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Abstract
Wildland fire decision support systems require accurate predictions of wildland fire spread. Fuel
moisture content (FMC) is one of the important parameters controlling the rate of spread of
wildland fire. However, dead FMC measurements are provided by a relatively sparse network of
remote automatic weather stations (RAWS), while live FMC is relatively infrequently measured
manually. We developed a high resolution, gridded, real-time FMC data sets that did not
previously exist for assimilation into operational wildland fire prediction systems based on ML. We
used surface observations of live and dead FMC to train machine learning models to estimate FMC
based on satellite observations. Moderate Resolution Imaging Spectrometer Terra and Aqua
reflectances are used to predict the live and dead FMC measured by the Wildland Fire Assessment
System and RAWS). We evaluate multiple machine learning methods including multiple linear
regression, random forests (RFs), gradient boosted regression and artificial neural networks. The
models are trained to learn the relationships between the satellite reflectances, surface weather and
soil moisture observations and FMC. After training on data corresponding to the temporally and
spatially nearest grid points to the irregularly spaced surface FMC observations, the machine
learning models could be applied to all grid cells for a gridded product over the Conterminous
United States (CONUS). The results show generally that the rule-based approaches have the lowest
errors likely due to the sharp decision boundaries among the predictors, and the RF approach that
utilizes bagging to avoid over-fitting has the lowest error on the test dataset. The errors are typically
between 25%−33% the typical variability of the FMC data, which indicate the skill of the RF in
estimating the FMC based on satellite data and surface characteristics. The FMC gridded product
based on the RF runs operationally daily over CONUS and can be assimilated into WRF-Fire for
more accurate wildland fire spread predictions.

1. Introduction

Wildland fire modeling is a growing area of research and development in recent years due to the multitude of
historical fires in many countries including Brazil, Greece, Australia and United States. Atmospheric
conditions, fuel type and load, as well as fuel moisture content are all important factors affecting the rate of
spread from wildland fires. In this study, we focus on improving estimates of fuel moisture content for
integration into a wildland fire spread model, specifically the Weather Research and Forecast (WRF)-Fire
model [1].

The WRF-Fire model attempts to achieve an optimal balance between physical processes that control the
wildfire fire spread and the interaction with the atmosphere with the need for real-time simulations, which is
an advancement to the WRF model [2]. WRF-Fire [1] is a coupled wildland fire spread that advances
standard numerical weather prediction (NWP) inputs by assimilating fuel data and includes
parameterizations of both biomass burning processes and rate of fire spread. Previous work has shown the
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sensitivity of the WRF-Fire model to the fuel moisture content. Fuel moisture content is typically two
separate measurements, the dead and live fuel moisture contents (LFMCs), which are combined to derive the
fuel moisture content used in the Rothermel fire spread model [3] used within WRF-Fire with the level set
approach to tracking the fire front [4].

Currently, in the United States the National Fuel Moisture Database [5], which is available via the
Wildland Fire Assessment System (WFAS), provides information about FMC based on interpolation of
sparse manual sampling of LFMC and surface observations from the Remote Automated Weather Stations
(RAWS). These interpolations can produce very large errors due to the fact that each RAWS and manual
sample may be located in an area of different geography, fuel type or climatology, which is especially true in
mountainous areas of the western United States.

One way to improve the resolution of estimates is by utilizing information provided by remote sensing,
or satellite-based observations. In this study we use remote sensing data along with surface data and
estimates from NWP models to build a predictive relationship to the fuel moisture content in order to better
estimate the fuel moisture content in areas that may be far from the nearest observation site. Other studies
have utilized machine learning on remote sensing data to improved gridded representation of surface or
subsurface data. In [6], a random forest (RF) and gradient boosted are used to improve a version of the
SoilGrids system at 250 m resolution. A genetic programming models was used in [7] to derive
spatiotemporal patterns of phosphorus concentrations in a coastal bay with MODIS data. In [8], support
vector machines were used to generate soil moisture estimates using remote sensing data for the Lower
Colorado River Basin in the Western United States. A machine learning approach to predict drought
conditions at high resolution in ungauged areas based on both climate forecasts and remote sesnsing data was
used in [9]. Artificial neural networks (ANNs) and multiple linear regression were used in [10] to predict
moisture content indices for a temperature humid forecast in northesatern Iran based on MODIS data.

