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Abstract

In this paper, we study the energy decay rate for the Bresse system in a one-dimensional
bounded domain with nonlinear localized damping acting in all the three wave equations. We
show the asymptotic stability without impose conditions about the equal-speed wave
propagation using a method developed by Kormornik [1994] and Martinez [1999], providing a
larger class for non-linear functions.

Keywords: Bresse system, localing damping, energy decay, Komornik's inequality.

2010 Mathematics Subject Classification: 35Q99;70K20
1 Introduction

We consider the initial-boundary value problem for the Bresse system with weak nonlinear
localized dissipation

PPy —k(@y +y +1w) y —kyl(wy —19) + @+ (0)g,(9) =0, (1.1)
PVt —b¥xx +k(@x +y +iw) +ay (g, (y,) =0, (1.2)
Pwir = ko Wy =1@)x + Kl (@x + Y +1w) + a3 (x) g3 (W) =0, (1.3)

in (0,L)X R , where L > 0is a constant and RY = (0, 4+e0) , with Dirichlet boundary conditions

00,t) =@(L,t) =y (0,1) =y (L,t) =w(0,1) =w(L,t) =0, € R+, (1.4)
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and initial conditions
¢(’0) = ¢0’W(’0) = WO’W(’O) = WO’ (15)

9, (.0) = 9. ¥, (. 0) = ¥y w, (,0) = w. (1.6)

Here pl,pz,b,l,k,ko are positive constants which related to composition of the material,

8; :R—>R,i=1,2,3, are continuous nondecreasing function and (Zl-,i =1,2,3, are positive
functions. By w, ¢ and i we are denoting, respectively, the longitudinal, vertical and shear angle
displacements, and {@, ¥, w} is a sought solution of (1.1)-(1.3). Elastic structures of the arches
type are objects of study in many areas like mathematics, physics and engineering. For more

details, the interested reader can visit the works of Liu and Rao[1]; Boussouira et al.[2] and
references therein.

There exist a few results about the stability of the Bresse system where the authors consider the
different kinds of the dissipative mechanism. For example, in the works of Liu and Rao [1], they
consider the Bresse system with two different dissipative mechanisms, given by two heat
equations, non-dissipative coupled to the system. Boussouira et al. [2]; Noun and Wehbe [3]
proved that the semi group associated with the Bresse system

PPyt = k(@ + Y +Iw)y —kgl(wy —19) =0, (1.7
PVt — bWy +k(@y + Y +1w)+ 1 =0, (1.8)
Pwi —kowy —19) ¢ + k(@ +y +1w) =0, (1.9)

with boundary conditions of the Dirichlet-Dirichlet-Dirichlet type or mixed boundary conditions is
polynomially stable provided

Pk

SL 22 and k =k,

py b

(i.e., the equal-speed wave propagation condition) and moreover they proved the lack of
exponential stability when they considered the Dirichlet-Neumann-Neumann type boundary
condition. The equal-speed wave propagation condition has been used in many works in order to
establish exponential decay rates, see for instance Boussouira et al. [2]; Noun and Wehbe [3];
Fatori and Monteiro [4]; Soriano et al. [5]; Fatori and Rivera [6]. Fatori and Monteiro [4] showed
the optimality of the polynomial decay rate for the Bresse system (1.7)-(1.9) with the Dirichlet-
Neumann-Neumann type boundary condition. Soriano et al. [S] proved the asymptotic stability for
the system with indefinite damping mechanism.

Wehbe and Youssef [7]; Santos and Junior [8] showed the asymptotic stability without impose

conditions about the equal-speed wave propagation for the system for the Bresse system with
linear dissipation by different methods.
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Soriano et al. [9] and Charles et al. [10] gave the asymptotic stability for the following Bresse
system with nonlinear dissipation

PPy — k(@ +y +1w) —kl(w, —1p)+ (1) g,(¢,) =0, (1.10)
PV, —by k(@ +y +iw)+a,(x)g,(y,)=0 (1.11)
Pw, —kow, —1@) +kl(@, +¥ +Iw) + o5 (x)g;(w,) =0 (1.12)

by energy methods. However, to obtain the energy decay rate estimate, the author required that ¢,

and the damping terms g, (-) satisfy the following growth rate:

o, =a,(x)e L (0,L),a,(x) 2 ¢ >0,

8 (5)s >0, for s#0,cs < g,(s)<ds for [s|>Li=123  (L13)

where C, ¢, d are constant.

