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Grasp stability prediction of unknown objects is crucial to enable autonomous robotic
manipulation in an unstructured environment. Even if prior information about the object is
available, real-time local exploration might be necessary to mitigate object modelling
inaccuracies. This paper presents an approach to predict safe grasps of unknown objects
using depth vision and a dexterous robot hand equipped with tactile feedback. Our
approach does not assume any prior knowledge about the objects. First, an object pose
estimation is obtained from RGB-D sensing; then, the object is explored haptically to
maximise a given grasp metric. We compare two probabilistic methods (i.e. standard and
unscented Bayesian Optimisation) against random exploration (i.e. uniform grid search).
Our experimental results demonstrate that these probabilistic methods can provide
confident predictions after a limited number of exploratory observations, and that
unscented Bayesian Optimisation can find safer grasps, taking into account the
uncertainty in robot sensing and grasp execution.
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1 INTRODUCTION

Autonomous robotic grasping of arbitrary objects is a challenging problem that is becoming
increasingly popular in the research community due to its importance in several applications,
such as pick-and-place in manufacturing and logistics, service robots in healthcare and robotic
operations in hazardous environments, e.g. nuclear decommissioning (Billard and Kragic, 2019;
Graña et al., 2019). Grasping involves several phases: from detecting the object location to choosing
the grasp configuration (i.e. how the gripper or robot hand should contact the object) with the final
objective of keeping the object stable in the robot grip. Moreover, when we consider dexterous
robotic hands with multiple fingers, several contact points on an object must be identified to achieve
a robust grasp (Miao et al., 2015; Ozawa and Tahara, 2017). This is particularly challenging when
limited or no prior information is available about the object, and therefore it is necessary to rely more
heavily on real-time robot perception.

Robot perception for grasping typically includes vision, touch and proprioception; notably, all
these modalities provide useful information about different aspects of the grasping problem. Vision is
often the dominant modality in the phases that precede the lifting of the grasped object (Du et al.,
2019), due to the ability to capture global information about the scene. However, vision is not equally
effective at detecting local information about the interaction between the robot hand and the object,
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including the forces exerted by the hand, the hand configuration,
and some physical attributes of the object, such as its stiffness or
the friction coefficient of its surface: all these aspects are better
perceived by touch. Therefore, the use of tactile sensing has
become more and more popular (Luo et al., 2017), not just
during the holding of the object (e.g. to react to slips) but also
to discover how to grasp the object. In addition, the concept of
active perception (Bajcsy et al., 2018), or interactive perception
(Bohg et al., 2017), is particularly relevant in this case, because to
collect useful tactile information the robot should perform
relevant actions (Seminara et al., 2019), e.g. a controlled
manual exploration of the object surface. However, one big
challenge of relying on active real-time perception is the
underlying uncertainty of robotic sensing and action
generation (Wang et al., 2020). To cope with this uncertainty,
we propose to enrich the visual information with a haptic
exploration procedure driven by a probabilistic model, i.e.
Bayesian Optimisation. The robot first detects the object
location using point cloud data extracted from an RGB-D
sensor. Then, an exploration procedure starts in which the
robot hand evaluates different grasp configurations selected by
Bayesian Optimization, based on a grasp metric computed from
tactile sensing (Figure 1A). Finally, after the best grasp
configuration is found, the object is picked up. We assume
that the object is completely unknown to the system: we do
not rely on any model or previous learning, but only on a real-
time exploration that is relevant only for the current object and
for the current execution of the grasp (i.e. not for any other object
or any future execution of the grasp).

We extend the simulation results previously obtained in
(Nogueira et al., 2016; Castanheira et al., 2018) by testing the
system with a real robot hand, and by performing experiments on
three objects with complex shapes. Notably, many additional
uncertainties are present in a real-world environment (e.g.

insensitivity of sensors, disturbance in the position of the
object while exploring) that are not present in a controlled
simulated environment. In particular, we show that an
unscented version of Bayesian Optimization proves to be even
more effective than the classic Bayesian Optimisation to discover
robust grasps under uncertainty, with a limited number of
exploration steps.

The contributions of the paper are threefold:

1) an approach to predict a safe grasp for an unknown
object from a combination of visual and tactile
perception.

2) a probabilistic exploration model that considers uncertainties
of the real world in order to predict a safe grasp.