This paper is organized as follows: section 2 describes the datasets, including the fuel moisture content,
satellite data, WRF-Hydro/National Water Model (NWM) and derived predictors. Section 3 describes the
system methodology including training, testing and validation and an explanation of the machine learning
models. Section 4 presents the results of the machine learning models compared to multiple linear
regression. The final section 5 discusses the results, interpretability and describes the operational fuel
moisture content system, including where the data and maps are publicaly available.

2. Data

There are three different datasets that are merged together in this study. The predictands are the LFMC and
the dead fuel moisture content (DFMC) which come from surface observations. The satellite data is from the
polar orbiting MODIS Aqua and Terra satellites. Surface characteristics and observations come from the
WRF-Hydro/NWM [11, 12]. These datasets are described in more detail in sub-sections 2.1-2.3. Additional
derived variables are described in sub-section 2.4.

2.1. Fuel moisture content
In situ observations of DFMC are provided by RAWS locations, which are available at over 2000 sites over the
conterminous United States (CONUS) [13]. The DFMC is provided for non-living fuels of different class
sizes based on how long it typically takes that type of material to dry; however, in this study we evaluate 10-h
DFMC. The DFMC observations are provided hourly by automated surface observations stations. The
LFMC observations are measured for living fuels on a species by species basis such as pine, oak, aspen, etc.
These observations are collected infrequently, every few days and in general only during a fire season and can
be accessed through daily by the US Wildland WFAS. The LFMC is determined by weighing the materials
before and after daying them in an oven [14]. We use the LFMC as a universal measure of all living fuels
dryness. It is important to note that LFMC observations can be much greater than 100% when there is more
water weight to a fuel than the plant material.

2.2. Satellite data
The satellite data used in this study are from the Moderate Resolution Imaging Spectroradiometer (MODIS),
which is an instrument on board the NASA Aqua and Terra satellites. Terra passes from the north to the
south during the morning hours (typically around 10:30AM local time in the USA) while Aqua passes from
south to north over the equater in the afternoon (typically around 1:30PM local time in the USA). Our
analysis reads in the data at 1-km resolution over the CONUS for surface reflectance (MOD09, MYD09),
MODIS cloud mask (MOD35, MYD35), and land surface temperature (MOD11, MYD11). For training, the
surface reflectance bands (1–7) are included if data is available for a given grid cell and if there are clouds
present, then the previous day’s reflectances are persistented in a real-time forecasting environment. More
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Table 1. List of predictors by data source.

MODIS WRF-Hydro Derived

Band 1 Soil Saturation X-Slope
Band 2 Accumulated Evapotranspiration Y-Slope
Band 3 Land Use Category Northwest
Band 4 Elevation Southwest
Band 5 East
Band 6
Band 7
Land Surface Temperature

details about the surface reflectance products can be found in [15, 16]. The surface reflectance values assume
no atmospheric scattering or absorption and atmospheric corrections are applied to the MODIS radiances to
produce surface reflectance fields in seven bands: Band 1 (620–670 nm), 2 (841–876 nm), 3 (459–479),
4 (545–565 nm), 5 (1230–1250 nm), 6 (1628–1652 nm), and 7 (2105–2155 nm). The bands provide insight
into the representation of the surface with the GOES channels representing differences in soil or vegetaton,
green or brown vegetation, leaf or canopy differences, snow or land properties. Specifically, bands 1, 4 and 3
represent red, green and blue channels that can help identify both the type of surface (land vs water) and the
dryness (green or wet vs brown or dry). In addition to the surface reflectances we also utilize the surface
temperature data product to be used as a predictor in the machine learning models [17]. The land surface
temperature can add predictive information on seasonality, the rate of drying, and climate or agricultural
zones.

