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Abstract
Several techniques have been proposed over the years for automatic hypocenter localization. While
those techniques have pros and cons that trade-off computational efficiency and the susceptibility
of getting trapped in local minima, an alternate approach is needed that allows robust localization
performance and holds the potential to make the elusive goal of real-time microseismic monitoring
possible. Physics-informed neural networks (PINNs) have appeared on the scene as a flexible and
versatile framework for solving partial differential equations (PDEs) along with the associated
initial or boundary conditions. We develop HypoPINN—a PINN-based inversion framework for
hypocenter localization and introduce an approximate Bayesian framework for estimating its
predictive uncertainties. This work focuses on predicting the hypocenter locations using
HypoPINN and investigates the propagation of uncertainties from the random realizations of
HypoPINN’s weights and biases using the Laplace approximation. We train HypoPINN to obtain
the optimized weights for predicting hypocenter location. Next, we approximate the covariance
matrix at the optimized HypoPINN’s weights for posterior sampling with the Laplace
approximation. The posterior samples represent various realizations of HypoPINN’s weights.
Finally, we predict the locations of the hypocenter associated with those weights’ realizations to
investigate the uncertainty propagation that comes from those realizations. We demonstrate the
features of this methodology through several numerical examples, including using the Otway
velocity model based on the Otway project in Australia.

1. Introduction

In recent years, seismicity induced by anthropogenic activities including underground mining, geothermal
exploitation, hydrofracturing, CO2 geologic sequestration, and hydrocarbon production has resulted in a
sharp increase in the number of earthquakes observed in historically quiet tectonic areas. In addition to
causing considerable economic losses, such events are increasingly becoming a threat to public safety. A
traffic light system (TLS) is typically implemented to manage and mitigate the associated hazard by reducing
or suspending operations in case of observed seismicity beyond preset thresholds [1]. The success of a TLS
protocol relies on real-time capabilities of detecting and locating these events.

Several techniques have been proposed over the years for automatic hypocenter localization (see [2] for
an overview). Early methods relied on picked arrival times and estimated the unknown source location
coordinates by using time difference as the objective function [3, 4]. These methods construct different
objective functions to obtain absolute [5] or relative [6] locations. More recent approaches use full seismic
waveforms to image the source location using a migration-type method [7–9]. Using full seismic waveforms
to locate and image microseismic events allows for an automatic process bypassing the picking procedure
that utilizes the full wavefield. However, this approach faces incredible nonlinearity due to the unknown
source locations and it also uses mainly the transmission energy, which results in poor illumination and low

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/ac94b3
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ac94b3&domain=pdf&date_stamp=2022-10-7
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6349-3103
mailto:muhammad.izzatullah@kaust.edu.sa


Mach. Learn.: Sci. Technol. 3 (2022) 045001 M Izzatullah et al

resolution. While these approaches have pros and cons that trade-off computational efficiency and the
susceptibility of getting trapped in local minima, an alternate approach is needed that allows robust
localization performance and holds the potential to make the elusive goal of real-time microseismic
monitoring possible.

The confluence of ultrafast computers, rapid advancements in machine learning algorithms, and
increasing availability of large datasets place seismology at the threshold of dramatic progress. Therefore, it is
no surprise that several localization approaches have recently been proposed to harness the potential of
supervised machine learning. These methods typically train a convolutional neural network (CNN) using
historical or synthetically generated datasets [10, 11]. Once the CNN model is trained, it can be used to infer
locations in real-time. Nevertheless, these methods typically require a huge amount of training data that may
not be readily available. More importantly, due to the black-box nature of these models, it is not easy to gain
insights into the features learned by the model.