3) a series of experiments that demonstrate how the
proposed system can find robot grasps that maximise
the probability of the object being stable after it has
been picked and lifted.

The paper is organised as follows: in Section 2, we describe
the state of art for visuo-tactile data fusion and grasping of
unknown objects. Section 3 provides an overview of our
methodology. In Section 4, we describe the configuration
and the experimental protocol. Discussion on the results is
presented in Section 5. Finally, in Section 6, we conclude by
summarising the performance of our approach and
presenting possible directions for improvements and future
research.

2 RELATED WORK

Grasping objects of unknown shape is an essential skill for
automation in manufacturing industries. Many existing

FIGURE 1 | (A) Overview of the setup and the exploration pipeline. The setup includes a UR5 robot arm, an Allegro robot hand equipped with Optoforce 3D force
sensors in the fingertips, a Kinect RGB-D sensor. (B) The Allegro hand visualised with the RVIZ software. (C) The three complex-shaped objects used in the experiment.
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grasping techniques require a 2D or 3D geometrical model,
limiting its application in different working environments
(Ciocarli and Allen, 2009). 3D reconstruction framework for
detection of fruit in real environments is presented by Lin
et al. (2020). Vision technology has advanced to detect objects
in a natural environment over the years, even in the presence of
shadows (Chen et al., 2020). Kolycheva née Nikandrova and
Kyrki (2015) introduces a system using RGB-D vision to estimate
the shape and pose of the object. Themodels for grasp stability are
learnt over a set of known objects using Gaussian process
regression. While 3D vision technology has various
applications in the engineering field, acquiring 3D images is
an expensive process and mostly simulation-based (Shao et al.,
2019).

Merzić et al. (2018) makes use of deep reinforcement learning
technique to grasp partially visible/occluded objects. It does not
rely on the dataset of the object models but instead uses tactile
sensors to achieve grasp stability on unknown objects in a
simulation. Zhao et al. (2020) implements probabilistic
modelling with a neural network to select a group of grasp
points for an unknown object. There is also a work on
learning object grasping based on visual cues, and the
selection of features are often based on human intuitions
(Saxena et al., 2008). However, vision-based accuracy is
limited due to its standardization and occlusions. Some details
can be overlooked even for known objects, which may cause
failure in grasping objects (Kiatos et al., 2020). Our work is
different from deep learning or reinforcement learning as there is
no training data or an existing dataset to predict stable regions.
The method explores an unknown object in real-time and finds a
solution that maximizes a given grasp metric.

Tactile sensing is capable of compensating for some of the
problems of the vision-only approach. Indeed, being able to
perceive touch allows the robot to understand when contact
with the object has been made and have a better perception
of the occluded areas of the object by making contact with
those surfaces. Techniques are proposed to control slippage
and grasp stabilization of the objects using tactile sensors
only (James and Lepora, 2020; Shaw-Cortez et al., 2020). It is
independent of the data of object mass, object centre of mass
and forces acting on the object to prevent the object from
slipping. Rubert et al. (2019) present seven different kinds of
grasp quality metrics to predict how well it performs on the
robotic platform and in simulations. Different classifiers are
trained on the extensive database, and results are evaluated
for each grasp. The human labelled database is used in this
work, which requires more accuracy in collecting data using
different protocols. To accomplish the autonomous grasping
of an unknown object, we aim to predict the grasping
stability of the object before lifting the object from the
surface. In this paper, we used tactile feedback to predict
the stability of the robotic grasp. We present real-time grasp
safety prediction by haptic probabilistic modelling
exploration with a dexterous robotic hand.

The conventional methods address the stability of the
objects during in-hand manipulation. Our method predicts
the stability of the grasp before lifting the object off from the

surface. Li et al. (2014) maintains the stability of the object
grasped in the air by changing the grasp configuration of the
robotic hand. The state of the object is disturbed by adding
extra weight on the object or manually pulling the object from
the grasp. The work of Veiga et al. (2015) focuses on slip
detection using tactile sensors during in-hand manipulation.
The main difference of our methods to existing approaches in
the literature is that we do not use any previous learning/
training on any object: all the search is performed in real-time
on completely unknown objects, i.e. no prior information and
no prior data is used.

