Construction Techniques of Generator Polynomials of BCH Codes

T. Shah ${ }^{1}$, A. Qamar ${ }^{1}$ and A. A. Andrade ${ }^{2 *}$
${ }^{1}$ Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan
${ }^{2}$ Department of Mathematics, São Paulo State University at São José do Rio Preto,
São Paulo, Brazil

Original Research
 Article

Received: 22 July 2013
Accepted: 21 November 2013
Published: 27 December 2013

Abstract

Let $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}$ be a chain of unitary commutative rings (each \mathcal{A}_{i} is constructed by the direct product of suitable Galois rings with multiplicative group \mathcal{A}_{i}^{*} of units) and $\mathcal{K}_{0} \subset \mathcal{K}_{1} \subset \cdots \subset$ $\mathcal{K}_{t-1} \subset \mathcal{K}_{t}$ be the corresponding chain of unitary commutative rings (each \mathcal{K}_{i} is constructed by the direct product of corresponding residue fields of given Galois rings, with multiplicative groups \mathcal{K}_{i}^{*} of units), where t is a non negative integer. In this work presents three different types of constructions of generator polynomials of sequences of BCH codes having entries from \mathcal{A}_{i}^{*} and \mathcal{K}_{i}^{*} for each i, where $0 \leq i \leq t$.

Keywords: Units of a ring, BCH code, Galois rings
2010 Mathematics Subject Classification: 11T71, 94A15, 14G50

1 Introduction

Let \mathcal{A} be a finite commutative ring with identity. The ring \mathcal{A}^{n}, with $n \in \mathbb{Z}^{+}$, being a free \mathcal{A}-module preserve the concept of linear independence among its elements is similar to a vector space over a field. Though it is the constraint that an $r \times r$ submatrix of $r \times n$ generator matrix M over \mathcal{A} is nonsingular, or equivalently, has determinant unit in \mathcal{A}. The existence of non-singular matrices having not obligatory the unit elements is, in fact the primary obstacle in working over a local ring instead of a field. The notion of elementary row operations in a matrix, and its consequences, also carry over \mathcal{A} with the understanding that only multiplication of a row by a unit element in \mathcal{A} is allowed, which is in contrast to the multiplication by any nonzero element in the case of a field. The structure of the multiplicative group of units of \mathcal{A} is the main motivation to calculate the McCoy rank [1] of a matrix M, that is the largest integer r such that $r \times r$ submatrix of M has determinant unit in \mathcal{A}.

[^0]Linear codes over finite rings have been discussed in a series of papers initiated by Blake [2], [3], and Spiegel [4], [5]. However a remarkable development, nonetheless, began by Forney et al. [6]. The structure of, the multiplicative group of unit elements of certain local finite commutative rings have recently raised a great interest for its wonderful application in algebraic coding theory. Using multiplicative group of unit elements of a Galois ring extension of $\mathbb{Z}_{p^{m}}$, Shankar [7] has constructed BCH codes over $\mathbb{Z}_{p^{m}}$. However, Andrade and Palazzo [8] have further extend these construction of BCH codes over finite commutative rings with identity. Both construction techniques of [7] and [8] have been addressed from the approach of specifying a cyclic subgroup of the group of units of an extension ring of finite commutative rings. The complexity of study is to get the factorization of $x^{s}-1$ over the group of units of the appropriate extension ring of the given local ring.

There exist corresponding Galois ring extensions $\mathcal{R}_{i}=G R\left(p^{m}, h_{i}\right)$, where $0 \leq i \leq t, h=b^{t}$, b is prime, t is a positive integer and $h_{i}=b^{i}$ (respectively, there residue fields \mathbb{K}_{i}, where $0 \leq i \leq t$ and $h_{i}=b^{i}$) of unitary local ring (\mathcal{R}, \mathcal{M}) with p^{m} elements (respectively, p elements and residue field $\mathcal{R} / \mathcal{M})$. For each i, for $0 \leq i \leq t$, it follows that \mathcal{R}_{i}^{*} has one and only one cyclic subgroup $G_{n_{i}}$ of order n_{i} (divides $p^{h_{i}}-1$) relatively to p (an extension in [7, Theorem 2]). Furthermore, if $\overline{\beta^{i}}$ generates a cyclic subgroup of order n_{i} in \mathbb{K}_{i}^{*}. Then β^{i} generates a cyclic subgroup of order $n_{i} d_{i}$ in \mathcal{R}_{i}^{*}, where d_{i} is an integer greater than or equal to 1 , and $\left(\beta^{i}\right)^{d_{i}}$ generates the cyclic subgroup $G_{n_{i}}$ in \mathcal{R}_{i}^{*} for each i [7, Lemma 1]. Then by extending the given algorithm [7] for constructing a BCH codes with symbols from the local ring \mathcal{A} for each member in chains of Galois rings and residue fields, respectively. Consequently there are two situations: $s_{i}=b^{i}$ for $i=2$ or $s_{i}=b^{i}$ for $i \geq 2$. By these motivations in this paper for any $t \in \mathbb{Z}^{+}$, we let $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}$ be a chain of unitary commutative rings, whereas for each i, such that $0 \leq i \leq t$, it follows that \mathcal{A}_{i} is direct product of Galois rings, i.e.,