2.3. WRF-Hydro/NationalWater Model (NWM)
In order to capture the impact of soil saturation and plant dynamics on the FMC estimation, we utilize
inputs into NWM Implementation of WRF-Hydro [18]. The NWM became operational in August 2016 to
address the needs and applications of the water management community. In this study we utilize three
predictor variables from the NWM: accumulated total evapotranspiration, soil moisture content and land
use category. Evapotranspiration measures the amount of water transferred from the land to the atmosphere
via evaporation and transpiration from plants. The volumetric soil moisture content (i.e. soil saturation) is
averaged over all layers to the depth of 2 m and quantifies the amount of water in the soil, which provides
additional information on the ability of a plant to maintain a fuel moisture content in relatively dry
atmospheric conditions. The elevation used by WRF and the land use category, which is from the United
States Geological Survey (USGS) Landuse product as input into WRF, are used as predictors [19].

2.4. Derived predictors
The final predictors used as inputs to the machine learning model were derived to capture the affect of
surface characteristics. In addition to using the elevation as a predictor, the slope over a one-kilometer grid
cell in the meriodional (y) and zonal (x) directions are computed and used as predictors. The slope can help
characterize the effect of solar radiation and the rate of drying for living and non-living plant material. The
dataset also included predictors for regions that were one-hot encoded to capture the predictability of the
region in the US that the data was in: Northwest, Southwest, or East as shown in figure 1. The final list of
predictors is detailed in table 1.

After joining the data together, we performed a correlation heatmap analysis to determine the collinearity
among the predictors and with the predictands (LFMC, figure 2; DFMC, figure 3). Here, we can see that
generally the reflectance bands are positively correlated (blue) with each other, as expected, while most other
predictors have correlations close to zero. The LFMC has mostly low correlations with each of the predictors,
which is also true for the DFMC with each of the predictors. The strongest negative correlation is with the
elevation predictor that makes physical sense as we would expect generally drier conditions at higher
altitudes. It is also evident that the reflectance bands have a slightly negative correlation with the DFMC but
near zero to slightly positive correlation with the LFMC. Note that the land use category is a categorical
variable, which makes interpretability of the pearson correlation coefficient more difficult than a continuous
variable.
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Figure 1. Regions of the USA used as predictors (Northwest, Southwest and East).

Figure 2. Correlation heatmap for the LFMC prediction.

3. Methodology

In order to assemble datasets for training machine learning models to predict fuel moisture content, a large
volume of disparate data was combined into a flattened table format that machine learning code libraries,
such as scikit-learn, can ingest.

3.1. Dataset generation
The data included approximately 2 TB of MODIS reflectance data from the Terra and Aqua satellites and
2 TB of WRF-Hydro model data, both covering a 1 km resolution CONUS grid. The number of WFAS
observation locations was approximately 500 and RAWS was approximately 1500 as shown in figure 4. An
interpolation procedure was performed where the observed fuel moisture values from RAWS or WFAS were
matched with their nearest MODIS grid cell in time and space and then inverse distance weighted
interpolation was performed for all surrounding grid cells within a radius of 2.5 km. This interpolation
procedure generates a larger training dataset since the set of matched observation samples and MODIS
reflectance pairs is small for any given day. The optimal radius was determined using cross validation on a
subset of the training data over Colorado, United States, where there were sufficient observation sites. Next,
the WRF-Hydro data was interpolated to the same grid as the MODIS data using a simple nearest neighbor
interpolation, which was required due to coordinate system differences. The flattened WRF-Hydro variables
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Figure 3. Correlation heatmap for the DFMC prediction.

Figure 4. On the left, Live Fuel Moisture Content (LFMC) observation sites from the WFAS network, and on the right the Dead
Fuel Moisture Content (DFMC) observation network from RAWS.

were joined to the existing training set consisting of target fuel moisture values, MODIS reflectance values,
and band ratio indices. Finally, ancillary data such as elevation and land use category, for the 1 km CONUS
grid were joined with the other data rows at training time.

3.1.1. Hardware and software.
Python 3 was used to perform these calculations and generate the resulting training data sets. Each of the
grid files for the WRF-Hydro and MODIS satellites contains on the order of 18× 106 grid cells which placed
burden on the CPU, memory, and disk of the system the data processing was being performed on. For this
reason, the compute capabilities of the US National Center for Atmospheric Research (NCAR) Casper cluster
supercomputer were utilized in the data processing and storage steps. Whenever possible precomputed
interpolations were used however, the interpolation of nearby grid cells to RAWS or WFAS stations is
dynamic due to the fact that available stations change over time likely due to campaign field station use and
power or communication issues. The use of Python 3 meant that computation ran more slowly than with a
language like C++; however, it also allowed rapid software development and testing. To generate the
CONUS dataset, the Python multiprocessing library was used to parallelize code and utilize available cluster
node cores on Casper. This was combined with the used of the Python Numba just-in-time compiler library
[20] which helped speed up the computation needed to perform interpolation, data joining, and spatial
operations. The results were not yet satisfactory since large chunks of the input data was being stored in
memory at once burdening the system and heavy utilization of cluster CPU cores involved manual code
restructuring to utilize the multiprocessing library.