3 METHODOLOGY

A self-supervised model is used to compute the probability of
grasp success using tactile and visual inputs. This allows
evaluating the robustness of potential grasps.

3.1 Object Detection
We use 3D point cloud data to calculate the midpoint of the
object. We define a specific area in an environment as a
workspace in which the robot operates safely. The robot
perceives the object placed on the workspace while the
remaining point cloud data is filtered out, as shown in
Figure 2A.

We are using Random Sample Consensus (RANSAC), a
non-deterministic iterative algorithm for detection of the
object (Zuliani et al., 2005). It tries to fit the points from
the point cloud into a mathematical model of a dominant
plane. RANSAC then identifies the points which do not
constitute the dominant plane model. These points that do
not fit into the plane model (called outliers) are clustered
together to form one object. A minimum threshold is set to
avoid the detection of tiny objects and filtering extra noise.
We demonstrate our approach only on singulated objects, i.e.
not in clutter. The approach could be applied to clutters, but
it would require more sophisticated visual perception
components to segment each object and identify its
boundaries partially.

Dimensions of the object are used to create a 3D bounding
box around the object, as shown in Figure 2B. The midpoint
of the object is computed as the difference between the
maximum and minimum boundary points in an axis
parallel to the plane. This point is then used to reference
the robot to move close to the object and initiate tactile
exploration. Path planning towards the object is executed in
two steps to avoid collision with the environment. In the first
step (Figure 2C), the arm moves to a safe distance above the
object. The second step of path planning is then to move
closer to the object (Figure 2D). Moveit! framework
(Coleman et al., 2014) is utilised for implementation of
motion planning. The process of instructing the robot to
align itself closer to the object is described in Algorithm 1.
The target pose is saved before the movement of the arm
towards the object to avoid end-effector blocking the target
during execution.
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3.2 Force Metric Calculation
A constant envelop force is useful for the computation of force
metric. An extensive review of the different criteria used for
computing a grasp metric is described in Roa and Suárez, 2015.
Following variables can be taken into account in the evaluation of
a grasp metric:

• coordinates of the grasp points on the object.
• directions at which the force is applied at the
grasp point.

• magnitude of the force experienced at the grasp point.
• pose of the robotic hand (in our case, Allegro hand).

Tactile exploration consists of closing the robotic hand at
multiple points in an object and evaluating the grasp metric.
In a closing state, fingers stop moving when the fingertips get
in contact with the object. A force vector is created to grasp
the object during metric calculation and picking the object.
This force is calculated from coordinates of fingertip to
virtual frame positioned in the middle of fingers and
thumb. The concept of virtual springs is discussed in
detail by Solak and Jamone (2019). Equation of grasp
force is:

Ki(∣∣∣∣Δpi∣∣∣∣ − Li) pi∣∣∣∣Δpi∣∣∣∣ (1)

where Δpi is vector between coordinates of fingertip and virtual
frame. Ki and Li are the stiffness and rest length of the spring,
respectively.

The volume of the Force Wrench Space (FWS) by Miller and
Allen (1999) is used as a force metric to measure the stability of
the grasp during tactile exploration. FWS is defined as the set of
all forces applied to the object with all grasp contacts. It is a three-
dimensional vector consisting of force components from all the
four tactile sensors positioned on the tip of the fingers of the
robotic hand. This metric is also independent of the coordinates
of reference system. Function Qv for this set of FWS (℘) can be
described as:

Qv � Volume(℘) (2)

During the closing state, the robotic hand wounds its fingers
around the object. The grasp metric is calculated when a
connection is established between the hand and the object.
The size and coordinates of the object are assumed fixed to
limit the size of the exploration space.

3.3 Probabilistic Modelling
We use two probabilistic exploration methods: scented and
unscented bayesian optimization, and compare their
performance with uniform grid exploration. The uniform grid
approach is where all search points in bounded space have an
equal probability of being explored.

