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Abstract
We build a general quantum state tomography framework that makes use of machine learning
techniques to reconstruct quantum states from a given set of coincidence measurements. For a
wide range of pure and mixed input states we demonstrate via simulations that our method
produces functionally equivalent reconstructed states to that of traditional methods with the added
benefit that expensive computations are front-loaded with our system. Further, by training our
system with measurement results that include simulated noise sources we are able to demonstrate a
significantly enhanced average fidelity when compared to typical reconstruction methods. These
enhancements in average fidelity are also shown to persist when we consider state reconstruction
from partial tomography data where several measurements are missing. We anticipate that the
present results combining the fields of machine intelligence and quantum state estimation will
greatly improve and speed up tomography-based quantum experiments.

1. Introduction

Quantum information science (QIS) is a rapidly developing field that aims to exploit quantum properties,
such as quantum interference and quantum entanglement [1], to perform functions related to computing
[2], communication [3], and simulation [4]. Interest in QIS has grown rapidly since it was discovered that
many tasks can be performed using QIS systems either more quickly than, or which are completely
unavailable to, their classical counterparts. In general, all QIS tasks require the support of classical
computation and communication in order to coordinate, control, and interpret experimental outcomes.
While the classical overhead needed to effectively operate and understand quantum systems is often
negligible in current experimental settings, the exponential growth of parameters describing a quantum
system with qubit number will quickly put substantial demands on available computing resources.

Using machine learning (ML) to reduce the burden of classical information processing for QIS tasks has
recently become an area of intense interest. Examples of where this intersection is being investigated include
the representation and classification of many-body quantum states [5], the verification of quantum devices
[6], quantum error correction [7], quantum control [8], and quantum state tomography (QST) [9, 10]. Here
we focus on QST, where a large number of joint measurements on an ensemble of identical, but completely
unknown, quantum systems are combined to estimate the unknown state. For a quantum state of dimension
d there are d2−1 real parameters in the density matrix describing that state, and hence the resources required
to measure and process the data required for QST grows quickly for systems with large dimension, such as
those needed to demonstrate quantum supremacy [11]. Full quantum state reconstruction from
measurement data with additive Gaussian noise requires classical computational resources that scale as O(d4)
[12–14]. As an example of how demanding this scaling is in modern experiments, the reconstruction of an
8-qubit state in [15] took weeks of computation time, in fact, more time than was required for data
collection itself [16]. Recently, various deep learning approaches have been proposed for efficient state
reconstruction [17–22] with some techniques indicating a scaling of O(d3) [23].

In this paper we implement a convolutional neural network (CNN) to reduce the computational
overhead required to perform full QST. Our system, using simulated measurement results, constructs density
matrices that are, to a high degree of accuracy, equivalent to those produced from traditional state estimation
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Figure 1. Schematic of the robust tomography scheme with machine learning. The noisy tomography measurements are fed to the
convolutional neural network, which makes predictions of intermediate τ -matrices as the outputs. At the end, the predicted
matrices are inverted to reconstruct the pure density matrices for the given noisy measurements.

methods applied to the same simulated data. Our QST system has the distinct benefit that all significant
computations can be performed ahead of time on a standalone computer with the final result deployed on
more modest hardware. Further, in the setting where tomographic measurements are noisy or incomplete,
we are able to demonstrate a significant enhancement in average fidelity over typical reconstruction methods
by training our QST system with simulated noise ahead of time. These results constitute a significant step
toward the implementation of high-speed QST systems for applications requiring high-dimensional
quantum systems.

The design of our QST setup is shown schematically in figure 1. A series of noisy and potentially
incomplete measurements performed on a given density matrix are simulated, which are then fed to the
input layer of a CNN. Examples of the noisy tomography are shown as the tomography measurements in
figure 1 (left-side). Then the CNN makes the prediction of τ -matrices (which are discussed in the following
section) as the output. Finally, the output is inverted, resulting in a valid density matrix. Examples of the
reconstructed density matrices are shown in figure 1 (right-side). This process is repeated many times for
various sizes of random measurements, strengths of noise, missing measurements. The average fidelity (F) of
the setup is calculated and compared to the fidelity when a non-machine learning method is used.