For these reasons the Dask parallelization library [21] was used to replace many Numpy and Pandas
functions with analog parallel functions. Dask implements blocked algorithms that break up large arrays or
data frames into many smaller structures that are scheduled on available CPU cores to perform operations
on a subset of the data. Blocked algorithms compute a large result like ‘take the sum of these trillion
numbers’ with many small computations like ‘break up the trillion numbers into one million chunks of size
one million, sum each chunk, then sum all of the intermediate sums’ [22]. Although Dask is not a complete
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Figure 5. Training system design with the first four boxes on the left indicating the different data sources to merge into one dataset
that is then subset to the nearest grid cells to the observation locations. This is then split into training, testing and validation
datasets.

parallel replacement for all Numpy and Pandas operations, utilizing available functions in select code
hotspots allowed harnessing more cluster processor cores, reduced wall clock time significantly, and allowed
files larger than available RAM to be loaded and processed. Dask algorithms were the most efficient in parts
of the computation similar to the parallel sum example previously mentioned where many independent
computations can be completed at once followed by a simple reduction operation at the end of the
computation. Joining a large number of flattened WRF-Hydro variable rows with existing MODIS and fuel
moisture rows on location and time fields was still the main code bottleneck even with the use of Dask
DataFrame and its corresponding parallel operations.

3.2. Training, testing and validation design
The data sources had different time intervals, grid resolutions and time of data retrievals; therefore, the first
step in the dataset creation was to integrate all data sources as illustrated in figure 5. The first four boxes on
the left indicate the different data sources to merge into one dataset that is then subset to the nearest grid cells
to the observation locations. This is then split into training, testing and validation datasets. Ultimately, the
FMC prediction models were to be used for a verification of the WRF-Fire coupled atmosphere wildfire
spread model during fires in 2016. Thus, a specific subset of available days in the data between May and
November 2016 were subset as the independent test dataset to quantify operational performance. These 25 d
occurred in June, July, August, September and October. The remaining days were subset into training and
validation. In order to avoid over-training to observation location specific biases, we split the data randomly
by site into 80% training and 20% validation where each cluster of grid cells within 2.5-km of an observation
location was considered one site.

3.3. Machine learning models
We test multiple machine learning methods in order to determine the optimal method to use in the real-time
FMC prediction system.

3.3.1. Multiple linear regression.
Multiple Linear Regression (MLR) is a generalized form of linear regression with more than one predictor
variable [23]. MLR is represented by equation (1) where y′is the predictand, which in this case is the DFMC
or LFMC, b0 is the intercept, bk is the coefficient for each predictor xk, and K is the number of predictors.

y′ = b0 + b1x1 + b2x2 + . . .+ bKxK (1)

