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Abstract
The purpose of this paper is to introduce and study some sequence spaces which are defined by
combining the concepts of sequences of Musielak-Orlicz functions, invariant means and lacunary
convergence. We establish some inclusion relations between these spaces under some conditions.
This study generalized some results [1].
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1 Introduction
Let ω be the set of all sequences of real numbers [1] and `∞, c and c0 be respectively the Banach
spaces of bounded, convergent and null sequences x = (xk) with (xk) ∈ R or C the usual norm
‖x‖ = supk |xk|, where k ∈ N = 1, 2, 3....., the positive integers.

The idea of difference sequence spaces was first introduced by Kizmaz [18] and then the concept
was generalized by Et and Çolak [7]. Later on Et and Esi [8] extended the difference sequence spaces
to the sequence spaces:

X(∆m
v ) =

{
x = (xk) : (∆m

v x) ∈ X
}
,

for X = `∞, c and c0, where v = (vk) be any fixed sequence of non zero complex numbers and
(∆m

v xk) = (∆m−1
v xk −∆m−1

v xk+1).

The generalized difference operator has the following binomial representation,

∆m
v xk =

m∑
i=0

(−1)i
(
m
i

)
vk+ixk+i, for all k ∈ N.
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The sequence spaces ∆m
v (`∞), ∆m

v (c) and ∆m
v (c0) are Banach spaces normed by

‖x‖∆ =

m∑
i=1

|vixi|+ ‖∆m
v x‖∞.

Let σ be a mapping of the positive integers into itself. A continuous linear functional φ on `∞ is said
to be an invariant mean or σ -mean if and only if

(i) φ(x) ≥ 0, when the sequence x = (xn) has, xn ≥ 0 for all n

(ii) φ(e) = 1, e = (1, 1, 1, ...)

(iii) φ(xσ(n)) = φ(x) for all x ∈ `∞.

If x = (xk), where Tx = (Txk) = (xσ(k)). It can be shown that

Vσ =
{
x ∈ `∞ : lim

k
tkn(x) = l, uniformly in n

}
l = σ − limx. where

tkn(x) =
xn + xσ1(n) + xσ2(n) + .....+ xσk(n)

k + 1
[30].

In the case σ is the translation mapping n→ n+ 1, σ-mean is often called a Banach limit and Vσ
the set of bounded sequences of all whose invariant means are equal is the set of almost convergent
sequence (see[20]),

By Lacunary sequence θ = (kr), r = 0, 1, 2... where k0 = 0 we mean an increasing sequence of
non negative integers hr = (kr−kr−1)→∞ (r →∞). The intervals determined by θ are denoted by
Ir = [kr−1 − kr] and the ratio kr

kr−1
will be denoted by qr. The space of lacunary strongly convergent

sequence Nθ was defined by Freedman et al [9] as follow:

Nθ =
{
x = (xi) : lim

r→∞

1

hr

∑
k=Ir

|xk − l| = 0 for some `
}
.

An Orlicz function is a function M : [0,∞)→ [0,∞) which is continuous, non-decreasing and convex
with M(0) = 0, M(x) > 0 for x > 0 and M(x)→∞ as x→∞.

It is well known that if M is convex function and M(0) = 0 then M(λx) ≤ λM(x), for all λ with
0 ≤ λ ≤ 1.

Lindenstrauss and Tzafriri [21] use the idea of Orlicz function and defined the sequence space
which is called an Orlicz sequence space `M such as

`M =
{
x = (xk) :

∞∑
k=1

M
( |xk|
ρ

)
<∞, for some ρ > 0

}
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which is a Banach space with the norm

‖x‖ = inf
{
ρ > 0 :

∞∑
k=1

M
( |xk|
ρ

)
≤ 1
}
.

Which is called an Orlicz sequence space. The `M is closely related to the space `p which is
an Orlicz sequence space with M(t) = |t|p, for 1 ≤ p < ∞. Later the Orlicz sequence spaces were
investigated by Prashar and Choudhry [25], Maddox [22],Tripathy et al.[27-29] and many others.

2 Definitions and Notations

A sequence of function M = (Mk) of Orlicz function is called a Musielak −Orliczfunction [23, 24].
Also a Musielak -Orlicz function Φ = (Φk) is called complementaryfunction of a Musielak-Orlicz
function M if

Φk(t) = sup
{
|t|s−Mk(s) : s ≥ 0

}
, for k = 1, 2.3..