2. Methods

2.1. Generating pure states
We define the horizontal and vertical polarization states as H and V, respectively, which are given by,

|H⟩ =
[
1
0

]
, and |V⟩ =

[
0
1

]
. (1)

In order to generate the pure states, we use Haar measure to simulate 4× 4 random unitary matrices u [24].
Then we use the first column of the simulated random unitary matrices as the coefficients of the pure states
as given by,

|ψ⟩= u00|HH⟩+ u10|HV⟩+ u20|VH⟩+ u30|VV⟩, (2)

where uij represents the ith row and jth column of the random unitary matrix (u), |HH⟩, |HV⟩, |VH⟩, and
|VV⟩ are the tensor products |H⟩⊗ |H⟩, |H⟩⊗ |V⟩, |V⟩⊗ |H⟩, and |V⟩⊗ |V⟩, respectively. Note that we add a
tiny perturbation term ε (1× 10−7) to the simulated pure states as given in equation (3) to avoid the possible
convergent issue under Cholesky decomposition of the pure state density matrix [25],

ρpure = (1− ϵ)|ψ⟩⟨ψ|+ ϵ

4
I. (3)

2.2. Generating mixed states
First we simulate the random matrix from the Ginibre ensemble [26] as given by,

G= N
(
0,1, [4,4]

)
+ iN

(
0,1, [4,4]

)
, (4)
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where N
(
0,1, [4,4]

)
represents the random normal distribution of size of 4× 4 with zero mean and unity

variance. Finally, the random density matrix (ρmix) using the Hilbert-Schmidt metric [27] is given by,

ρmix =
GG†

Tr(GG†)
, (5)

where Tr represents the trace of a matrix.

2.3. Simulating tomographymeasurements
Here we simulate the exact sequence of the tomography measurements used by the Nucrypt entangled
photon system [28]. In addition to |H⟩ and |V⟩, we now define a diagonal (|D⟩), anti-diagonal (|A⟩), right
circular (|R⟩), and left circular (|L⟩) polarization states, which are given by

|D⟩= 1√
2
(|H⟩+ |V⟩), |A⟩= 1√

2
(|H⟩− |V⟩), |R⟩= 1√

2
(|H⟩+ i |V⟩), |L⟩= 1√

2
(|H⟩− i |V⟩). (6)

Furthermore, in order to simulate the experimental scenarios, we introduce the 36 projectors, P, as given by
equation (7) in the exact order of the Nucrypt’s coincidence measurements,

P=



h⊗ h h⊗ v v⊗ v v⊗ h v⊗ r v⊗ l
h⊗ l h⊗ r h⊗ d h⊗ a v⊗ a v⊗ d
a⊗ d a⊗ a d⊗ a d⊗ d d⊗ r d⊗ l
a⊗ l a⊗ r a⊗ h a⊗ v d⊗ v d⊗ h
r⊗ h r⊗ v l⊗ v l⊗ h l⊗ r l⊗ l
r⊗ l r⊗ r r⊗ d r⊗ a l⊗ a l⊗ d

 , (7)

where h = |H⟩⟨H|, v = |V⟩⟨V|, d = |D⟩⟨D|, a = |A⟩⟨A|, r = |R⟩⟨R|, and l = |L⟩⟨L|. Therefore, the perfect
tomography measurements (without any noise or rotations), M, given that any density matrix ρ are
calculated as,

M= Tr(ρP[i, j]); for i, j = 0, 1, 2, 3, 4, 5. (8)

Next, we discuss adding noise to the measurements,M. In order to do this, we introduce arbitrary rotations
to the operators defined in equation (7) by making use of the unitary rotational operator (U) as given by,

U(ϑ,φ,ξ) =

[
eiφ/2 cos(ϑ) −i eiξ sin(ϑ)
−i e−iξ sin(ϑ) e−iφ/2 cos(ϑ)