Each of the regression coefficients are calculated by minimizing the sum of squared residuals through
simultaneously solving K+ 1 equations for each of the regression coefficients and b0 in equation (1). MLR
assumes that the predictand is a linear combination of each of the regression coefficients and predictor
variables, and will not capture non-linear relationships between a predictor and the predictand unless the
predictor data is transformed. MLR also assumes homoscedasticity, which is not entirely correct in
predicting FMC since there is a minimum value (0%) and typically higher variance with higher FMC values.
Here, we use MLR as a baseline technique since it models the linear relationships between the predictors and
the predictand. It is important to note that the land use category is a categorical variable, which is not readily
interpretable for MLR. We did not transform the categorical variable so that the predictors were consistent
across our methods tested.
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3.3.2. Random forest.
The RF algorithm has grown in popularity in recent years due to its interpretability and its general ability to
avoid over-fitting. RFs are a combination of a specified number of decision trees [24]. Decision trees are a
rule-based technique where the entropy of the target and the entropy of each branch based on predictor
values are calculated. The difference between the entropy of the target and the entropy of the branch is the
information gain. The decision tree starts with creating a rule to branch the tree based on the highest
information gain and proceeds until the final branch has an entropy equal to 0 or reaching a rule for
stopping such as max depth, which is the final leaf node. The final prediction is the mean of the instances in
the final leaf node for an instance that follows the rules of the branches down to the final leaf. While the RF
performs well for interpolating, it does not extrapolate due to the mean value for the training data being used
as the prediction in the final leaves of the trees. The RF specifically handicaps each tree in the forest with a
subset of the available predictors and the available training data; however, by taking an ensemble average of
the prediction from each tree in the forest the model tends to avoid over-fitting and having a lower error on
average than any tree in the forest. The optimal configuration of the RF for the DFMC prediction, as
determined by the lowest error on the test dataset, had 250 trees, 25 minimum samples per split and 25
minimum samples per leaf. For the LFMC prediction, the RF was similar except 1000 trees were used.

3.3.3. Gradient boosted regression.
Gradient boosted regression (GBR) is similar to the RF in that it is fundamentally based on decision trees.
The GBR tree works by building regression trees sequentially, rather than independently like the RF. Each
sequential tree is trained to predict the residual of the previous tree until the mean residual no longer
decreases or the maximum number of trees is reached. The RF and the GBR techniques are both
implemented from Python’s Scikit-Learn library [25]. The GBR configuration used for the DFMC prediction
had 500 trees, a maximum depth of 12, 100 minimum samples per split and a learning rate of 0.3. The LFMC
had the same configuration except a maximum tree depth of 8. The differences between RF and GBR are
further discussed in sections 4 and 5.

3.3.4. Artificial neural network.
The ANN used here is a multi-layer perceptron trained with backpropagation [26, 27]. The multi-layer
perceptron was modelled after how the neurons in the human brain work, with input data being fed into
neurons that adjust parameters to output a learned value. Activation functions are used to determine the
output of a neuron where more activated neurons have more relevance for the model’s prediction. The
training process iteratively adjusts the weights and biases until the error is minimized or the number of
training iterations, or epochs, is reached. The model used here in the Python TensorFlow Keras model [28]
built sequentially with two hidden layers of 10 neurons each and 200 training epochs for the DFMC
prediction and 500 training epochs for the LFMC prediction. The configuration of the ANN approach was
determined based on a sensitivity study performing a manual grid search of candidate configurations. The
number of layers and neurons was chosen as the configuration that had the lowest error on the sensitivity
study test set while minimizing difference between the sensitivity training and testing error.

4. Results

The results of the machine learning methods are quantified on the training and testing datasets where the
testing dataset includes all locations for 25 d in 2016. The results for the DFMC predictions are shown in
table 2. The RF method produces the lowest mean absolute error (MAE) on the test datasets for both Aqua
and Terra satellites while maintaining a small difference between the training and testing errors. The GBR
technique and the ANN both perform considerably better than the MLR method, which indicates that the
relationships between the predictors is non-linear. This also provides evidence that rule based techniques
such as the RF and GBR perform best here because there may be distinct decision boundaries in the
predictors, such as the predictors with fuel type and climatology information. Note that the mean value of
the DFMC across all locations was 9.4% and the standard deviation was 4.5%, which means the RF errors are
approximately 33% of the value of the standard deviation.

The results for the LFMC prediction show a similar order of skill for the machine learning methods, with
the RF producing the lowest MAEs on the test data. The results for the LFMC predictions are shown in
table 3. The GBR technique and the ANN both perform considerably better than the MLR method, which
indicates that the relationships between the predictors is non-linear. This also provides evidence that rule
based techniques such as the RF and GBR perform best here where there may be distinct decision boundaries
in the predictors, such as the predictors with fuel type and climatology information. In order to put these
errors into perspective, the mean value of the LFMC across all locations was 94.8% and the standard
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Table 2.Model evaluation of the machine learning techniques for predicting DFMC. The RF has the lowest mean absolute error on the
test dataset while maintaining minimal difference between training and testing.