3.3.1 Bayesian Optimisation
We consider the Bayesian Optimisation (BO) algorithm as one of
the probabilistic models to accomplish the task of exploring
global optima (Brochu et al., 2010). For n number of
iterations, the input dataset of query point is x � {x1: n} and
the resulted outcome is z � {z1: n}. In general, the algorithm
depends on tuning parameters where input x ϵ X in some
specified domain, where X 4 RD , such that D ≥ 1. The main
goal is to find the global optimisation method, which focuses on
finding the minimum optimum value for the objective function
f : X→R, where X is a compact space. It works on selecting the
best grasp points for every iteration geared towards the minimum∣∣∣∣z* − zn

∣∣∣∣. Consider this process in two basic steps: First, for each
grasp point input, a probabilistic model (in our case, the Gaussian
process) is built. Second, using an acquisition function α to decide
the model to select the next point for exploration. As the method

FIGURE 2 | Methodology for the haptic exploration. (A) Point cloud data of the workspace. (B) The bounding box of the object extracted. (C) First step of path
planning: towards a location at a fixed distance over the object bounding box. (D) Second step of path planning: lowering down and enclosing the fingers on the object to
compute the grasp metric.
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depends on the trial-and-error approach, BO helps optimise the
number of steps required for a safe grasp. Grasp metric score is
computed as described in Section 3.2.

3.3.2 Unscented Bayesian Optimisation
Unscented Bayesian Optimisation (UBO) is a method to
propagate mean and covariance through nonlinear
transformation. The basis of the algorithm is better
manageability of an approximate probability distribution than
approximate arbitrary nonlinear function (Nogueira et al., 2016).
To calculate mean and covariance, a set of sigma points are
chosen. These sigma points are deterministically chosen points
that depict certain information about mean and covariance. The
weighted combination of sigma points is then passed through
linear function to compute the transformed distribution. The
advantage of UBO over classical BO is it’s ability to consider
uncertainty in the input space to find an optimal grasp. For
dimension d, it requires 2d + 1 sigma points that show its
computational cost is negligible compared to others such as
Monte Carlo, which requires more samples or Gaussian function.

In UBO, the query is selected based on probability
distribution. We choose the best query point considering it as
deterministic, but also check its surrounding neighbours. Thus,
while considering input noise, we will analyze the resulting
posterior distribution through the acquisition function.
Assuming that our prior distribution is Gaussian distribution
where x ∼ N (barx,∑ x), then the set of 2d + 1 sigma points of the
unscented transform is computed as:

x0 � x, xi± � x ± ( ����������
(dFκ)∑ x

√ )
i
,∀i � 1...d (3)

where d is dimensional input space, κ parameter tunes magnitude
of sigma points and (

��
(.)

√
)i is the ith row or column of the

corresponding matrix square root. UBO reduces the chance that
the next query point is in an unsafe region where a small change
in input results in a bad outcome.

4 IMPLEMENTATION

The grasp metric of a candidate grasp is evaluated on a real
robotic platform. We start from elementary visual perception,
which is used by the robot to come closer to the object and to be
able to initiate the haptic exploration. Motion planning is initially
visualised using the robot operating system (ROS) before
execution in the real-world environment. Experiment to pick
the object from the surface is designed to the evaluate
performance of the exploration algorithm. Objects are
manually put in the same approximate location to maintain
consistency in the evaluation and show that the grasps found
with UBO are more resilient to minor variations in object
position.

In a real use-case, the robot hand would approach the object
(starting from the visual estimation of the object pose). It would
haptically explore the object (without lifting it, only by touching it
in the different possible grasp postures/configurations) to
maximise a given grasp metric (i.e. based on the measured

contact forces), and then it would lift the object by using the
best grasp that has been found with the haptic exploration. This is
relevant for scenarios in which we want to optimise the safety of
the grasp over speed, e.g. nuclear-decommissioning settings, or
other scenarios in which we do want to minimise the possibility of
the object falling from the grasp, at the cost of requiring more
time to find the safest grasp.

4.1 Configuration
For the experimental setup, a camera is required to generate point
cloud data of the objects. The generation of the point cloud can be
achieved using a stereo camera or RGBD camera. The authors in
Vezzani et al., 2017 have used a stereo camera to generate point
cloud data, and authors of Rodriguez et al., 2012 are using Kinect.
Both have presented that the generated point cloud is satisfactory
so that any camera can be selected. We have used a kinect camera
for the generation of point cloud data in our experiments.