Fatori and Rivera [6] consider the Bresse system (1.7)-(1.9) with thermal dissipation effective in
additional equation of the system. There are some results about the stability and global attractors
for thermoelastic Bresse system (see Ma[11]; Han and Xu [12]).

Our main goal is to obtain rates of decay for the nonlinear localized damped system (1.1)-(1.6) by
using the multiplier method. In this paper, inspired by the works of Komornik [13] and Martinez

[14], we extend the behavior of ¢;, g;(-)to more general cases which does not necessarily satisfy
(1.13) and get the explicit energy decay rate estimate for the system (1.1)-(1.6).

Adopting the methods of the works Komornik [13]; Martinez [14]; Guesmia[l5]; Haraux and
Zuazua [16], we construct an energy functional which is equivalent to the energy of the problem
(1.1)-(1.6) and then prove that the functional satisfies a differential inequality from which our
energy decay rate estimate can be established.

There is much literature concerned with the energy decay rate estimates for related problems, for
more recent results we refer the reader to Benaissa and Mokeddem [17]; Burio [18]; Cavalcanti et
al. [19]; Zhang and Zuazua [20].

Our paper is organized as follows. In Section 2 we present the main assumptions and the existence

and uniqueness of solutions of the problem (1.1)-(1.6). Section 3 is devoted to the proof of the
main result.

2 Preliminaries and the Existence and Uniqueness of Solutions

In this section, we present some material needed for the proof of our results and the existence and
uniqueness of solutions by Galerkin method. Throughout this paper, we denote by
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-1 II-IIH1 the usual norms in space LZ(O, L),L"(0,L) and H(l)(O, L) , respectively, and
0

p’

u,v) = [qu(x)v(x)dx ,Q = (0,L)x(0,T) .

We suppose that ¢, (x) and g, (s) satisfy the following hypotheses:

() @ =a;(xel” (0.L),ax)2c>0i=123.

(i) g;(t):R— R is a nondecreasing C % function and suppose that there exist constant
K, 2K, >0 such that fori=1,2,3

8:(s)s>0(s #0), Kmin{lsl,Is1"} <l g,(s)I< K,max{lsl,|s IL”},p >1.

We first state a well-known lemma that will be needed later.

Lemma 2.1 (Komornik [13]; Martinez [14]) Let E: R* — R* be a nonincreasing function and
assume that there are two constants p >1and A > 0 such that

p+l1

j;w E(t) 2 dt < AE(S),0< S < +oo,

then

2

E(1)<cE(0)(1+1t) »1,:20,if p>1,
E(t)<cE(0)e™,t20,if p=1.

where ¢ and @ are positive constants independent of the initial value £(0) .
If w,¢ andy is a solution of (1.1)-(1.6) then the energy of system related to this solution will be
denoted by E (¢), with 7 nonnegative, and given by

1
E(t):E.[:(pl|qo,|2+p2|1//,|2+,01|w,|2+b|(ox|2+|¢|2 +k, wx—l¢|2+k|(/{t+y/+lw|2)dx. 2.1)

We can prove that the system (1.1)-(1.6) is dissipative as stated below:

Lemma 2.2 (Charies et al. [7]; Soriano et al. [8]) The energy functional E(z) defined by (2.1),
satisfies:

L

d
~E() =] (@800, + @ (08,0)W, + (g, 00w dr <0, (2.2)

There are many results about the global existence by virtue of the semi-group arguments (see
Soriano et al. [5]; Boussouira et al. [2]; Charies et al. [7]; Fatori and Rivera [6]; Fatori and
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Monteiro [4]; Soriano et al. [8]). Next, for completeness, we state and present a brief discussion of
the existence, uniqueness of the solutions of (1.1)-(1.6) by standard Galerkin method.