Aqua Terra

Method Train Test Train Test

MLR 2.37% 2.36% 3.28% 3.27%
ANN 1.95% 1.94% 2.65% 2.64%
GBR 1.40% 1.73% 1.97% 2.33%
RF 1.30% 1.56% 1.82% 2.14%

Table 3.Model Evaluation of the machine learning techniques for predicting LFMC. Similar to the DFMC prediction, the RF has the
lowest mean absolute error on the test dataset while maintaining minimal difference between training and testing.

Aqua Terra

Method Train Test Train Test

MLR 30.97% 30.37% 30.30% 30.39%
ANN 28.38% 28.58% 27.15% 27.76%
GBR 19.59% 23.87% 18.28% 23.56%
RF 18.97% 21.92% 19.28% 22.06%

Table 4. Predictor importance, as a percentage, for the RF method predicting DFMC on the Terra satellite dataset.

DFMC Predictor (CONUS, Terra) Importance

Land Surface Temperature 40%
Elevation 15%
Soil Saturation All Layers 7%
Accumulated Evapotranspiration 7%
Band 7 5%
East Region 4%
Band 2 3%
East West Slope 3%
North South Slope 3%
Band 1 2%
Band 3 2%
Band 5 2%
Band 6 2%
Band 4 1%
Land Use Category 1%
Northwest Region 1%
Southwest Region 1%

deviation was 86.2%, which means the RF errors are approximately 25% of the value of the standard
deviation. Recall that the LFMC values can be greater than 100% when there is more weight to the water
within the fuels than the weight of dry fuels.

In order to better understand the decisions behind branches in the tree, we performed a predictor
importance analysis to determine the predictors that provided the most value to the model. These are shown
for the DFMC predictions in table 4 and the LFMC predictions in table 5 for the Terra satellite dataset.
Although results are not shown for Aqua, the results were very similar except Band 6 has very little to no
importance due to a known issue with the Band 6 reflectance from Aqua [29].

The predictor importance analysis for the DFMC prediction shows how the model first captures the
importance of the seasonal climatology and to a lesser degree fuel types (i.e. different types of vegetation)
with elevation and land surface temperature. The soil saturation and accumulated evapotranspiration have
the next highest predictor importance, which are valuable predictors to quantify how moist the soil and fuels
are with higher moisture fluxes when there is greater moisture content. The remaining predictors all provide
additional predictive information in ranges of 1%–5% importance. For the LFMC prediction, the land
surface temperature is less important with a much higher importance of soil saturation and accumulatione
evapotranspiration. This makes physical sense as living fuels will be more susceptible to recent precipitation
and more readily bring moisture through their roots into the plants.

In addition to correlation analysis and predictor importance, we evaluate predictor partial dependence
plots to better interpret the RF model predictions. Partial dependence plots are useful for understanding how
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Table 5. Predictor importance, as a percentage, for the RF method predicting LFMC on the Terra satellite dataset. Note that regions were
not used as predictors for the LFMC models when they were included for the DFMC models.

LFMC Predictor (CONUS, Terra) Importance

Elevation 22%
Soil Saturation All Layers 17%
Accumulated Evapotranspiration 11%
East-West Slope 7%
Band 2 6%
Band 6 6%
Land Surface Temperature 6%
North-South Slope 5%
Land Use Category 5%
Band 7 4%
Band 1 3%
Band 4 3%
Band 5 3%
Band 3 1%

Figure 6. Partial dependence plots for the LFMC prediction on the Aqua dataset. The y-axis represents the LFMC prediction and
the x-axis represents the change in predictor variable value.

each predictor impacts the model’s predictions. Partial dependence plots are created after the model has been
fit to the training data and then applied to make predictions while holding the predictor of interest constant.
After all predictions are made on the dataset, the predictor of interest is increased and predictions are made
for the same dataset. We iterate this process over the range of predictor values in increments of 1/10 of the
range of the predictor data. This analysis allows interpretability of when the predictions change based on how
the value of the predictor variable of interest changes. Figure 6 shows the partial dependence plots for the
LFMC prediction while figure 7 shows the partial dependence plots for the DFMC prediction for the models
trained on MODIS Aqua. The analysis for the LFMC predictions shows a few important patterns. First, the
elevation, which is the most important predictor has a non-linear shape with a minimum near 500 m
elevation, an increase until 1500 m elevation and then a steady decrease as the elevation increases beyond
1500 m. This is likely capturing specific patterns of the types of living fuels present in these elevation ranges.
The soil saturation, which was the second most important prediction, has a shape as expected where the
LFMC prediction increases as the soil saturation increases. Similar is true for the accumulated
evapotranspiration although it reaches a peak before slowly decreasing after 90 mm day−1.