Physics-informed neural networks (PINNs) have appeared on the scene as a flexible and versatile
framework for solving partial differential equations (PDEs), along with any initial or boundary conditions
[12]. Recently, researchers have explored the potential of PINNs as a fast travel time modeling engine for
hypocenter localization [13, 14]. However, such approaches require source-receiver pairs as an input for
PINN thus limits its applicability when the source locations are unknown. For other seismic applications,
while [15, 16] used PINNs as a solver for the wave equation [17], proposed an approach for inverting
wavefilled to retrieve the velocity model. Moreover [18], utilized PINNs to provide a framework to solve the
eikonal equation and [19] extended the framework for seismic tomography. An important component of
these solutions, especially when using the data as a boundary condition, is our confidence in their accuracy.
There has been little study of PINN accuracy as an inversion tool. Neural networks naturally embed
stochasticity through the random realization of weights and biases, thus, propagating uncertainties into its
predictive solutions [20].

The contributions of this work to the field under study are as listed below.

• Inspired by the advancement of PINN, we develop a direct inversion framework for hypocenter localization
using PINNs. Given picked arrival times for an event, we train a PINNmodel by minimizing a loss function
formed by the misfit of observed and predicted travel times and the residual of the eikonal equation and
obtain a travel time map for the entire computational domain. The hypocenter locations are then obtained
by finding the location of the minimum travel time, representing the focusing location within the domain.
As a result, we refer to this inversion framework as HypoPINN.

• We introduce an approximate Bayesian framework based on the Laplace approximation [21, 22] for estim-
ating the predictive uncertainties of HypoPINN or, simply, forward modeling uncertainty in the context of
HypoPINN. The Laplace approximation is arguably the simplest family of approximations for the intract-
able posteriors of deep neural networks. We approximate the covariance matrix at the optimized Hypo-
PINN’s weights for posterior sampling with the Laplace approximation. The posterior samples represent
various realizations of HypoPINN’s weights. Finally, we predict the locations of the hypocenter associated
with those weights’ realizations for predictive uncertainties quantification.

• We introduce a neural network architecture with an expansion-contraction design for HypoPINN in pre-
dicting the eikonal solution and localizing the hypocenter locations which provides more degrees of free-
dom in efficiently transforming the inputs (i.e. spatial coordinates) which belong to the euclidean space into
polar coordinates space which represents the traveltimes map. This architecture is intuitively inspired by the
emerging field of geometric deep learning [23].

• Weanalyze the effects of prior distribution inHypoPINN’s weights realizations to investigate the uncertainty
propagation that comes from the weights’ realizations to the HypoPINN’s solution.

The outline of the rest of the paper is as follows. First, we introduce the problem formulation of
estimating hypocenter locations through PINN, which is the basis of HypoPINN and its predictive
uncertainty studies. Next, we discuss the theoretical framework of the proposed approximate Bayesian
framework for estimating predictive uncertainties in HypoPINN based on Laplace approximation. Then, we
demonstrate the features of this methodology through several numerical examples, including using the
Otway velocity model. Finally, we discuss the limitations and possible improvements of the proposed method
before concluding the study.

2. Theoretical framework

We focus on developing a direct inversion framework for hypocenter localizations directly using PINNs by
solving the eikonal equation and investigating its predictive uncertainties. Several works have shown
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Figure 1. HypoPINN workflow for hypocenter localization and predictive uncertainty quantification: (a) training stage,
(b) inference and predictive uncertainty quantification stage.

promising results in solving the eikonal equation through PINN [18, 19, 24, 25] by leveraging the
factorization idea of eikonal equation [26]. However, this approach could not be extended to our work
because the factorized eikonal equation requires the source locations to be known. Thus, we utilize the
original eikonal equation together with the traveltime observations recorded at the surface to predict a
traveltime map and by taking its minimum, we can directly localize the hypocenter locations.

In this section, we first introduce the eikonal equation and its PINN representation for the hypocenter
localization problem. This is followed by a brief overview of PINN in the Bayesian framework and the
Laplace approximation as an approximator for the intractable posterior distribution in quantifying its
predictive uncertainty. Finally, putting these pieces together, we present the proposed algorithm for solving
the hypocenter localization problem through PINN, which we refer to as HypoPINN. The full HypoPINN’s
workflow is illustrated in figure 1.