Theorem2.3 Let ¢,y,,w,€ H, and ¢, ¥, w e L’, and assume that g, ¢, i=1,2,3, satisfy

the above condition. Then the problem (1.1)-(1.6) admits a uniqueness weak
solution (¢, ¥, w) such that

o v, we " (0.T:H,(Q)); @ v, w,eL (0.T;L)
and satisfies the equation (1.1)-(1.3) in the weak sense and the initial condition (1.5)-(1.6).

Proof Let{v;} be orthonormal bases in H (L and denote V, = span{v,.v,, --,v, }. We find

the approximate solution of problem (1.5)-(1.6) in the form
¢m = ijm (t)vj;l//m = Zhjm (t)vj;wm = erm (t)vj’
j=1 j=1 j=1

where the coefficient functions f,, (¢),h,,(¢),r,,(¢) are solutions to the approximate problem

Jjm

P (@ V) TR (P, + Y, + 1w, v ) =k lW,, =g, +Q.v)+ (2 (X)g,(9,).V) =0, (2.3)

Py W V) DWW, v, )+ (@, + W, + 1w, ) + (2, (%) 8, W,,),v) =0, (24
P W, V) + kW, =19,.v )+ K@, + ¥, + 1w, V) + (2 (X)g;(W,,),v) =0, (2.5)
2,0 =9,,.v,.0) =y,,,w,0)=w,,, (2.6)
?.0=9,v,0=y,w,0=w,, 2.7

forany ve V. Here ¢, :Z((po,vj)vj = 0V, ZZ(l/lo,vj)vj =W, W, ZZ((po,vj)vj —>w,
i=1

i=1 i=1

. l m m n
strongly in H, ; @, =Z(¢71,vj)vj = 0.V, =Z(l//1,v}.)v}. SU.w, =Z(¢71,vj)vj —>w
i i=1

i=1

strongly in L.

From the assumptions of Theorem 2.3, system (2.3)-(2.7) has a local solution ¢, ,w, , on some
interval [0,7,] with0<T, <T and we can extend this solution to whole interval [0,7] by
making use of a priori estimates below.

Putting v=9,, (t),v=¥,, (¢) andv=w,,(r) in (2.3), (2.4) and (2.5), respectively, and adding

these three equations, we obtain
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Em (t) + J.(: J.(j {a] (x)g] (wmt )wmt + aZ (‘x)gZ (l//mt )l//mt + a3 (x)g3 (Wmt )Wmt }d‘th = Em (0) ’ (2'8)

where

2 2
+|g,|

1
E,(0)=3[ (ol + ol [+, [+

¢mt ¢VV'I X

+kol|w,, — lgom|2 +klp, +w, +w,

Z)dx, 2.9)

which implies that E, () is non-increasing in [0,7,) and then E, (t)<E, (0) .Therefore,
employing the assumptions about ¢, ¥, w,, we deduce that there exists a constant
C=C(T)>0, independent of m, and te [0,7,,), such that

J, (o

+kol|w,, —1o

mx m

2 2
+

RN 70 - T

¢m1 gpm x ¢m

‘rk

@+, +1w, [ )dr<C. (2.10)
The above estimates allow one to take 7,, =7 for all m and gives
®,.¥,,.w, is bounded in L~ (O,T;Hé) ;

@, W,.,w,, is bounded in L~ (O,T; I ) NL(Q).

Then by the compactness lemma and the embedding H) c L',1<r <+oo, there exist a

subsequence of ¢, , a subsequence of ¥, , a subsequence of w, , a subsequence of ¢

mt

subsequence of y/,, and a subsequence of w,, which we still denote by the same notations, anz
functions ¢, W, w such that
0, > oW, > w,w, —wweak *in L~ (O,T;Hg) ;
@, =0V, SVW,,w, —w weak *in L” (O,T;Lz) and weak *in L” (Q) ;
@, = oW, > W¥,w, — wae. strongly in L’ (Q).

Analogous arguments as in Section 6.2 of Lions [21], we have

81 (¢mz)_> 81 (Q)’gz (V/mx) — & (l/lz)’gl (me) — & (Wz) weak in Lp,(Q) )
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and then letting m — o0 in (2.3), (2.4) and (2.5) for anyve H[l) , we established the existence and
uniqueness of the weak solution.

Furthermore, we can get the following result about regular solution but we omit the proof.