\mathcal{A}_{0}	$=$	$\mathcal{R}_{0,1}$	\times	$\mathcal{R}_{0,2}$	\times	\cdots	\times	$\mathcal{R}_{0, r}$
\cap		\cap		\cap				\cap
\mathcal{A}_{1}	$=$	$\mathcal{R}_{1,1}$	\times	$\mathcal{R}_{1,2}$	\times	\cdots	\times	$\mathcal{R}_{1, r}$
\cap		\cap		\cap				\cap
\vdots		\vdots		\vdots		\ddots		\vdots
\cap		\cap		\cap				\cap
\mathcal{A}_{t}	$=$	$\mathcal{R}_{t, 1}$	\times	$\mathcal{R}_{t, 2}$	\times	\cdots	\times	$\mathcal{R}_{t, r}$

Whereas $\mathcal{R}_{0, j} \subset \mathcal{R}_{1, j} \subset \cdots \subset \mathcal{R}_{t-1, j} \subset \mathcal{R}_{t, j}$, for each $1 \leq j \leq r$, is the chain of Galois rings. In construction I we have different $\mathcal{R}_{i, j}$ with same characteristic p. In constructions II and III we take different $\mathcal{R}_{i, j}$ with different characteristic p_{j}, where $1 \leq j \leq r$.

Through of the chain $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}, \mathcal{K}_{0} \subset \mathcal{K}_{1} \subset \cdots \subset \mathcal{K}_{t-1} \subset \mathcal{K}_{t}$ there is a chain of rings constituted through the direct product of their residue fields, i.e.,

\mathcal{K}_{0}	$=$	$\mathbb{K}_{0,1}$	\times	$\mathbb{K}_{0,2}$	\times	\cdots	\times	$\mathbb{K}_{0, r}$
\cap		\cap		\cap				\cap
\mathcal{K}_{1}	$=$	$\mathbb{K}_{1,1}$	\times	$\mathbb{K}_{1,2}$	\times	\cdots	\times	$\mathbb{K}_{1, r}$
\cap		\cap		\cap				\cap
\vdots		\vdots		\vdots		\ddots		\vdots
\cap		\cap		\cap				\cap
\mathcal{K}_{t}	$=$	$\mathbb{K}_{t, 1}$	\times	$\mathbb{K}_{t, 2}$	\times	\cdots	\times	$\mathbb{K}_{t, r}$.

Whereas $\mathbb{K}_{0, j} \subset \mathbb{K}_{1, j} \subset \cdots \subset \mathbb{K}_{t-1, j} \subset \mathbb{K}_{t, j}$, for each $1 \leq j \leq r$, is the chain of corresponding residue fields. In construction I we have $\mathbb{K}_{i, j}=\mathbb{K}_{i, j+1}$ and different in remaining types. It follows that \mathcal{A}_{i}^{*} and \mathcal{K}_{i}^{*}, for each i, where $0 \leq i \leq t$, are multiplicative groups of units of \mathcal{A}_{i} and \mathcal{K}_{i}, respectively.