]
, ϑ,φ,ξ ∈ N(0,σ). (9)

Note that we randomly sample ϑ,φ, ξ from the normal distribution with zero mean and σ2 variance. Finally,
we simulate the tomography measurements under the noisy environment with projectors, Pnoise, as given by,

Pnoise =



h⊗UhU† h⊗UvU† v⊗UvU† v⊗UhU† v⊗UrU† v⊗UlU†

h⊗UlU† h⊗UrU† h⊗UdU† h⊗UaU† v⊗UaU† v⊗UdU†

a⊗UdU† a⊗UaU† d⊗UaU† d⊗UdU† d⊗UrU† d⊗UlU†

a⊗UlU† a⊗UrU† a⊗UhU† a⊗UvU† d⊗UvU† d⊗UhU†

r⊗UhU† r⊗UvU† l⊗UvU† l⊗UhU† l⊗UrU† l⊗UlU†

r⊗UlU† r⊗UrU† r⊗UdU† r⊗UaU† l⊗UaU† l⊗UdU†

 . (10)

2.4. Stokes reconstruction
To compare our system to a non-machine learning and non-adaptive technique, we use the Stokes
reconstruction method for the given set of tomography measurementsM6×6 (pure/noisy). We express the
Stokes reconstruction of the density matrix as

ρrecons =
1

4
(s00I⊗ I+ s01I⊗σx + s02I⊗σy + s03I⊗σz + s10σx ⊗ I+ s20σy ⊗ I+ s30σz ⊗ I+ s11σx ⊗σx+

s12σx ⊗σy + s13σx ⊗σz + s21σy ⊗σx + s22σy ⊗σy + s23σy ⊗σz + s31σz ⊗σx + s32σz ⊗σy + s33σz ⊗σz),
(11)
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where σi for i∈ {x, y, z} are the Pauli matrices and the parameters slk for l, k∈ {0, 1, 2, 3} for the given 36
tomography measurements are evaluated as,

s00 =M[0,0] +M[0,1] +M[0,3] +M[0,2]; s11 =M[2,3]−M[2,2]−M[2,0] +M[2,1];

s12 =M[2,3]−M[2,5]−M[3,1] +M[3,0]; s13 =M[3,5]−M[3,4]−M[3,2] +M[3,3];

s21 =M[5,2]−M[5,3]−M[5,5] +M[5,4]; s22 =M[5,1]−M[5,0]−M[4,4] +M[4,5];

s23 =M[4,0]−M[4,1]−M[4,3] +M[4,2]; s31 =M[1,2]−M[1,3]−M[1,5] +M[1,4];

s32 =M[1,1]−M[1,0]−M[0,4] +M[0,5]; s33 =M[0,0]−M[0,1]−M[0,3] +M[0,2];

s01 =M[2,3]−M[2,2] +M[2,0]−M[2,1]; s02 =M[5,1] +M[4,4]−M[5,0]−M[4,5];

s03 =M[0,0]−M[0,1] +M[0,3]−M[0,2]; s10 =M[2,3] +M[2,2]−M[2,0]−M[2,1];

s20 =M[5,1]−M[4,4] +M[5,0]−M[4,5]; s30 =M[0,0] +M[0,1]−M[0,3]−M[0,2].

(12)

2.5. Generating the τ -matrix
In order to evaluate the τ -matrix for the given set of density matrices (ρ), we use the matrix decomposition
method discussed in [29], which is given by,

τ =



√
Det(ρ)
m00

1
0 0 0

m01
1√

m00
1 m00,11

2

√
m00

1

m00,11
2

0 0

m01,12
2√

ρ33
√

m00,11
2

m00,12
2√

ρ33
√

m00,11
2

√
m00,11

2
ρ33 0

ρ30√
ρ33

ρ31√
ρ33

ρ32√
ρ33

√
ρ33


(13)

wheremij
1 for i, j∈ {0, 1, 2, 3}, andmpq,rs

2 (p ̸= r and q ̸= s) for p, q, r, s∈ {0, 1, 2, 3} are the first and second
minor of ρ, respectively.