Theorem 2.4 Let ¢,,y,,w,€ H NH, and ¢, y,,w,e L' "H,

0 °
i=1,2,3, satisfy the above condition. Then the problem (1.1)-(1.6) admits a uniqueness regular

and assume that g, ¢, ,
solution (@, y, w) such that
p.y.we L (0,T;H> "HY )99, w,€ L (0.T;° "Hy ):9,.¥,.,w, € L (0,5 )
and satisfies the equation (1.1)-(1.3) in the weak sense and the initial condition (1.5)-(1.6).
3 Energy Decay of Solution

In this section, we prove our decay result. The definition and the existence of solutions of (1.1)-
(1.6) are the same as Theorem 2.3.

Theorem 3.1 Assume that the condition about ¢ (x),g,(¢),i =1,2,3, hold. Let @,,¥,, w, € H,
and ¢,,y,,w € L’ . Then the solution of the problem (1.1)-(1.6) satisfies

E(t)<cE(0)e ™, t20,p=1,

2

E(t)<cE(0)(1+7) r1,620,p>1,

where ¢ and @ are positive constants independent of the initial value E(0) .

p—1 p-1
Proof We multiply equation (1.1) by E(f) 2 ¢, equation (1.2) by E(¢) 2 ¥ and equation (1.3)
p-l
by E(t) 2 w, and then integrate these three equations (0,L)X(S,T), we have

p-l

T £~
0=[ E(1)2 [ [p@, ~ k(o +y+iw) —k(w,~19)+9+a (x)g (9) |pdxd

T
r=l

(805 [ o)

1 p-3

p—1¢r , L T iy
—TL E(t)2 E'(1)), pl(p,¢>dxdt+kL E(t) 2 L @} dxdt

+ITE(t)TI(L|:(—k (w+iw), —kl(w, -lp)+o+a (x)g (9 ))go—plgodexdt, (3.1)

T

rolap
OZJ'S E()2 L |:p21//” by, +k(p +y+Iw)+a, (x)gz(y/,)]aydxdt
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T

—”T"l LTE(t)pT O pwydwdi+b[ E(r) > : [Fyduan

=( B = [ pz‘//;‘//dx)

N

r-1 L

L E@) [[(k(p+y+iw)+a (x) g, (w,))y - py? v, (3.2)

P—

0= [T E(1)> ["[pw,—k (v, ~19), +KI (g, ++1w)+ @ (x) g, () s

N

T

-1
= [E(t)pT J.OLplwtwdx]
N

p—1¢r 3 L T aryi
_TLE(z)z E'(1) [ powwdxdi+k, [ E(1) 7 [ wldxdt

+[E( j [(Kolp, +1(9, +y +1w) + 5 (x) g5 (w,)) w= pyw] Jdxar, (3.3)

Taking the sum of the above three equations, we get

T s T Ly 2 2 2 2 2
2L E(t)2 dt:jS E(t)2 _|'0 (p]\¢,\2+p2\y/,\ +p|w| +blw, | +kl|w, —1g| +k|p, +w+n| )dxdt

T

=[E( N7 [ (ot oy + Pk J

N

—1 7 =3 'y
+p_2 [ E@) > E(t) [ (np0+ o0y + poww)dxd

[TEW) [ (o ()08, () + @ (x)wga (w, )+ @ (x)we, (w,))dcr

N

L
+2J' 2 J' PP+ P+ pw; Jdxdt . (3.4)
Noting that ||l//||SC1 v, || and
o< o, +u+ ol eI+l ol < G, o, ~ 16 ¢ . G5)

since E(t) is non-increasing and non-negative function on R*, using Holder's inequality,

Poincare's inequality, Young's inequality and the expressions of E(¢) , we have
T
<CE(T)

N

P-1 P+l
2

(E(T)+E(S))<SCE(S) 2, (3.6)

p-1
[E( )2 | (p1¢,¢+p2w,l/f+pIWW)dXJ
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T p-3

—1 L
P B E W] (09+ papy+ powwhixdr

< CE(S)%, (3.7)

1 T ,

L E’(t)dt
where and in the following C denote the different constants. Using (3.6) and (3.7), we conclude
from (3.4) that