2 Construction I

For each j such that $1 \leq j \leq r$, let p be any prime and m_{j} be a positive integer. Then ring $A_{j}=\mathbb{Z}_{p^{m_{j}}}$ is the unitary finite local commutative ring with maximal ideal M_{j} and residue field $K=\frac{A_{j}}{M_{j}}=\mathbb{Z}_{p}$. The natural projection $\pi_{j}: A_{j}[x] \rightarrow K[x]$ is defined by $\pi_{j}\left(\sum_{k=0}^{n} a_{k} x^{k}\right)=\sum_{k=0}^{n} \overline{a_{k}} x^{k}$, where $\overline{a_{k}}=a_{k}+M_{j}$ for $k=0, \cdots, n$. Thus, the natural ring morphism $A_{j} \rightarrow K$ is simply the restrictions of π_{j} to the constant polynomial. Now, if $f_{j}(x) \in A_{j}[x]$ is a collection of basic irreducible polynomials with degree $h=b^{t}$, where each b is a prime and t is a positive integer, then $\mathcal{R}_{j}=\frac{A_{j}[x]}{\left(f_{j}(x)\right)}=G R\left(p^{m_{j}}, h\right)$ is the Galois ring extension of A_{j} and

$$
\mathbb{K}=\frac{\mathcal{R}_{j}}{\mathcal{M}_{j}}=\frac{A_{j}[x] /\left(f_{j}(x)\right)}{\left(M_{j}, f_{j}(x)\right) /\left(f_{j}(x)\right)}=\frac{A_{j}[x]}{\left(M_{j}, f_{j}(x)\right)}=\frac{\left(A_{j} / M_{j}\right)[x]}{\left(\pi_{j}\left(f_{j}(x)\right)\right)}=\frac{\mathbb{K}[x]}{\left(\pi_{j}\left(f_{j}(x)\right)\right)}=G F\left(p^{h}\right)
$$

is the residue field of \mathcal{R}_{j}, where $\mathcal{M}_{j}=\left(M_{j}, f_{j}(x)\right) /\left(f_{j}(x)\right)$ is the corresponding maximal ideal of \mathcal{R}_{j}.
Since $1, b, b^{2}, \cdots, b^{t-1}, b^{t}$ are the only divisors of h, and take $h_{0}=1, h_{1}=b, h_{2}=b^{2}, \cdots, h_{t}=$ $b^{t}=h$, therefore by [1, Lemma XVI.7] there exist basic irreducible polynomials $f_{1, j}(x), f_{2, j}(x), \cdots, f_{t, j}(x) \in$ $A_{j}[x]$ with degrees $h_{1}, h_{2}, \cdots, h_{t}$, respectively, such that we can constitute the Galois subrings $\mathcal{R}_{i, j}=\frac{\mathbb{Z}_{p^{m}}[x]}{\left(f_{i, j}(x)\right)}=G R\left(p^{m_{j}}, h_{i}\right)$ of \mathcal{R}_{j} with the maximal ideal $\mathcal{M}_{i, j}=\left(M_{j}, f_{i, j}(x)\right) /\left(f_{i, j}(x)\right)$, for each i, j, where $0 \leq i \leq t$ and $1 \leq j \leq r$. Thus the residue field of each $\mathcal{R}_{i, j}$ becomes

$$
\left.\mathbb{K}_{i}=\frac{\mathcal{R}_{i, j}}{\mathcal{M}_{i, j}}=\frac{A_{j}[X] /\left(f_{i, j}(x)\right)}{\left(M_{j}, f_{i, j}(x)\right) /\left(f_{i, j}(x)\right)}=\frac{A_{j}[x]}{\left(M_{j}, f_{i, j}(x)\right)}=\frac{\left(A_{j} / M_{j}\right)[x]}{\left(\pi_{j}\left(f_{i, j}(x)\right)\right)}=\frac{\mathbb{K}[x]}{(\bar{f}} f_{i, j}(x)\right)=G F\left(p^{h_{i}}\right) .
$$

As each h_{i} divides h_{i+1} for all $0 \leq i \leq t$, so by [1, Lemma XVI.7] it follows that

$$
A_{j}=\mathcal{R}_{0, j} \subset \mathcal{R}_{1, j} \subset \mathcal{R}_{2, j} \subset \cdots \subset \mathcal{R}_{t-1, j} \subset \mathcal{R}_{t, j}=\mathcal{R}_{j}
$$

is the chain of Galois rings with corresponding chain of residue fields

$$
\mathbb{Z}_{p}=\mathbb{K}_{0} \subset \mathbb{K}_{1} \subset \mathbb{K}_{2} \subset \cdots \subset \mathbb{K}_{t-1} \subset \mathbb{K}
$$