2.1. HypoPINN for hypocenter localization
Here, we outline the HypoPINN formulation for hypocenter localization through the eikonal equation. The
eikonal equation is a non-linear, first-order, hyperbolic PDE of the form:

|∇T(x)|2 = 1

v2(x)
, ∀x ∈ Ω, (1)

where Ω is a domain in Rd with d as the space dimension, T(x) is the travel time from the point-source xs to
any point x, v(x) is the velocity defined in Ω, and∇ denotes the spatial differential operator. HypoPINN can
be formulated as an optimization problem for the learnable PINN’s parameters θ in approximating the
traveltimes and estimating the hypocenter. The loss function for solving HypoPINN can be constructed
using a mean-squared error (MSE) loss as:

L(θ) = 1

NI

∑
x∗∈I

∥|∇Tθ(x∗)|2 −
1

v2(x∗)
∥2 + 1

ND

∑
x̂∈D

∥Tθ(x̂)−T(x̂)∥2, (2)
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where Tθ(x) represents the neural networks for the eikonal solution T(x). The first term on the right side of
equation (2) imposes the validity of the eikonal equation as in equation (1) on a given set of training points
x∗ ∈ I , with NI as the number of sampling points. The second term acts as data loss on a given set of travel
time data at the receiver locations x̂ ∈ D, with ND representing the number of receivers. We minimize the
loss in equation (2) to obtain a good approximation of the eikonal solution and hypocenter location. Once
the network is trained, the solution (microseismic hypocenter location) is basically the minimum of the
computed travel time function, evaluated within the computational domain:

Tθ∗
min

=min
x̂∈Ω

{Tθ∗(x̂)}. (3)

2.2. Laplace approximation for Bayesian PINNs
Bayesian framework for PINNs can be formulated through unnormalized Bayes’ Theorem [20] which can be
evaluated up to its normalizing constant as:

p(θ|D)∝ p(D|θ)p(θ)≈ exp
(
−L(D;θ)

)
, (4)

where θ denotes the learnable PINN’s parameters and D represents the dataset associated with PINN’s
training, e.g. observed data collected by seismic stations. Bayesian framework stated above introduces the
notion of prior probability density and the likelihood function. The prior probability density p(θ) encodes
the confidence of the prior information on the unknown learnable PINN’s parameters θ, whereas the
likelihood function p(D|θ) describes the conditional probability density for the learnable PINN’s parameters
to generate observed data collected by seismic stations. Based on Bayes’ theorem, we obtain the posterior
probability density of the learnable PINN’s parameters given the observed data, p(θ|D), by combining the
prior probability density and the likelihood function. The last term in equation (4) is known as the Gibbs
distribution [27], a probability distribution which takes the form of exponential of negative loss function
L(D;θ). Due its form, we can transform the Gibbs distribution in equation (4) into a representation similar
to the loss function in a deterministic setting by reformulating it in the log-posterior as follows:

logp(θ|D)∝− logp(D|θ)− logp(θ)≈ L(D;θ). (5)

This transformation links the Bayesian framework with optimization procedure; thus, simplify the
Maximum-A-Posteriori (MAP) computation. By minimizing equation (5), we obtain the MAP solution that
we consider as the center of our Laplace approximation. The Laplace approximation uses a second-order
expansion (Taylor expansion) of L(D;θ) around θMAP to approximate p(θ|D). We consider:

L(D;θ)≈ L(D;θMAP)+
1

2
(θ− θMAP)

T
(
∇2

θL(D;θMAP)
)
(θ− θMAP), (6)

and identify the Laplace approximation for p(θ|D) as:

p(θ|D)≈N (θMAP,Σ), with Σ=−
(
∇2

θL(D;θMAP)
)−1

. (7)