To achieve our objective of successfully grasping an unknown
object, we have set up a UR5 robot in the lab. Allegro hand is
mounted at the end of the UR5 arm as an end effector. Kinect is
fixed at the top of the base of the robot, facing perpendicular to
the workspace. Optoforce OMD 20-SE-40N is a 3-axis force
sensors that measure the forces experienced by the fingers of
the Allegro hand (at a rate of 1 kHz). The workplace is 72 cm
from the kinect frame. Any object within the workplace area (a
rectangular area of 31 cm by 40 cm) is processed, and the extra
points are filtered out. The orientation of the Allegro hand is fixed
parallel to the axis of the workspace plane. The setup is shown in
Figure 1A.

4.2 Protocol
To perform the experiments, we apply the following experimental
protocol.

1) Object detection: to detect the unknown object in the
environment, we use the RANSAC algorithm in point
cloud library. This library allows the detection of the
desired object and obtains its pose with respect to the camera.

2) Motion planning: once we have detected the pose of the
object, the Moveit plans the collision-free movement of the
robot to the top of the object.

3) Plan execution: after successful planning, the robot navigates
itself to the target pose. This is also the starting pose for
haptic exploration.

4) Haptic exploration: robot plans and navigates the robotic
hand to search points queried by the exploration model.
Search space is confined by limiting the orientation of the
Allegro hand parallel to the surface.

5) Gradually gripping the object: when the robotic arm reaches
the search point, it starts closing its fingers until contact is
detected.

6) Applying grasping force: to ensure the gripper applies
enough pressure over the object and not just touches it.

7) Calculation of grasp metric: evaluate grasp score of the
candidate grasp.

8) Move the robotic arm to the next pose: open the grip of the
robotic hand and move to the next pose directed by the
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probabilistic model. This process is repeated 50 iterations.
Approximately two iterations are completed in a minute.

9) Stability testing: this experiment is performed after the
completion of the exploration stage. The robot is
manually navigated to the coordinates of the maximum
grasp metric score to evaluate its stability.

10) Stability scoring: object is lifted 20 times from the surface and
maintained in the air for 10 s.

5 RESULTS

The proposed model is validated by exploring grasp points in the
3D space, but the contact points are searched on two dimensions.
Experiments are conducted five times with probabilistic
modelling exploration and then compared with the uniformly
distributed exploration. BO and UBO models are used for
probabilistic modelling exploration. At the end of each
experiment, grasp point with the highest metric is used to lift
the object from the surface. This process of lifting the object
is repeated 20 times to find the stability score of the
grasp point.

We used the objects from the dataset1 developed by EU
RoMaNS to observe exploration performance. The objects in
this dataset are commonly found in nuclear waste and are
categorised in different categories such as bottles, cans, pipe
joints. We conducted the experiments with three different
kinds of complex objects: a c-shaped pipe joint, a mustard
plastic bottle and a 3D printed blue object. The diameter of
pipe joint is 6 cm from one end and 5.5 cm from another, the
height of thread on the ring is 0.2 cm. A complex-shaped 3D
printed blue object 11cm × 5.5 cm from dexnet dataset2 is also
used to increase the persuasiveness of the data. Images of the

objects can be seen in the Figure 1C. Objects were placed on the
bubble wrap surface to increase the friction between the object
and the plane. This was done because the fingertip force sensors
are not very sensitive, and therefore the minimum contact force
that can be measured (at first contact) may already produce a
consistent displacement of the object (if the friction coefficient of
the table surface was too low).

Scatter plots: The Figure 3 represents the points observed
by each exploration method in all the experiments. The point
represents the location of the middle finger of the robotic
arm. A total of 250 search points (5 experiments with 50
iterations each) are plotted for each exploration method. It
can be observed that more observations are recorded at the
boundaries of the object for probabilistic methods. This is
due to the concavity of the tactile sensors and their
contact with the edges in the objects. It is expected for
probabilistic models to explore the complex part of the
object. It can also be seen that BO and UBO exploration
converges to a more substantial part of the object. The figure
also represents the optimal position with the highest metric
score for all experiments for each exploration model. There
are a total of 15 points represented, five for each approach.
Again, the points are the location of the middle finger of the
robotic arm.