For a given Musielak-Orlicz function M , the Musielak-Orlicz sequence space lM and its subspaces
~M are defined as follow:

lM =
{
x = xk ∈ ω : IM (cx) <∞, for some c > 0

}

~M =
{
x = xk ∈ ω : IM (cx) <∞, for all c > 0

}
Where IM is a convex modular defined by

IM (x) =

∞∑
k=1

Mk(xk), x = (xk) ∈ lM .

We consider lM equipped with the Luxemburg norm

‖x‖ = inf
{
k > 0 : IM

(x
k

)
≤ 1
}

or equipped with the Orlicz norm

‖x‖0 = inf
{ 1

k

(
1 + IM (kx)

)
: k > 0

}
.

The main purpose of this paper is to introduce the following sequence spaces and examine
some properties of the resulting sequence spaces. Let p = (pk) denote the sequences of positive
real numbers, for all k ∈ N. Let M = (Mk) be a Musielak-Orlicz function and u = (uk) such that
uk 6= 0 (k = 1, 2, 3, ..). Let s be any real number such that s ≥ 0. Then we define the following
sequence spaces:
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[ωθ,M, p, u, s]∞σ (∆m
v ) =

{
x = (xk) : sup

r,n

1

hr

∑
k∈Ir

k−suk
[
Mk

( |tkn(∆m
v xk)|
ρ

)]pk
<∞

ρ > 0, s ≥ 0
}

[ωθ,M, p, u, s]σ(∆m
v ) =

{
x = (xk) : lim

r

1

hr

∑
k∈Ir

k−suk
[
Mk

( |tkn(∆m
v xk − le)|
ρ

)]pk
= 0

for some l, ρ > 0, s ≥ 0
}

[ωθ,M, p, u, s]0σ(∆m
v ) =

{
x = (xk) : lim

r

1

hr

∑
k∈Ir

k−suk
[
Mk

( |tkn(∆m
v xk)|
ρ

)]pk
= 0.

ρ > 0, s ≥ 0
}

Definition 2.1 A sequence spaceE is said to be solid or normal if (αkxk) ∈ E whenever (xk) ∈ E
and for all sequences of scalar (αk) with |αk| ≤ 1 [16]

Definition 2.2 A sequence spaceE is said to be monotone if it contains the canonical pre-images
of all its steps spaces, [16]

Definition 2.3 If X is a Banach space normed by ‖ . ‖, then ∆m(X) is also Banach space
normed by

‖ x ‖∆=

m∑
k=1

|xk|+ f(∆mx)

Remark. The following inequality will be used throughout the paper. Let p = (pk) be a positive
sequence of real numbers with 0 < pk ≤ sup pk = G, D = max

(
1, 2G−1

)
. Then for all ak, bk ∈ C for

all k ∈ N. We have

|ak + bk|pk ≤ D(|ak|pk + |bk|pk ) (1)

3 Main Results

Theorem 3.1 Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a bounded sequence of
positive real number and θ = (kr) be a lacunary sequence. Then [ωθ,M, p, u, s]∞σ (∆m

v ), [ωθ,M, p, u, s]σ(∆m
v )

and [ωθ,M, p, u, s]0σ(∆m
v ) are linear space over the field of complex numbers.
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Proof. Let x = (xk), y = (yk) ∈ [ωθ,M, p, u, s]0σ(∆m
v ) and α, β ∈ C. In order to prove the result we

need to find some ρ3 such that,

lim
r→∞

1

hr

∑
k∈Ir

ukk
−s
[
Mk

( |tnk(∆m
v (αxk + βyk))|

ρ3

)]pk
= 0, uniformly in n.

Since (xk), (yk) ∈ [ωθ,M, p, u, s]0σ(∆m
v ), there exist positive ρ1, ρ2 such that

lim
r→∞

1

hr

∑
k∈Ir

ukk
−s
[
Mk

( |tnk(∆m
v (xk)|
ρ1

)]pk
= 0 uniformly in n

and

lim
r→∞

1

hr

∑
k∈Ir

ukk
−s
[
Mk

( |tnk(∆m
v (yk))|
ρ2

)]pk
= 0 uniformly in n.