Note that a naive implementation of the covariance matrix in equation (7) is infeasible, and it scales
quadratically with the number of learnable PINN’s parameters, θ. This work focuses on the diagonal
approximation for the covariance matrix. Interested readers may refer to [21] for a detailed review on the
scalable Laplace approximation for Bayesian neural networks. The diagonal approximation of the covariance
matrix based on the Fisher information matrix F can be computed efficiently using automatic differentiation.
It is simply the expectation of the squared gradients with respect to the network parameters θ:

H≈ diag(F) = diag
(
E
[
∇θL(D;θ)∇θL(D;θ)T

])
= diag

(
E
[
(∇θL(D;θ))2

])
,

where ‘diag’ extracts the diagonal of a matrix. Note that, even if the expansion in equation (6) is accurate, this
approximation will, unfortunately, place probability mass in low probability regions of the true posterior if
some of the PINN’s parameters θ exhibit high covariance. Despite the fact, it has been used successfully in
neural network weights pruning and transfer learning [28]. Based on the diagonal approximation, we can
approximate our covariance by:

Σ≈H−1 =
1

diag(F)
. (8)
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To apply the Laplace approximation for uncertainty estimation, we first minimize equation (5) to obtain
the θMAP. We can transform the loss function in equation (2) into Bayesian framework as in equation (5) by
reformulating it in the log-posterior form with a chosen log-prior distribution logp(θ) that commonly acts as
a regularizer in a deterministic setting. Next, we approximate the covariance matrix at θMAP and construct
the Laplace approximation of the posterior distribution as in equation (7). The posterior samples represent
various realizations of PINN’s weights, θ. Finally, we predict the solutions associated with those weights’
realizations θ to investigate the uncertainty propagation that comes from those realizations.

3. Numerical examples

This section demonstrates the proposed methodology on numerical examples with a vertically varying
velocity model of 2× 3 km2 that varies with depth and the Otway velocity model. In all numerical examples,
we specially crafted a neural network architecture with an expansion-contraction design for HypoPINN in
predicting the eikonal solution and localizing the hypocenter locations. The neural network contains 5 fully
connected hidden layers and 16 neurons per layer except for the third layer with 32 neurons. Intuitively, by
doubling the neurons in the middle layer provides the network with more degrees of freedom in efficiently
transforming the inputs (i.e. spatial coordinates) which belong to the euclidean space into polar coordinates
space which represents the traveltimes map. We considerMish [29] as the activation function and Adam
optimizer [30] as the optimization algorithm. The network architecture is illustrated in figure 1(a).

3.1. The vertically varying velocity model
We consider a vertically varying velocity model of 2× 3 km2 that varies with depth. The velocity at zero
depth is 2 km s−1, and it increases linearly with a gradient of 0.5 s−1. We place a point-source at (1, 1.5 km)
representing the microseismic event. The model is illustrated in figure 2(a) with the black star depicting the
point-source location. The model is discretized on a 101× 151 grid with a grid spacing of 20m along both
axes. The true traveltime map is computed analytically [31].

First, we investigate the effect of random initial weights initialization from four different prior
distributions as a motivation towards understanding the hypocenter location prediction performance and
the predictive uncertainties of HypoPINN. We consider the modified normal and uniform distributions
introduced by [32, 33] for the initial weights. We randomly sample 2500 points in the domain and collect the
travel time value at 11 receivers on the surface as data for training the HypoPINN. We minimize equation (5)
along with equation (2) as the log-likelihood term and Gaussian prior (Tikhonov regularization). We
perform the minimization for 3,000 epochs and predict the eikonal solution with the last epoch’s weights,
thus localizing the hypocenter location based on equation (3). The network took 59.93 s and
10.81microseconds on average for training and inference, respectively.