3. Results

The general setup of our CNN is depicted in figure 1, which consists of feature mappings, max pooling, and
dropout layers [30]. More specifically, the two dimensional convolutional layer has a kernel of size of 2× 2,
stride length of 1, 25 feature mappings, zero padding, and a rectified linear unit (ReLU) activation function.
The max-pooling layer is two-dimensional and has a kernel of size 2× 2 with stride length of 2 which halves
the dimension of the inputs, which is further followed by a convolutional layer with the same parameters as
discussed above. Next, we attach a fully connected layer (FCL) with 720 neurons, and the ReLU activation.
Then we have a dropout layer with a rate of 50%, which is followed by another FCL with 450 neurons, and
the ReLU activation. Similarly, after this we attach, again, a dropout layer with a rate of 50%, which is finally
connected with an output layer with 16 neurons. Note that the hyperparameters of the CNN are manually
optimized as discussed in [31]. Furthermore, the network is designed such that the output (firing of 16
neurons) comprises the elements of the τ -matrix (see Methods), which can be listed as [τ0,τ1,τ2,τ3, .. .. .., τ15].
Next, the list of 16 elements is re-arranged to form a lower triangular matrix as given by,

τpred = [τ0, τ1, τ2, τ3, ......, τ15]→


τ0 0 0 0

τ4 + iτ5 τ1 0 0
τ10 + iτ11 τ6 + iτ7 τ2 0
τ14 + iτ15 τ12 + iτ13 τ8 + iτ9 τ3

 , (14)

which is, finally, compared with the target (τtarg) for the given measurements (see Methods) in order to find
the mean square loss. We optimize the loss using adagrad-optimizer (learning rate of 0.008) of tensorflow
[32]. Additionally, at the end of an epoch (one cycle through the entire training set), the network makes the
τ -matrix prediction for the unknown (test) noisy measurements, which is later inverted to give the
tomography and fidelity of the setup as given by,

ρpred =
τ †predτpred

Tr(τ †predτpred)
, F=

∣∣∣Tr√√
ρpredρtarg

√
ρpred

∣∣∣2 (15)

where ρpred and ρtarg represent the predicted and target density matrices, respectively. The form of equation
(15) guarantees that the network always makes predictions which are physically valid [29]. Note that the
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Figure 2. (a) Average fidelity of the reconstructed density matrices (DM) for the unknown noisy measurements versus number of
density matrices used to train the networks. Similarly, the progressive average fidelity versus number of epochs with 100 sets of
density matrices is shown in the inset. (b) Average fidelity versus number of noisy measurements per target density matrix. The
error bars represent the one standard deviation from the mean value.

conversion of τ -matrices to their corresponding density matrices and evaluation of the fidelity are inbuilt to
the network architecture, so there is no separate post-processing unit.

First we evaluate the average fidelity with respect to number of sets of density matrices used in the
network for both pure and mixed states. In order to generate training and test sets, we randomly create 200
density matrices and their corresponding τ -matrices (see ‘Methods’), again for both pure and mixed states.
After this we randomly simulate the 200 noisy (σ=π/6) tomography measurements (each measurement
contains 36 projections as described in ‘Methods’) for each of the τ -matrices, for a total of 40,000 sets. We
then split each set of 200 noisy measurement results per τ -matrix into training and test sets (unknown to the
network) with sizes of 195 and 5, respectively. For example, if we are working with 80 random density
matrices (τ -matrices) then 195 out of 200 noisy tomography measurement data sets per density matrices, i.e,
a total of 15,600 (80× 195), are used to train the network and a total of 400 (80× 5), are used to test the
network. Note that in order to efficiently train the networks, we implement the batch optimization technique
with a batch size of 4 for all the calculations discussed in the paper. With these training sets and
hyper-parameters the CNN is then pre-trained up to 800 epochs.