If $\mathcal{A}_{i}=\mathcal{R}_{i, 1} \times \mathcal{R}_{i, 2} \times \mathcal{R}_{i, 3} \times \cdots \times \mathcal{R}_{i, r}$, for each i such that $0 \leq i \leq t$, then we get a chain of commutative rings, i.e.,

$$
\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}=\mathcal{A}
$$

with an other chain of rings $\mathcal{K}_{0} \subset \mathcal{K}_{1} \subset \mathcal{K}_{2} \subset \cdots \subset \mathcal{K}_{t-1} \subset \mathcal{K}_{t}=\mathcal{K}$ where each $\mathcal{K}_{i}=\mathbb{K}_{i}^{r}$, for each i such that $0 \leq i \leq t$.

Let $\mathcal{A}_{i}^{*}, \mathcal{R}_{i, j}^{*}$ and \mathbb{K}_{i}^{*} be the multiplicative groups of units of $\mathcal{A}_{i}, \mathcal{R}_{i, j}$ and \mathbb{K}_{i} respectively, for each i, j, where $0 \leq i \leq t$ and $1 \leq j \leq r$. Now, the next theorem extended [1, Theorem XVIII.1], which has a fundamental role in the decomposition of the polynomial $x^{s_{i}}-1$ into linear factors over the ring \mathcal{A}_{i}^{*}. This theorem asserts that for each element $\alpha_{i} \in \mathcal{A}_{i}^{*}$ there exist unique elements $\beta_{i, j} \in \mathcal{R}_{i, j}^{*}$, for each i, j, where $0 \leq i \leq t$ and $1 \leq j \leq r$, such that $\alpha_{i}=\left(\beta_{i, 1}, \beta_{i, 2}, \cdots, \beta_{i, r}\right)$.

Theorem 2.1. Let $\mathcal{A}_{i}=\mathcal{R}_{i, 1} \times \mathcal{R}_{i, 2} \times \mathcal{R}_{i, 3} \times \cdots \times \mathcal{R}_{i, r}$ for each i such that $0 \leq i \leq t$, where each $\mathcal{R}_{i, j}$ is a local commutative ring. Then $\mathcal{A}_{i}^{*}=\mathcal{R}_{i, 1}^{*} \times \mathcal{R}_{i, 2}^{*} \times \mathcal{R}_{i, 3}^{*} \times \cdots \times \mathcal{R}_{i, r}^{*}$, for each i, j, where $0 \leq i \leq t$ and $1 \leq j \leq r$.

Note that $\bar{\beta}_{i, 1}=\bar{\beta}_{i, 2}=\bar{\beta}_{i, 3}=\cdots=\bar{\beta}_{i, r}=\bar{\beta}_{i}$, and therefore $\bar{\alpha}_{i}=\left(\bar{\beta}_{i}, \bar{\beta}_{i}, \bar{\beta}_{i}, \cdots, \bar{\beta}_{i}\right)$. Following theorem indicates the condition under which $x^{s_{i}}-1$ can be factored over \mathcal{A}_{i}^{*}, for each i, such that $0 \leq i \leq t$.

Theorem 2.2. For each i such that $0 \leq i \leq t$, the polynomial $x^{s_{i}}-1$ can be factored over the multiplicative group \mathcal{A}_{i}^{*} as $x^{s_{i}}-1=\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{2}\right) \cdots\left(x-\alpha_{i}^{s}\right)$ if and only if $\bar{\beta}_{i}$, has order s_{i} in \mathbb{K}_{i}^{*}, where $\operatorname{gcd}\left(s_{i}, p\right)=1$ and $\alpha_{i}=\left(\beta_{i, 1}, \beta_{i, 2}, \cdots, \beta_{i, r}\right)$.