In figure 3, we observe that the microseismic localizations from the eikonal solutions visually match the
true location shown in figure 2(b) for all distributions except for the Xavier uniform prior. Its solution is
biased towards observed data on the surface. We also localize the hypocenter location by taking the location
of the eikonal solutions where its value is minimum, and relatively accurate hypocenter locations are
estimated for the three previously mentioned prior distributions as denoted by the green star in the same
figure. The hypocenter location coordinates are tabulated in table 1. Based on this experiment, we observed
the effect of random weights initialization on the HypoPINN prediction as the eikonal solutions and
hypocenter locations vary significantly with different initial weights realization. For example, the losses
history in figure 4 for all the initial weights are showing convergence. Although the initial weights sampled
from Xavier uniform distribution recorded the lowest total loss value, it failed to predict the eikonal solution
correctly, thus localizing the hypocenter at the wrong location. This signifies the ill-posedness of this
problem; HypoPINN with such prior weight distribution leads the training process to a bad local minimum,
which belongs to the null space of the HypoPINN’s solution space despite having the lowest total loss
value.

Next, we repeat the experiment to study the HypoPINN’s predictive uncertainties based on the Laplace
approximation. Based on previous results, we consider Kaiming normal distribution as the prior
distribution, and we initialize our initial weights by sampling from it. Similarly, in figure 5(a), we observe
that the eikonal solution and its hypocenter location visually matched the analytical one. Based on this result,
we take the last epoch’s weights as our θMAP for the uncertainty analysis using the Laplace approximation.

To study the uncertainties propagations from the HypoPINN’s weights to the predictive solution, we
construct the Laplace approximation to the posterior distribution as in equation (7). This work considers the
diagonal approximation of the covariance matrix described in the previous section with 2737 learnable
network parameters. With this approximation, we sample 1000 weights’ realizations and perform the eikonal
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Figure 2. Random weights initializations example: (a) vertically varying velocity model, (b) true eikonal solution, (c) estimated
hypocenter locations using HypoPINN for four different weights initializations sampled from the selected prior distributions. The
black star and white triangles denote the true source and receiver locations.

Figure 3. Random weights initializations example: Reconstructed eikonal solution for four different initial weights initialization
sampled from (a) Kaiming normal distribution, (b) Kaiming uniform distribution, (c) Xavier normal distribution, and (d) Xavier
uniform distribution. There are two stars depicting the true (black) and estimated (green) locations of the microseismic event,
and in some cases they overlap.

solution predictions by realizing HypoPINN with those respective weights. Based on those realizations, we
have 1000 predicted eikonal solutions, and we obtain the predicted hypocenter locations from those
solutions. The results for this predictive uncertainty are illustrated in figure 5(b) and table 2. We observe that
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Table 1. Random weights initializations example: hypocenter coordinates for four different initial weights initialization.

Prior weights initialization Depth (km) Lateral (km)

Truth 1.000 1.500
Kaiming Normal 1.000 1.500
Kaiming Uniform 1.000 1.520
Xavier Normal 1.060 1.500
Xavier Uniform 0.000 1.500

Figure 4. Random weights initializations example: convergence history of (a) data loss, (b) PDE loss, (c) total loss.

the predictions of the eikonal solution and the hypocenter locations vary significantly with different
HypoPINN’s weights realization, as shown in the previous example. This shows that the uncertainty in the
HypoPINN’s weights propagates into the predictive solution and significantly influences the prediction. In
figure 5(b), we also observe the uncertainty of the hypocenter is larger in the depth direction as we use surface
recordings. However, the predictive uncertainty depends on the loss landscape of the hypoPINN. A different
loss landscape where the MAP solution lands will give a significantly different predictive uncertainty. For
example, we could observe that several predicted hypocenter locations are completely far from the true
location and no longer reflect the physical constraint. This shows us that the predictive uncertainty is
sensitive to the hypoPINN’s loss landscape. Interested readers may refer to [34, 35] to learn more about the
loss landscape of neural networks and its effects on the network’s predictive uncertainties. The examples
shown here highlight critical features of this predictive uncertainty on the seismic hypocenter location.