Optimal position: The position with optimal grasp score is
the distance from the world frame along the horizontal plane
of the object. The middle point of the bounding box of the
bottle is approximately 35 cm from the world frame and
37.5 cm in the pipe joint and blue object. The frames are
shown in Figure 1A. Table 1 tabulates the optimal position of
the object as observed in each experiment. It also shows the
value of grasp metric value in the optimal position. The
points are skewed towards one side of the object because
of the constraint in the encoders of the thumb, which restricts
the movement of the thumb to align with the middle finger
(Figure 1B). The results indicate that probabilistic models
have an optimum position similar to uniform distributed

FIGURE 3 | Scatter Plots of all points explored in uniform, BO and UBO explorations for (A) bottle, (B) pipe joint and (C) blue object. The pose of Allegro hand at the
start of experiments is shown in the first column. The last column represents the optimum position in 2D from each experiment.

1https://sites.google.com/site/romansbirmingham
2https://berkeley.app.box.com/s/6mnb2bzi5zfa7qpwyn7uq5atb7vbztng
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exploration with minor standard deviation in position and
metric score.

Convergence: The convergence of each exploration to its
maximum grasp metric value reflects confidence in
successfully lifting the object from the surface. The left
column of Figure 5 presents the performance of BO, UBO
and uniform explorations in converging to the final optimum
position (x-axis) at each observation. Uniform, BO and UBO
are represented by green, blue and orange lines, respectively.

A total of five experiments are conducted with 50
observations for three different complex-shaped objects.
Plots present convergence in the x-axis only because of the
confined range of exploration in the y-axis ( < ± 4cm). It can
be seen that the probabilistic models have a higher
probability of convergence than the uniform-grid search
model. There are some instances when convergence is not
observed; this is understandable as the number of iterations is
very low.

TABLE 1 |Coordinates of maximummetric observed of explorations for different objects from all experiments in the world frame. Standard deviation of the mean position in x
and y axes, metric is also listed.

Bottle Pipe joint Blue object

UNI BO UBO UNI BO UBO UNI BO UBO

μ X-cord (cm) 39.01 37.34 39.07 43.44 42.41 42.71 43.29 42.05 43.64
σ X-cord (cm) 1.64 2.65 0.67 1.3 1.84 1.94 1.72 2.49 0.34
μ Y-cord (cm) 114.43 113.27 113.12 116.51 117.03 116.34 115.68 115.58 115.25
σ Y-cord (cm) 0.97 0.19 0.08 0.68 0.43 0.83 1.21 1.73 1.3
μ Grasp metric 27.49 30.22 29.1 35.08 39.64 37.13 36.37 37.49 35.63
σ Grasp metric 1.51 2.6 0.48 6.7 3.78 2.82 3.3 6.63 1.77

FIGURE 4 | Two states of stability observed while maintaining the object in the air: (A) stable grasp (B) partial stable grasp.

TABLE 2 | Grasping state observed for all five experiments in lifting the object from surface. Total of five experiments with 20 iterations each.

Bottle Pipe joint Blue object

UNI BO UBO UNI BO UBO UNI BO UBO

Total stable 60 80 92 60 67 80 40 40 80
Total partial 20 0 8 0 33 20 26 20 0
Total failure 20 20 0 40 0 0 34 40 20
Success rate (%) 80 80 100 60 100 100 66 60 80
Stability score 70 80 96 60 83.5 90 53 50 80
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Stability score:There are three possible states of stability when
the object is lifted in the air: stable, partial stable and failure. A
stable state is when three or four fingers of the robotic hand
contact the object, and the object stays in the air for 10 s. Partial
stability is when only the thumb and first finger hold the object in
the air for 10 s. These two states are shown in Figure 4. Failure
state is when the robotic arm fails to lift the object off the surface.

In none of our experiments, an object dropped from the air.
Table 2 tabulates the performance of each exploration in lifting
the object. The results of the experiment to evaluate stability is
shown on the right column of Figure 5. Frequency distribution of
the five experiments for objects used is tabulated in Tables 3–5.
The success rate for each exploration is the percentage of the
robot lifting the object from the surface (both stable and partial

FIGURE 5 | Left column displays performance of uniform, BO and UBO explorations in converging to final optimum position (x-axis) in all experiments for (A) bottle,
(B) pipe joint and (C) blue object. Right column shows stability scores and mean of the highest grasp metric for different exploration methods.

TABLE 3 | Frequency distribution of experiments on bottle to evaluate grasp stability.