Define ρ3 = max
(
2|α|ρ1, 2|β|ρ2

)
. Since (Mk) is non decreasing and convex

1

hr

∑
k∈Ir

ukk
−s
[
Mk

( |tnk(∆m
v (αxk + βyk))|

ρ3

)]pk
≤ 1

hr

∑
k∈Ir

ukk
−s
[
Mk

( |tnk(∆m
v (αxk))|
ρ3

+
|tnk(∆m

v (βyk))|
ρ3

)]pk
≤ 1

hr

∑
k∈Ir

ukk
−s
[
Mk

( |tnk(∆m
v xk)|

ρ1
+
|tnk(∆m

v yk)|
ρ2

)]pk
≤ D

hr

∑
k∈Ir

ukk
−s
[
Mk

( |tnk(∆m
v xk)|
ρ

)]pk
+
D

hr

∑
k∈Ir

ukk
−s
[
Mk

( |tnk(∆m
v yk)|
ρ

)]pk
→ 0, as r →∞, uniformly in n.

So that (αxk) + (βyk) ∈ [ωθ,M, p, u, s]0σ(∆m
v ). This completes the proof. Similarly, we can prove that

[ωθ,M, p, u, s]σ(∆m
v ) and [ωθ,M, p, u, s]∞σ (∆m

v ) are linear spaces.

Theorem 3.2 Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a bounded sequence of
positive real number and θ = (kr) be a lacunary sequence. Then [ωθ,M, p, u, s]0σ(∆m

v ) is a topological
linear space totalparanormed by

g∆(x) =

m∑
k=1

|xk|+ inf
{
ρpr/H :

( 1

hr

∑
k∈Ir

ukk
−s
[
Mk

( |tnk(∆m
v xk)|
ρ

)]pk)1/H

≤ 1

for some ρ, r = 1.2..
}

Proof. Clearly g∆(x) = g∆(−x). Since Mk(0) = 0, for all k ∈ N. we get g∆(θ̄) = 0, for x = θ̄.
Letx = (xk), y = (yk) ∈ [ωθ,M, p, u, s]0σ(∆m

v ) and let us choose ρ1 > 0 and ρ2 > 0 such that

sup
r
h−1
r

∑
k∈Ir

ukk
−s
[
Mk

( |tnk(∆m
v (xk))|
ρ1

)]pk
≤ 1 r = 1, 2, 3..
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and
sup
r
h−1
r

∑
k∈Ir

ukk
−s
[
Mk

( |tnk(∆m
v (yk))|
ρ2

)]pk
≤ 1 r = 1, 2, 3..

Let ρ = ρ1 + ρ2, then we have

sup
r
h−1
r

∑
k∈Ir

ukk
−s
[
Mk

( |tnk(∆m
v (xk + yk))|
ρ

)]pk

≤ ρ1

ρ1 + ρ2
sup
r
h−1
r

∑
k∈Ir

ukk
−s
[
Mk

( |tnk(∆m
v (xk))|
ρ1

)]pk
+

ρ1

ρ1 + ρ2
sup
r
h−1
r

∑
k∈Ir

ukk
−s
[
Mk

( |tnk(∆m
v yk))|
ρ2

)]pk
≤ 1.

Since ρ > 0, we have

g∆(x+ y) =

m∑
k=1

| xk + yk | + inf
{
ρpr/H :

( 1

hr

∑
k∈Ir

ukk
−s
[
Mk

( | tnk∆m
v (xk + yk) |
ρ

)]pk)1/H

≤ 1

for some ρ > 0, r = 1.2..
}

≤
m∑
k=1

| xk | + inf
{
ρ
pr/H
1 :

( 1

hr

∑
k∈Ir

ukk
−s
[
Mk

( | tnk∆m
v (xk) |
ρ1

)]pk)1/H

≤ 1

for some ρ1 > 0, r = 1.2..
}

+

m∑
k=1

| yk | + inf
{
ρ
pr/H
2 :

( 1

hr

∑
k∈Ir

ukk
−s
[
Mk

( | tnk∆m
v (yk) |
ρ2

)]pk)1/H

≤ 1

for some ρ2 > 0, r = 1.2..
}

g∆(x+ y) ≤ g∆(x) + g∆(y).