3.2. Otway velocity model
This example considers the Otway velocity model which belongs to Stage 2C of the Otway project by
CO2CRC Limited in Australia with 1.28 km depth and extended laterally for 1.70 km [36]. Multiple
point-source locations at depth and lateral positions ranging from (0.7, 1.0 km), (0.75, 1.1 km), and (0.65,
0.9 km) are considered, respectively. The model is illustrated in figure 6 with the black stars depicting the
point-source locations. The model is discretised on a 246× 305 grid with a grid spacing of 8m along both
axes. We use the Fast Marching Method [37] to compute the eikonal solutions for each source location. The
observed data are obtained from 6 regularly spaced receivers at the surface of the model.

For each source location in the model, an independent HypoPINN network with 2737 learnable network
parameters is trained to estimate the hypocenter locations. The initial HypoPINN’s weights are initialized by
sampling from the Kaiming normal distribution. We randomly sample 5000 points in the domain for
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Figure 5. Predictive uncertainty of the hypocenter location associated with weights’ realizations θ from the Laplace
approximation for vertically varying velocity model. (a) The reconstructed eikonal solution. The black and green stars denote the
true source and the estimated θMAP hypocenter locations, respectively. (b) The locations of hypocenter associated with 1000 θ
realizations from the Laplace approximation denoted by green stars. (c) Convergence history of HypoPINN’s loss.

Table 2. Statistics of predictive uncertainty of the hypocenter location associated with weights’ realizations θ from the Laplace
approximation for vertically varying velocity model.

Statistics Depth (km) Lateral (km)

Truth 1.000 1.500
Mean/MAP 1.015 1.500
Standard deviation 0.127 0.145

training the HypoPINN. Similar to the previous example, we minimize equation (5) with equation (2) as the
log-likelihood term and the Gaussian prior (Tikhonov regularization). We perform the minimization for
3000 epochs and consider the last epoch’s weights as θMAP for the eikonal solution prediction, thus,
estimating the hypocenter locations. The network took 60.52 s and 45.82µs on average for training and
inference, respectively. The convergence of HypoPINN’s training for all three scenarios is shown in figure 7.
Also, in figure 8, overall predictions of eikonal solutions and the hypocenter locations are relatively accurate
except for the slight deviation observed in figure 8(d) for the second scenario.

We proceed with the predictive uncertainties study by constructing the Laplace approximation to the
posterior distribution as in equation (7) independently for each scenario in this example. Similar to the
previous example, we consider the diagonal approximation of the covariance matrix for the Laplace
approximation around the θMAP. We sample 1000 weights’ realizations and perform the eikonal solution
predictions by realizing HypoPINN with those weights for each scenario. The statistics of predictive
uncertainty of the hypocenter location are tabulated in table 3. For the first and second scenarios in
figures 9(b) and (c), we observe the uncertainty of the hypocenter is larger in the depth direction. Yet, in the
second scenario, the uncertainty of the hypocenter is biased towards deeper depth due to the inaccurate
prediction of its eikonal solution and hypocenter location. In the third scenario, as depicted in figure 9(d), we
observe the predictive uncertainty for the hypocenter locations is well-constrained in depth and the lateral
direction. As discussed earlier in the previous example, the predictive uncertainty of HypoPINN depends on
the loss landscape surrounding the MAP solution location. This example demonstrates this phenomenon
through three independent HypoPINN training for three different source locations. Nevertheless, with a
limited number of observed data available and the usage of surface recordings, HypoPINN can recover
relatively accurate prediction of the eikonal solution and its hypocenter locations with well-defined
predictive uncertainty.

8
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Figure 6. The Otway velocity model for hypocenter locations estimation. The black stars denote three different true source
locations.

Figure 7. The convergence history of HypoPINN’s training loss for three different source locations. HypoPINN is trained
independently for each source location. (a) First source location at 0.7 km depth and 1.0 km lateral. (b) Second source location is
at 0.75 km depth and 1.1 km lateral. (c) Third source location at 0.65 km depth and 0.9 km lateral.