Proof. Suppose that the polynomial $x^{s_{i}}-1$ can be factored over \mathcal{A}_{i}^{*} as $x^{s_{i}}-1=\left(x-\alpha_{i}\right)(x-$ $\left.\alpha_{i}^{2}\right) \cdots\left(x-\alpha_{i}^{s_{i}}\right)$. Then $x^{s_{i}}-1$ can be factored over $\mathcal{R}_{i, j}^{*}$ as $x^{s_{i}}-1=\left(x-\beta_{i, j}\right)\left(x-\beta_{i, j}^{2}\right) \cdots\left(x-\beta_{i, j}^{s_{i}}\right)$, for each i such that $0 \leq i \leq t$ and $1 \leq j \leq r$. Now it follows from the extension of [7, Theorem 3] that $\bar{\beta}_{i}$ has order s_{i} in \mathbb{K}_{i}^{*}, for each i such that $0 \leq i \leq t$. Conversely, suppose that $\bar{\beta}_{i}$ has order s_{i} in \mathbb{K}_{i}^{*}, for each i such that $0 \leq i \leq t$. Again it follows from the extension of [7, Theorem 3] that the polynomial $x^{s_{i}}-1$ can be factored over $\mathcal{R}_{i, j}^{*}$ as $x^{s_{i}}-1=\left(x-\beta_{i, j}\right)\left(x-\beta_{i, j}^{2}\right) \cdots\left(x-\beta_{i, j}^{s_{i}}\right)$, for $0 \leq i \leq t$ and $1 \leq j \leq r$. Since $\alpha_{i}=\left(\beta_{i, 1}, \beta_{i, 2}, \cdots, \beta_{i, r}\right)$, for each i such that $0 \leq i \leq t$, therefore $x^{s_{i}}-1=\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{2}\right) \cdots\left(x-\alpha_{i}^{s_{i}}\right)$ over \mathcal{A}_{i}^{*}, for each i such that $0 \leq i \leq t$.

Let $H_{\alpha_{i}, s_{i}}$ denotes the cyclic subgroup of \mathcal{A}_{i}^{*} generated by α_{i}, for each i such that $0 \leq i \leq t$, i.e., $H_{\alpha_{i}, s_{i}}$ contains all the roots of $x^{s_{i}}-1$ provided the condition of Theorem 2.2 is met. The BCH codes \mathcal{C}_{i} over \mathcal{A}_{i}^{*} can be obtained as the direct product of BCH codes $\mathcal{C}_{i, j}$ over $\mathcal{R}_{i, j}^{*}$. To construct the cyclic BCH codes over \mathcal{A}_{i}^{*}, we need to choose certain elements of $H_{\alpha_{i}, n_{i}}$, where $n_{i}=s_{i}$, as the roots of generator polynomials $g_{i}(x)$ of the codes. So that, $\alpha_{i}^{e_{1}}, \alpha_{i}^{e_{2}}, \alpha_{i}^{e_{3}}, \cdots, \alpha_{i}^{e_{n_{i}-k_{i}}}$ are all the roots of $g_{i}(x)$ in $H_{\alpha_{i}, n_{i}}$, we construct $g_{i}(x)$ as

$$
g_{i}(x)=\operatorname{lcm}\left\{M_{i}^{e_{1}}(x), M_{i}^{e_{2}}(x), \cdots, M_{i}^{e_{n_{i}-k_{i}}}(x)\right\},
$$