Finally, we prove that the scalar multiplication is continuous. Let λ be a given non zero scalar in
C. Then the continuity of the product follows from the following expression.

g∆(λx) =

m∑
k=1

| λxk | + inf
{
ρpr/H :

( 1

hr

∑
k∈Ir

ukk
−s
[
Mk

( | tnk∆m
v (λxk) |
ρ

)]pk)1/H

≤ 1
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for some ρ > 0, r = 1.2..
}

= λ

m∑
k=1

| xk | + inf
{

(| λ | ζ)pr/H :
( 1

hr

∑
k∈Ir

ukk
−s
[
Mk

( | tnk∆m
v (xk) |
ζ

)]pk)1/H

≤ 1

for some ζ > 0, r = 1.2..
}

Where ζ = ρ
|λ| > 0. Since |λ|pr ≤ max(1, |λ|)sup pr ,

g∆(λx) = max(1, |λ|)sup pr + inf
{
ρpr/H :

( 1

hr

∑
k∈Ir

ukk
−s
[
Mk

( |tnk(∆m
v xk)|
ρ

)]pk)1/H

≤ 1,

for some ρ > 0, r = 1.2..
}
.

This completes the proof of this theorem.

Theorem 3.3 Let M = (Mk) be a Musielak-Orlicz function, p = (pk) be a bounded sequence
of positive real number and θ = (kr) be a lacunary sequence. Then [ωθ,M, p, u, s]∞σ (∆m

v ) ⊂
[ωθ,M, p, u, s]σ(∆m

v ) ⊂ [ωθ,M, p, u, s]0σ(∆m
v ).

Proof. The inclusion [ωθ,M, p, u, s]0σ(∆m
v ) ⊂ [ωθ,M, p, u, s]σ(∆m

v ) is obvious. Let xk ∈ [ωθ,M, p, u, s]σ(∆m
v ).

Then there exists some positive number ρ1 such that

lim
r→∞

1

hr

∑
k∈Ir

ukk
−s
[
Mk(
|tnk(∆m

v xk − le)|
ρ1

)
]pk
→ 0

as r →∞, uniformly in n. Define ρ = 2ρ1. Since Mk is non decreasing and convex for all k ∈ N,
we have

1

hr

∑
k∈Ir

ukk
−s
[
Mk(
|tnk(∆m

v xk)|
ρ

)
]pk

≤ D

hr

∑
k∈Ir

ukk
−s
[
Mk(
|tnk(∆m

v xk − le)|
ρ1

)
]pk

+
D

hr

∑
k∈Ir

[
Mk(
|le|
ρ1

]pk

≤ D

hr

∑
k∈Ir

[Mk(
|tnk(∆m

v xk − le)|
ρ1

)]pk +Dmax
{

1,
[
M(
|le|
ρ1

)
]G}

Where G = supk(pk), D = max
(
1, 2G − 1) by(1).

Thus xk ∈ [ωθ,M, p, u, s]σ(∆m
v )
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Theorem 3.4 Let M = (Mk) be a Musielak-Orlicz functions. If supk
[
Mk(z)

]pk <∞ for all z > 0,
then

[ωθ,M, p, u, s]σ(∆m
v ) ⊂ [ωθ,M, p, u, s]∞σ (∆m

v ).

Proof. Let xk ∈ [ωθ,M, p, u, s]σ(∆m
v ) by using(1), we have

1

hr

∑
k∈Ir

ukk
−s
[
Mk(
|tnk(∆m

v xk)|
ρ

)
]pk

≤ D

hr

∑
k∈Ir

[
Mk(
|tnk(∆m

v xk − le)|
ρ

)
]pk

+
D

hr

∑
k∈Ir

[
Mk(
|le|
ρ

)
]pk

Since supk[M(z)]pk <∞, we can take the supk[M(z)]pk = K. Hence we can get xk ∈ [ωθ,M, p, u, s]σ(∆m
v ).

This complete the proof.

Theorem 3.5 Let m ≥ 1 be fixed integer. Then the following statements are equivalent:

(i) [ωθ,M, p, u, s]∞σ (∆m−1
v ) ⊂ [ωθ,M, p, u, s]∞σ (∆m

v )

(ii) [ωθ,M, p, u, s]σ(∆m−1
v ) ⊂ [ωθ,M, p, u, s]σ(∆m

v )

(iii) [ωθ,M, p, u, s]oσ(∆m−1
v ) ⊂ [ωθ,M, p, u, s]0σ(∆m

v ).

Proof. Let xk ∈ [ωθ,M, p, u, s]oσ(∆m−1
v ). Then there exist ρ > 0 such that

lim
r→∞

1

hr

∑
k∈Ir

ukk
−s
[
Mk(
|tnk(∆m

v xk)|
ρ

)
]pk
→ 0.