4. Discussion

This work focuses on developing an inversion framework for hypocenter localizations directly using PINNs
and investigating its predictive uncertainties or, simply, forward modeling uncertainties in the context of
HypoPINN. This predictive uncertainty is different from the physical model uncertainty, in which the
quantity of interest is the physical quantity, e.g. hypocenter locations, velocity, etc. Our quantity of interest
here is the PINN’s network parameters θ. In the numerical examples, we demonstrated the efficacy of the
proposed methodology in obtaining robust hypocenter location. However, localizing hypocenter locations
alone is insufficient as many factors influence the predictive uncertainty of a neural network; thus,
representing uncertainty and understanding its source is crucial for decision-making. This discussion will
generally focus on the challenges and limitations of HypoPINN in localizing hypocenter locations and
Laplace approximation in representing its predictive uncertainties.

4.1. Factored vs. unfactored eikonal equation for HypoPINN
Solving the eikonal equation using PINN was first introduced by [18] where the authors leveraged the
factored eikonal equation [26] to avoid the singularity due to the point source. Formulating the problem as
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Figure 8. Reconstructed eikonal solution for three different source locations for the Otway velocity model. (a), (c), (d) True
eikonal solution obtained through fast marching method, and (b), (d), (e) reconstructed eikonal solution using HypoPINN for
source locations at depth and lateral positions of (0.7, 1.0 km), (0.75, 1.1 km), and (0.65, 0.9 km), respectively. The black and
green stars denote the true and estimated hypocenter locations, respectively.

such constrains the null space and regulates the ill-posedness of a neural network as it only requires learning
a scaling factor. Also, the factored eikonal formulation provides a priori information regarding the geometry
of the traveltime as an assistant to the assigned neural network to learn and solve the eikonal equation
accurately. However, this approach requires the source locations to be known, limiting its applicability in
solving the hypocenter location problem.

HypoPINN is leveraging the unfactored or original eikonal equation in solving the hypocenter locations
estimation. The main challenge for PINN in solving an eikonal equation and thus estimating hypocenter
locations is the need to learn the eikonal equation as a whole by optimizing a large unconstrained solution
space due to no prior information in assisting its learning. This makes the neural network learning process
ill-posed as it is limited by large null-space solutions. This phenomenon is observed in our first numerical
example where HypoPINN failed to predict the eikonal solution for the initial weights sampled from Xavier
uniform distribution despite its loss history showing convergence. Nevertheless, these challenges can be
alleviated by several strategies such as designing a task-specific network architecture, different initial weights’
prior distribution, optimal hyperparameters tuning, etc. However, such strategies will influence the neural
network’s loss landscape, thus affecting its predictive uncertainties [34, 35, 38].
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Table 3. Statistics of predictive uncertainty of the hypocenter location associated with weights’ realizations θ from the Laplace
approximation for Otway velocity model. The coordinates are presented in (depth, lateral) format.

Source location Truth (km) Mean/MAP (km) Std (km)

1 (0.700, 1.000) (0.705, 1.015) (0.033, 0.032)
2 (0.750, 1.100) (0.820, 1.082) (0.033, 0.028)
3 (0.650, 0.900) (0.669, 0.902) (0.024, 0.028)

Figure 9. Predictive uncertainty of the hypocenter location associated with weights’ realizations θ from Laplace approximation for
Otway velocity model. (a) The estimated θMAP hypocenter locations in comparison to the true ones for three different source
locations. (b), (c), (d) The locations of hypocenter associated with 1000 θ realizations from the Laplace approximation denoted
by green stars for source locations at depth and lateral positions of (0.7, 1.0 km), (0.75, 1.1 km), and (0.65, 0.9 km), respectively.

