumer model with depleted patches. Instead
of it, the conditions of instability/local asymptotic stability of
nontrivial equilibria with several or without depleted resource
patches were obtained in the form of additional restrictions on
coefficients of system. As expected, the time-delay parameter, the
consumer’s digestion period does not cause local asymptotical
instabilities of consumer population at the trivial, semi-trivial or
nontrivial equilibria.

The dynamical regimes of autonomous system with
the different values of time-delay parameter were studied

in numerical experiments for illustration of the obtained
theoretical results. In the 1st and 2nd groups of experiments
(Figures 1–6) the local asymptotic stability/instability of
the trivial and semi-trivial equilibria, consumer population
outbreaks, extinct and non-extinct quasi-periodic dynamic
regimes were obtained for the different values of the time
delay parameter. The processes of resource handle and food
digestion are inherent for all biological organisms, although
the value of handling and digestion period can significantly
differ among species. Numerical experiments showed that
digestion period of generalist consumer τ does not cause the
local asymptotical instabilities or high-frequency oscillations
(deterministic chaos) of consumer population in the vicinity of
semi-trivial equilibrium.

In the 3rd and 4th groups of experiments (Figures 7–10) we
study the local asymptotic stability/instability of the nontrivial
equilibria of system with one generalist consumer and one
non-depleted and two depleted resource patches (3rd group),
three non-depleted resource patches (4th group). The numerical
results showed that if there exists the non-trivial equilibrium
positive solution of equation R(C(y∗(Ŵ∗), Ŵ∗)) = 1, which
satisfies condition Ŵ∗(r−1

i βi − αi) ≥ 1 for all depleted patches
(i ∈ I0) and Ŵ∗(r−1

i βi − αi) < 1 for all non-depleted patches
(i ∈ I+) such equilibrium is always locally asymptotically stable.
The coefficient of saturation (behavioral characteristic of a
food resource) αi plays an important role in this criterion: if
αi > r−1

i βi the corresponding i-th patch cannot be depleted in
the asymptotically stable equilibrium of a food web. Thus, the
numerical experiments illustrated and confirmed all theoretical
results obtained in paper.

The theoretical results obtained in this work can be applied,
for example, to study: (i) metapopulation dynamics that include
the prey-predator interactions (Nakazawa, 2015; Becker and Hall,
2016); (ii) desert locust–food resource population dynamics with
non-active resource (αi = 0) (Guttal et al., 2012; Akimenko and
Piou, 2018); (iii) the predator-dependent functional responses
and prey-predator interaction strengths in a natural food web in
fisheries (Essington and Hansson, 2004; Smith and Smith, 2020),
and many others.
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Křivan, V. (2003). Competitive coexistence caused by adaptive consumers. Evol.
Ecol. Res. 5, 1163–1182.
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