For comparison with standard techniques, we also implement the Stokes reconstruction method [29]
(see ‘Methods’). The average fidelity is found to be significantly enhanced when the CNN is used (solid line)
over the Stokes technique (dotted line) for the various number of sets of density matrices is shown in figure
2(a). Note that we run the same training and testing process 10 times with different (random) initial points,
in order to gather statistics (shown by the error bars). In the case of 20 sets of density matrices, we find a
remarkable improvement in average fidelity from 0.749 to 0.998 with a standard deviation of 2.9× 10−4, and
0.877 to 0.999 with a standard deviation of 1.21× 10−4 for the pure states (blue curves) and mixed states
(red curves), respectively. Similarly, even for the larger sets of 200 density matrices we find an enhancement
of 0.745 to 0.969 with a standard deviation of 1.03× 10−3, and 0.874 to 0.996 with a standard deviation of
2.07× 10−4 for the pure states and mixed states, respectively. These results not only demonstrate an
improved fidelity when compared to Stokes reconstruction but also approach the theoretical maximum value
of unity. Additionally, improvement in average fidelity of the generated density matrices for unknown noisy
tomography measurements per each training epoch is shown in the inset of figure 2(a). The average fidelity is
found to be saturated after 500 epochs.

We have also investigated how the number of noisy training sets per random density matrix impacts the
effectiveness of our system. To do this we fix the number of sets of density matrices at 100 and vary the
number of noisy measurements per set (in the previous paragraph, and figure 2(a), this was fixed at 195). For
testing purposes we use the same 5 noisy measurement sets per random density matrix which were used to
create figure 2(a). As expected, the average fidelity improves noticeably as the number of noisy measurement
training sets per random density matrix is increased, as shown in figure 2(b). Specifically, the average fidelity
improves from 0.751 to 0.982 with a standard deviation of 1.04× 10−3, and 0.88 to 0.996 with a standard
deviation of 2.1× 10−4 at 195 noisy measurement training sets per random density matrix for the pure states
and mixed states, respectively. Additionally, even when we only train on simulated noise 40 times per
random density matrix the average fidelity still increases from 0.751 to 0.923, and 0.88 to 0.982 with a
standard deviation of 4.5× 10−3 and 1.6× 10−3, respectively, for the pure and mixed states.
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Figure 3. (a) Average fidelity versus the amount of noise present in the tomography measurements. Here σ represents the strength
of the noise. Similarly, (a–i) the average fidelity for the less noisy sets are shown in the inset, (a–ii) the average fidelity versus
epochs for completely unknown noiseless tomography measurements. SR (left-column): quantum states generated with Stokes
reconstruction method, and NN (right-column): quantum states generated with CNN. (b) Average fidelity versus size of
tomography measurements (number of projection operators) out of the total of 36 complete tomography set. In the both cases,
the error bars represent the one standard deviation from the mean value.

In order to investigate the robustness of our system, we now vary the strength (σ) of noise used to both
train and test our CNN. Specifically, we vary the noise strength from strong, σ=π, to weak, σ=π/21. For
each σ value, we fix the number of sets of density matrix at 100 and randomly generate 200 noisy tomography
measurements per set of density matrices resulting in a total of 20,000. As previously discussed, 195 (total of
19,500) and 5 (total of 500) out of the 200 per set of density matrices for the given noise are used as the
training and test set, respectively. Note that we separately train the CNN for each different value of the noise.
With the CNN pre-trained up to 500 epochs, a significant improvement in average fidelity of the generated
density matrices with the CNN (red dots) over the conventional method (green dots) at various strengths of
noise is shown in figure 3(a). We find a significant enhancement in average fidelity from 0.669 to 0.972 with a
standard deviation of 7.8× 10−4, and 0.985 to 0.999 with a standard deviation of 4.96× 10−5 for the strong
noise strength of σ=π, and the weak noise strength of σ=π/21, respectively. Similarly, for weaker strengths
of noise, we show the average fidelity of the generated quantum states with the CNN begins to converge with
the conventional method as shown in the inset of figure 3(a–i). We find the average fidelity from the CNN
generation method as well as the conventional method for the noise strengths of π/800, π/1200, and π/1600
converge to unity. This can be considered qualitative evidence that our CNN approach to quantum state
reconstruction is effectively equivalent to Stokes reconstruction in the absence of measurement noise. In
order to further illustrate the efficacy of the CNN, we simulate 60,000 random tomography data sets without
measurement noise. Note that the simulated 60,000 sets of tomography measurements are random and
dissimilar as measured by minimum pairwise Euclidean distance of 0.004 7. As before, the total set is divided
into a training set with 55,000 measurements, and a testing set with 5,000 measurements. The tomography
measurements in the testing set are completely unknown to the network. The average fidelity of the generated
quantum states via the CNN per epoch for the unknown measurement data is shown in the inset of figure
3(a–ii). We find the generated quantum states from the CNN (NN: right-column) for the blind test data are
functionally equivalent to Stokes reconstruction (SR: left-column) as shown in the inset of figure 3(a–ii).