4.2. Predictive uncertainties estimation with Laplace approximation
Laplace approximation is arguably the simplest family of approximations for the intractable posteriors of
deep neural networks. It forms a Gaussian approximation to the exact posterior. Its mean equals the MAP
estimate of a neural network, and its covariance equals the negative inverse Hessian (i.e. approximation
thereof) of the loss functions evaluated at the MAP estimate. Due to its simplicity, the Laplace approximation
can be applied to any pre-trained neural network in a cost-efficient post hoc manner. The main ingredient of
the Laplace approximation is its covariance estimation, and there are various approaches to approximate the
covariance [21, 22]. A good covariance approximation is important in predicting the uncertainty embedded
in the neural network training as it affects the quality of uncertainty representation. However, good
covariance approximation is commonly computationally limited by the size of learnable network parameters.
This work considers the diagonal approximation, which is the simplest approximation approach in studying
the HypoPINN’s predictive uncertainties. Thus, such representation of uncertainties might be either under-
or over-estimated. Also, Laplace approximation relies on crude approximations of the posterior distribution
as the posterior is intractable due to the neural networks’ size and nonlinearity.

4.3. HypoPINN for real-timemicroseismic monitoring
To have an ability to perform real-time analysis giving an upper hand in prompt decision making in
real-time microseismic monitoring. However, obtaining such an ability is far from trivial. To realize the goals
of real-time microseismic monitoring, the methodology and its algorithm should be computationally
efficient and robust in handling large volumes of data with a poor signal-to-noise ratio (SNR). To make
matter worse, a poor-calibrated real-time velocity model induces errors that are carried forward to the
hypocenter locations detection; thus, limiting the possibility of real-time microseismic monitoring.

HypoPINN is the first step in achieving real-time microseismic monitoring. However, the main
limitation is it assumes the velocity model is accurate. This assumption is critical as an accurate velocity
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model is practically hard to achieve. Nevertheless, as a proof of concept, HypoPINN has shown
computational efficiency in locating the hypocenter locations accurately throughout the numerical examples.
There are two key unified advancements to alleviate this limitation in realizing real-time microseismic
monitoring. First, to unify the hypocenter localization and velocity model reconstruction processes
simultaneously, a bi-networks architecture similar to [25] could be introduced. Although this approach looks
promising, the main challenge of this bi-networks approach is that the learning process becomes strongly
ill-posed as it is limited by large null-space solutions that require both networks to compensate each other to
settle in a sweet-spot in the solution space—similar to training a generative adversarial network (GAN) [39].
Secondly, the Bayesian framework [40] plays a major role in practically advancing HypoPINN for real-time
microseismic monitoring through the concept of knowledge-adaptation priors [41], where the posterior
distribution of HypoPINN at the previous time-frame can be re-implemented as a prior distribution for the
later time-frame training. This concept is similar in spirit to data assimilation in weather prediction [42].
Note that, knowledge-adaptation priors is different from transfer learning through the usage of distributions.
However, this approach is limited only to the exponential family of distributions due to its parametric
nature. The advancements discussed here will be our main focus in the future in achieving the
aforementioned objectives.

5. Conclusion

We developed HypoPINN—a PINN-based algorithm for hypocenter localization. We trained a neural
network by minimizing a loss function formed by the misfit of the observed and predicted traveltimes and
the eikonal residual term. Given picked arrival times for an event, this provides predicted traveltimes in the
entire computational domain. The hypocenter location is then given by the location of the minimum travel
time. We also introduced an approximate Bayesian framework for estimating predictive uncertainty or,
simply, forward modeling uncertainty in the context of HypoPINN. We investigated the uncertainties
propagation from the random realizations of HypoPINN’s weights and biases using the Laplace
approximation to the predicted solutions. This generally opens up new pathways in investigating the training
dynamics of PINN, especially in the PINN’s weights initialization to obtain a correct and robust solution.
Through numerical examples, we demonstrated the efficacy of the proposed methodology in obtaining
robust hypocenter locations equipped with predictive uncertainty estimation, even in the case where sparse
traveltime observations are available. Through the Bayesian framework, a trained neural network and its
covariance could be used as a prior distribution in obtaining new hypocenter locations in almost real-time.
This allows for computationally efficient and robust hypocenter localization that may enable the goal of
real-time microseismic monitoring.
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