Uniform BO UBO

Stable Partial Fail Stable Partial Fail Stable Partial Fail

Exp 1 0 20 0 20 0 0 20 0 0
Exp 2 20 0 0 20 0 0 20 0 0
Exp 3 20 0 0 0 0 20 20 0 0
Exp 4 0 0 20 20 0 0 12 8 0
Exp 5 20 0 0 20 0 0 20 0 0
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state) and holds it in the air without a drop-off. In the calculation
of stability score, the stable state is given double weight than the
partial state. Failure state is excluded from the calculation. The
formula is mentioned below:

Stability score � Stable p 10 + Partial p 5
Total possible score

× 100 (4)

The results show that probabilistic models can converge to the
optimum position with a higher grasp metric score in fewer
iterations than uniformly distributed exploration.

The experimental results collected demonstrate:

• the ability of probabilistic methods to provide confidence in
predicting a safe grasp in a minimal number of iterations.

• BO and UBO have the advantage of converging sooner than
the uniform exploration, even with fewer observations.

• the potential of UBO to find safer grasps: this is evident in the
case of the bottle, as the optimum points lie far from the edges.

• the success rate of UBO is the highest in lifting the object
from the surface and maintaining it in the air for 10 s (i.e.
stable grasp).

6 CONCLUSION

We presented a pipeline for object detection (using depth-
sensing) and exploration (using tactile sensing) with a
dexterous robotic hand, aimed at finding grasps that maximise
the probability of the object being held robustly in hand after
picking and lifting. Our approach is not based on any previous
learning or prior information about the object: the system knows
nothing about the object before the exploration starts.

The intelligence of the system lies in the real-time decisions
about where to explore the object at each exploration step, so that

the number of exploratory steps is minimised and the amount of
information gathered is maximised. These decisions are based on
a probabilistic model (BO). In particular, we show experimentally
that an unscented version of the model (UBO) can find the more
robust grasps, even in the presence of the natural uncertainty of
robotic perception and action execution: we show this by
repeating the grasps multiple times, showing that such grasps
are robust to the minor inaccuracies/differences between each
replication of the grasp. Given the nature of this approach, the
most relevant applications are in scenarios in which the cost of
dropping the object after grasp is very high, and it is therefore
justified to invest some additional time in exploring the object
haptically before picking it. For example, handling hazardous
materials in a nuclear environment, collecting samples in space or
deep sea missions, pick and place of fragile objects in logistics.

In our experiments, we assume to have no prior knowledge
about the object; however, such information (if available) could
be included in the probabilistic exploration models as a prior, also
depending on the specific application. We use depth sensing to
limit the search space by identifying a bounding box around the
object: a more sophisticated visual perception component could
permit defining an even more compact search space, e.g.
consisting in a small set of tentatively good grasps.

Another possible improvement of our system is to use better
tactile sensors on the robot fingertips that are more sensitive
(Jamone et al., 2015; Paulino et al., 2017) and that can provide 3D
force measurements on several contact points (Tomo et al., 2018).
With such a sensor: we could detect the initial contact with the
object earlier (i.e. based on a lower force threshold), therefore
minimising undesired motion of the object during exploration;
we could obtain a better estimation of the contact forces, that
would lead to a more reliable assessment of the force closure
metric; we could estimate other object properties (e.g. friction
coefficient) that can also be included in the grasp metric, leading
to better predictions of the grasp stability.

TABLE 4 | Frequency distribution of experiments on pipe joint to evaluate grasp stability.

Uniform BO UBO

Stable Partial Fail Stable Partial Fail Stable Partial Fail

Exp 1 20 0 0 7 13 0 20 0 0
Exp 2 0 0 20 20 0 0 20 0 0
Exp 3 0 0 20 20 0 0 20 0 0
Exp 4 20 0 0 0 20 0 20 0 0
Exp 5 20 0 0 20 0 0 0 20 0

TABLE 5 | Frequency distribution of experiments on complex-shaped blue object to evaluate grasp stability.

Uniform BO UBO

Stable Partial Fail Stable Partial Fail Stable Partial Fail

Exp 1 0 9 11 0 20 0 20 0 0
Exp 2 20 0 0 0 0 20 20 0 0
Exp 3 20 0 0 20 0 0 20 0 0
Exp 4 0 0 20 20 0 0 20 0 0
Exp 5 0 17 3 0 0 20 0 0 20
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