The DFMC predictions in figure 7 show how three of the four most important predictors (land surface
temperature, elevation and soil saturation) have patterns in the partial dependence. Other variables may
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Figure 7. Partial dependence plots for the DFMC prediction on the Aqua dataset. The y-axis represents the DFMC prediction and
the x-axis represents the change in predictor variable value.

improve the overall prediction accuracy, but they may only minimally change the overall prediction or
interact with multiple other variables in a way that does not show the specific partial dependence of that
variable on the DFMC prediction. The land surface temperature, which has by far the most predictor
importance, shows a relatively flat pattern until at higher temperatures the DFMC predictor importance
drops significantly. This makes physical sense as we would expect the hottest days in the summer to generally
be the most dry.

5. Discussion and real-time system

In this study we evaluated a range of machine learning approaches to capture the non-linear relationships
between predictors from satellite data, weather observations surface characteristics and the predictands of
live andDFMC. We compared these methods to a MLR approach that does not capture non-linear
relationships and found that all machine learning techniques improve upon MLR. Additionally, the MLR
model uses the same available predictors as the machine learning approaches, which the predictors are a
variety of continuous, binary and categorical variables that are better suited for machine learning approaches
with decision boundaries such as the RF or GBR. Not surprisingly, the model that ultimately performed best
was the RF technique, although both the RF and GBR had lower errors than the ANN.

One reason that the RF and GBR techniques tend to perform well is that they are rule-based techniques
that are best used in preditive situations with sharp decision boundaries. The physical problem we are trying
to model is the fuel moisture content of living and dead fuels, which has fundamental categories such as fuel
types, soil moisture types and different weather or climatological regions. The RF and GBR models can
differentiate these regions and then further refine the fuel moisture content predictions based on the
predictive skill from the satellite reflectances and other surface characteristics. The ANN, however, is unable
to as easily separate the decision boundaries and learn as much of the predictive ability of the available data
as the RF and GBR.

The benefit of the RF method over the GBR method is that it tends to avoid over-fitting the noise in the
dataset by bagging. Bagging attempts to approve the stability and accuracy of regression by reducing the
variance. Due to the fact that there are many interpolations and assuming continuity within a 1-km grid cell,
it is logical that there would be a considerable amount of noise in the dataset and that a bagging technique
such as the RF would perform best.

The RF method was implemented in a real-time system in the early fall 2019. The system produces daily
dead and LFMC maps and datasets at 1-km resolution, meeting an important need of the wildfire research
and firefighting community. The real-time system runs at 00:10Z starting with a python runner script that is
triggered by the crontab that builds up a list of the most recent MODIS and WRF-Hydro files needed for the
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Figure 8. LFMC estimates from the RF for November 12th, 2019. Darker greens indicate higher moisture content and brighter
yellow indicate lower moisture content.

Figure 9. DFMC estimates from the RF for November 12th, 2019. Darker greens indicate higher moisture content and brighter
yellow indicate lower moisture content.

predictions and then calls the trained RF models to make a prediction. These prediction datafiles in NetCDF
format are availabe for download daily through the NCAR’s Research Application Laboratory’s (RAL) web
site at https://ral.ucar.edu/projects/improved-wildland-fire-spread-prediction. The daily FMC maps are also
uploaded to the same site in .png format. Historical datafiles and maps can be downloaded form
NCAR/RAL’s FTP site at ftp://ftp.rap.ucar.edu/pub/nasafmc. In addition to the publicaly available datasets,
The predictions of LFMC for November 12th and DFMC also for November 12th are shown in
figures 8 and 9. It is interesting to point out the irrigated central valley of California that shows higher
moisture content in the LFMC predictions in figure 8, while dead fuels are not purposely irrigated and there
is a much less prominent central valley of California in figure 9.
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