Lastly, we investigate how our CNN can handle the experimental scenario where some fraction of the 36
total tomography measurements is missing. Since the remaining bases measurements are not guaranteed to
span the total 2-qubit Hilbert space, there is a priori reason to assume our CNN should have an advantage
over Stokes reconstruction for this problem. For this analysis we use data with 100 sets of density matrices, a
noise strength of σ=π/6, and the same training and testing data structure as previously discussed. However,
in order to simulate missing measurement points we reduce the number of features in the input data. For
example, in the extreme case of only using four projective measurements the input consists of only 4 feature
float points over the 6× 6 available space. The remaining 32 spaces are filled with 0 (zero padding). Similarly,
for 8 projectors, 28 places are filled with 0; for 12 projectors, 24 places are filled with 0, and so on. For the
sake of comparison we also perform zero-padding on the matrices for use with Stokes reconstruction. With
training up to 500 epochs, we find an improvement in the average fidelity of the generated density matrices
with the CNN (red dots) over the conventional Stokes technique (green dots) for every available size of the
tomography measurements (projectors) as shown in figure 3(b). Note that the error bars represent one
standard deviation away from the mean value. We find a significant enhancement in the average fidelity from
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0.61 to 0.982 7 with a standard deviation of 1.08× 10−3; from 0.532 to 0.95 with a standard deviation of
1.5× 10−3, and from 0.352 to 0.658 with a standard deviation of 2.3× 10−3 for the measurement size of 28,
16, and 4, respectively. In addition, we find an enhancement in the average fidelity even without zero padding
in the input data with the CNN, which are shown by blue dots in figure 3(b).

4. Discussion

We demonstrate quantum state reconstruction directly from projective measurement data via machine
learning techniques. Our technique is qualitatively shown to reproduce the results of standard reconstruction
methods when ideal projective measurement results are assumed. Further, by specifically training our
network to deal with a common source of error in projective measurement data, that of measurement basis
indeterminacy, we show a significant improvement in average fidelity over that of standard techniques.
Lastly, we also consider the common situation where some number of the projective measurements are
unsuccessfully performed, requiring the reconstruction of a density matrix from partial projective data. This
situation is particularly troublesome as the final set of projectors used to collect data are unlikely to span the
full Hilbert space. For this scenario we find a dramatic improvement in the average reconstruction fidelity
even when only 4 of the total 36 measurements are considered. These results clearly demonstrate the
advantages of using neural networks to create robust and portable QST systems.
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[15] Häffner H et al 2005 Scalable multiparticle entanglement of trapped ions Nature 438 643
[16] Gross D, Liu Y-K, Flammia S T, Becker S & Eisert J 2010 Quantum state tomography via compressed sensing Phys. Rev. Lett.