<c|lE(r)7 E/(ri<CE(s) >

p+l

T iaal T Ly’
2J' E(t)> dtScE(S)+cJ.S E(t)>2 .[0 [p1|¢>,|2+p2|1//,|2+pl|w,|2

N

+0,(x) 98, (9,)+ o, (X) g, (w,)+a, (x) wgs (w,) |dxd . (3.8)

Now, we estimate the terms of the right-hand side of (3.8) in order to apply the results of Lemma
2.1. By the assumption about &, (x), the condition (ii) about g,, Sobolev embedding, Holder's

inequality, (3.5), (2.2) and the expressions of E(t), we get

p-1

H:E(f)zr a, (x) pg, (9, )dxdt

< CI 5 dt+CI 1'|.0L|g1 (o, )|2dxdt

+1 p—1
<CE(s): +C[ E(1)® UW

s (g dx+| Igl((/’,)lzdx}dt

o |s1

il T r-l Z
<CE(S)7 +C[ E(1)? {Iwgl(@mdﬁ (gl(@)v,)””dX}dt

|o]<1

2

<CE(S)2 +C[ E(r) ; (1))dr+C || E( %(L@‘Sl(gl((pt)‘gq)dx)ﬁdt

P+l T p-1 P-

<cE(s)s +f B0 (~E )i+ B0 (~E (1))rd (3.9)

We may prove in the same way the following estimate

-1 L

H E()T [ o (x)we, (v, Jaxd

<CE(S) +C[ E()> (~E (1)) +C| E 07 (B (1))ride | (3.10)

and
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p— 2

<CE(S)2 +C STE pT( )dr+Cf 7 —E'(1))ride 3.11)

By the assumption about the condition (ii) about g, and (2.2), we get

T =)
.[ E(t)> .[0 P9, dxdt

N

-1
= .[ST E(t)pT [ o 0,0 dx + pl¢,2dx:| dt

o |>1

<c[lE()* Uw g(@)pdv+[ (@)r l(qo,)ifldx}d
<CE( = (EOM+cf B> l(f ‘q(gl(%)-v%)dx)ﬁdt
< C.[STE(t)lTi1 (—E’(t))dt+C.[STE(t)pTi1 (_E’(t))pzﬂd,_ 3.12)

By an analogous estimates of (3.11) and (3.12), we obtain the following estimate,

p-l

1) (<E/(e)de+C[ E() = (~E'())7idr . (3.13)

[ E 0> [l pypaxar <[ E

p-1 p-1

J.:E(t)%lj.:plw,zdxdt <C[ E(1)> (-E(e)Jdr+C[ E(1 B ()rdr (3.14)

Substituting the estimates (3.6)-(3.11) into the right-hand side of (3.4), we obtain that

pl +1 2

LTE(t)Tdt SCE(S)pT +C.[STE t )dt+Cj E’(t))rdt

2

(—E'(t))r+dt. (3.15)

Ll
2

Using the Young inequality, for any fixed £ > (0 we have

p+l ptl 1 2

[TE() > dr<cE(S)> +Cf E(t)™ (~E(1))r1dr

N

p+l p+l -

<CE(S)2 +Ce[ E(1) 2 dr+Ce * j:(—E’(t))dt. (3.16)

Therefore
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p+l

(1-Ce) [ E(r) > ar

2

< CE(S)PTH +C€1;PJ.ST(—E'(t))dt < c[1+512p][1+E(S)H ]E(S). (3.17)

Choosing 0 < € <1 such that 1-C¢ >0 and using the non increasingness of the energy, we have,
forall 0< S <T <+,

p+l p-1

[[E@)=a Sc(l+E(0)jE(S)_

Letting T — +oo, this yields the following estimate:

p+l

[T E@eyz ar<cE(s). (3.18)

The constant C in (3.18) is independent of S and E (O) , then, by Lemma 2.1, we get the result.
If p=1, we easily obtain from (3.9) and (3.12)

T =) N
£ ] @ (g (9 a

<CE(S)",

n—1
[TE@)> [ ppduds < CE(S)™,

N

then, by an analogous process of the above and by Lemma 2.1, we get the result.
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