Since Mk is non decreasing and convex, we have

1

hr

∑
k∈Ir

ukk
−s
[
Mk(
|tnk(∆m

v xk)|
2ρ

)
]pk

=
1

hr

∑
k∈Ir

ukk
−s
[
Mk(
|tnk(∆m−1

v xk −∆m−1xk+1)|
2ρ

)
]pk

≤ 1

hr

∑
k∈Ir

ukk
−s
[
Mk(
|tnk(∆m−1

v xk)|
2ρ

)
]pk

+
1

hr

∑
k∈Ir

ukk
−s
[
Mk(
|tnk(∆m−1

v xk+1)|
2ρ

)
]pk

≤ D

hr

∑
k∈Ir

ukk
−s
[
Mk(
|tnk(∆m−1

v xk)|
ρ

)
]pk

+
D

hr

∑
k∈Ir

ukk
−s
[
Mk(
|tnk(∆m−1

v xk+1)|
ρ

)
]pk

.

Taking limr→∞, we have

1

hr

∑
k∈Ir

ukk
−s
[
Mk(
|tnk(∆m

v xk)|
ρ

)
]pk

= 0,

i.e xk ∈ [ωθ,M, p, u, s]oσ(∆m−1
v ). The rest of these cases can be proved in similar way.

Theorem 3.6 Let M = (Mk) and T = (Tk) be two Musielak-Orlicz functions. Then we have
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(i) [ωθ,M, p, u, s]∞σ (∆m
v ) ∩ [ωθ, T, p, u, s]∞σ (∆m

v ) ⊂ [ωθ,M + T, p, u, s]∞σ (∆m
v )

(ii) [ωθ,M, p, u, s]σ(∆m
v ) ∩ [ωθ, T, p, u, s]σ(∆m

v ) ⊂ [ωθ,M + T, p, u, s]σ(∆m
v )

(iii) [ωθ,M, p, u, s]0σ(∆m
v ) ∩ [ωθ, T, p, u, s]0σ(∆m

v ) ⊂ [ωθ,M + T, p, u, s]0σ(∆m
v ).

Proof. Let xk ∈ [ωθ,M, p, u, s]∞σ (∆m
v ) ∩ [ωθ, T, p, u, s]∞σ (∆m

v ). Then

sup
r,n

1

hr

∑
k∈Ir

ukk
−s
[
Mk(
|tnk(∆m

v xk)|
ρ

)
]pk

<∞

and

sup
r,n

1

hr

∑
k∈Ir

ukk
−s
[
Tk(
|tnk(∆m

v xk)|
ρ

)
]pk

<∞

uniformly in n. We have [
(Mk + Tk)(

|tnk(∆m
v xk)|
ρ

)
]pk

≤ D
[
Mk(
|tnk(∆m

v xk)|
ρ

)
]pk

+D
[
Tk(
|tnk(∆m

v xk)|
ρ

)
]pk

by(1). Applying
∑
k∈Ir and multiplying by uk, 1

hr
and k−s both side of this inequality, we get.

1

hr

∑
k∈Ir

ukk
−s
[
(Mk + Tk)(

|tnk(∆m
v xk)|
ρ

)
]pk

,

≤ D

hr

∑
k∈Ir

ukk
−s
[
Mk(
|tnk(∆m

v xk)|
ρ

)
]pk

+
D

hr

∑
k∈Ir

ukk
−s
[
Tk(
|tnk(∆m

v xk)|
ρ

)
]pk

uniformly in n. This completes the proof.(ii) and (iii) can be proved similar to (i)

Theorem 3.7 (i) The sequence spaces [ωθ,M, p, u, s]∞σ and [ωθ,M, p, u, s]0σ are solid and hence
they are monotone.
(ii) The space [ωθ,M, p, u, s]σ is not monotone and neither solid nor perfect.

Proof. We give the proof for [ωθ,M, p, u, s]0σ. Let xk ∈ [ωθ,M, p, u, s]0σ and (αk) be a sequence of
scalars such that |αk| ≤ 1 for all k ∈ N. Then we have

1

hr

∑
k∈Ir

ukk
−s
[
Mk(
|tnk(αkxk)|

ρ
)
]pk
≤ 1

hr

∑
k∈Ir

ukk
−s
[
Mk(
|tnk(xk)|

ρ
)
]pk
→ 0

(r → ∞), uniformly in n. Hence (αkxk) ∈ [ωθ,M, p, u, s]0σ for all sequence of scalars (αk) with
|αk| ≤ 1 for all k ∈ N, whenever xk ∈ [ωθ,M, p, u, s]0σ. The spaces are monotone follows from the
remark(1)
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