105 150401
[17] Torlai G et al 2018 Neural-network quantum state tomography Nat. Phys. 14 447
[18] Carrasquilla J, Torlai G, Melko R G & Aolita L 2019 Reconstructing quantum states with generative models Nature Machine

Intelligence 1 155–61
[19] Torlai G and Melko R G 2018 Latent space purification via neural density operators Phys. Rev. Lett. 120 240503
[20] Xin T et al 2018 Local-measurement-based quantum state tomography via neural networks ArXiv: 1807.07445
[21] Palmieri A M et al 2019 Experimental neural network enhanced quantum tomography ArXiv: 1904.05902
[22] Lohani S, Knutson E M, Zhang W & Glasser R T 2019 Dispersion characterization and pulse prediction with machine learning

OSA Continuum 2 3438–45
[23] Xu Q and Xu S 2018 Neural network state estimation for full quantum state tomography ArXiv: 1811.06654
[24] Johansson J R, Nation P D & Nori F 2013 Qutip 2: A python framework for the dynamics of open quantum systems Comput. Phys.

Commun. 184 1234–40
[25] Higham N J 1990 Analysis of the Cholesky Decomposition of a Semi-Definite Matrix Reliable Numerical Computation (Oxford:

Oxford University Press) pp 161–85
[26] Forrester P J & Nagao T 2007 Eigenvalue statistics of the Rea Ginibre ensemble Phys. Rev. Lett. 99 050603
[27] Ozawa M 2000 Entanglement measures and the Hilbert–Schmidt distance Phys. Lett. 268 158–60
[28] Wang S X and Kanter G S 2009 Robust Multiwavelength All-Fiber Source of Polarization-Entangled Photons With Built-In

Analyzer Alignment Signal IEEE J. Sel. Top. in Quantum Electronics 15 1733–40
[29] James D F V, Kwiat P G, Munro W J &White A G 2001 Measurement of qubits Phys. Rev. A 64 052312
[30] Rawat W and Wang Z 2017 Deep convolutional neural networks for image classification: A comprehensive review Neural Comput.

29 2352–449
[31] Lohani S, Knutson E M, O’Donnell M, Huver S D & Glasser R T 2018 On the use of deep neural networks in optical

communications Appl. Opt. 57 4180–90
[32] Abadi M et al 2015 TensorFlow: Large-scale machine learning on heterogeneous systems (Software available from tensorflow.org)

8

https://doi.org/10.1016/S1049-250X(05)52003-2
https://doi.org/10.1016/S1049-250X(05)52003-2
https://doi.org/10.1088/1367-2630/13/4/043007
https://doi.org/10.1088/1367-2630/13/4/043007
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1103/PhysRevLett.108.070502
https://doi.org/10.1103/PhysRevLett.108.070502
https://doi.org/10.1038/srep03496
https://doi.org/10.1038/srep03496
https://doi.org/10.1088/1367-2630/18/8/083036
https://doi.org/10.1088/1367-2630/18/8/083036
https://doi.org/10.1038/nature04279
https://doi.org/10.1038/nature04279
https://doi.org/10.1103/PhysRevLett.105.150401
https://doi.org/10.1103/PhysRevLett.105.150401
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s42256-019-0028-1
https://doi.org/10.1038/s42256-019-0028-1
https://doi.org/10.1103/PhysRevLett.120.240503
https://doi.org/10.1103/PhysRevLett.120.240503
https://arXiv.org/abs/1807.07445
https://arXiv.org/abs/1904.05902
https://doi.org/10.1364/OSAC.2.003438
https://doi.org/10.1364/OSAC.2.003438
https://arXiv.org/abs/1811.06654
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1103/PhysRevLett.99.050603
https://doi.org/10.1103/PhysRevLett.99.050603
https://doi.org/10.1016/S0375-9601(00)00171-7
https://doi.org/10.1016/S0375-9601(00)00171-7
https://doi.org/10.1109/JSTQE.2009.2022278
https://doi.org/10.1109/JSTQE.2009.2022278
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1364/AO.57.004180
https://doi.org/10.1364/AO.57.004180

	Machine learning assisted quantum state estimation
	1. Introduction
	2. Methods
	2.1. Generating pure states
	2.2. Generating mixed states
	2.3. Simulating tomography measurements
	2.4. Stokes reconstruction
	2.5. Generating the -matrix

	3. Results
	4. Discussion
	Acknowledgments
	References