where for each i such that $0 \leq i \leq t$, it follows that $M_{i}^{e_{l_{i}}}(x)$ is the minimal polynomial of $\alpha_{i}^{e_{l_{i}}}$, for $l=1,2, \cdots, n_{i}-k_{i}$, whereas each $\alpha_{i}^{e_{l_{i}}}=\left(\beta_{i, 1}^{e_{l_{i}}}, \beta_{i, 2}^{e_{l_{i}}}, \cdots, \beta_{i, r}^{e_{l_{i}}}\right)$, and $M_{i}^{e_{i}}(x)$. The following theorem is the extension of [7, Lemma 3] and provides us a method for construction of $M_{i}^{e_{L_{i}}}(x)$, the minimal polynomial of $\alpha_{i}^{e_{l_{i}}}$ over the ring \mathcal{A}_{i}, for $0 \leq i \leq t$.
Theorem 2.3. For each i such that $0 \leq i \leq t$, let $M_{i}^{e_{l_{i}}}(x)$ be the minimal polynomial of $\alpha_{i}^{e_{l_{i}}}$ over \mathcal{A}_{i}, where $\alpha_{i}^{e_{l_{i}}}$ generates $H_{\alpha_{i}, n_{i}}$, for $l_{i}=1,2, \cdots, n_{i}-k_{i}$. Then $M_{i}^{e_{l_{i}}}(x)=\prod_{\xi_{i} \in B_{i}^{l_{i}}}\left(x-\xi_{i}\right)$, where $B_{i}^{l_{i}}=\left\{\left(\alpha_{i}^{e_{l_{i}}}\right)^{m_{i, j}}: m_{i, j}=\prod_{j=1}^{r} p^{q_{i, j}}, 1 \leq l_{i} \leq n_{i}-k_{i}, 0 \leq q_{i, j} \leq h_{i}-1\right\}$.
Proof. Let $\bar{M}_{i}^{e l_{i}}(x)$ be the projection of $M_{i}^{e l_{i}}(x)$ over the field \mathbb{K}_{i} and $\bar{M}_{i}^{e_{i}}(x)$ be the minimal polynomial of $\bar{\alpha}_{i}^{e_{L_{i}}}$ over \mathbb{K}_{i}^{*}, for each i, j, where $0 \leq i \leq t$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. We can verify that each $\bar{M}_{i}^{e_{l_{i}}}(x)$ (minimal polynomial of $\bar{\alpha}_{i}^{e_{l_{i}}}$) is divisible by $\bar{M}_{i, j}^{e_{l_{i}}}(x)$ (minimal polynomial of $\bar{\beta}_{i}^{e_{l_{i}}}$), for $0 \leq i \leq t$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. Thus it has, among its roots, distinct elements of the sequences $\bar{\alpha}_{i}^{e_{l_{i}}},\left(\bar{\alpha}_{i}^{e_{l i}}\right)^{p},\left(\bar{\alpha}_{i}^{e_{l i}}\right)^{p^{2}}, \cdots,\left(\bar{\alpha}_{i}^{e_{l i}}\right)^{p^{p_{i}-1}}$, for $0 \leq i \leq t$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. Hence $M_{i}^{e_{l_{i}}}(x)$ has, among its roots, distinct elements of the sequence $\alpha_{i}^{e_{l_{i}}},\left(\alpha_{i}^{e_{l_{i}}}\right)^{p},\left(\alpha_{i}^{e_{l_{i}}}\right)^{p^{2}}, \cdots,\left(\alpha_{i}^{e_{l_{i}}}\right)^{p^{h_{i}-1}}$, for each i such that $0 \leq i \leq t$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. Thus the element $\xi_{i}=\left(\alpha_{i}^{e_{l_{i}}}\right)^{p^{m_{i}}}$ is the root of $M_{i}^{e_{l_{i}}}(x)$, for each i such that $0 \leq i \leq t, 0 \leq m_{i} \leq h_{i}-1$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. Hence $M_{i}^{e_{l_{i}}}(x)=\prod_{\xi_{i} \in B_{i}^{l_{i}}}\left(x-\xi_{i}\right)$.
Remark 2.1. Since, for each i such that $0 \leq i \leq t$, it follows that $\bar{M}_{i}^{e_{l_{i}}}(x)$ (minimal polynomial of $\bar{\alpha}_{i}^{e_{L_{i}}}$) is the projection of $M_{i}^{e_{l_{i}}}(x)$ (minimal polynomial of $\alpha_{i}^{e_{L_{i}}}$) over the rings \mathcal{K}_{i}. So $\bar{M}_{i}^{e_{l_{i}}}(x)$ generates the sequence of codes over the special chain of rings $\mathcal{K}_{i}=K_{i}^{r}$.

The lower bound on the minimum distances derived in the following theorem applies to any cyclic code. The BCH codes are a class of cyclic codes whose generator polynomials are chosen so that the minimum distances are guaranteed by this bound. In this sense, the following extended [8 , Theorem 2.5].

Theorem 2.4. [9, Theorem 11] For each i such that $0 \leq i \leq t$, let $g_{i}(x)$ be the generator polynomial of BCH code \mathcal{C}_{i} over the ring \mathcal{A}_{i} from the chain $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}$, with length $n_{i}=s_{i}$, and let $\alpha_{i}^{e_{1}}, \alpha_{i}^{e_{2}}, \alpha_{i}^{e_{3}}, \cdots, \alpha_{i}^{e_{n_{i}-k_{i}}}$ be the roots of $g_{i}(x)$ in $H_{\alpha_{i}, n_{i}}$, where α_{i} has order n_{i}. The minimum Hamming distance of this code is greater than the largest number of consecutive integers modulo n_{i} in $E_{i}=\left\{e_{1}, e_{2}, e_{3}, \cdots, e_{n_{i}-k_{i}}\right\}$, for each i such that $0 \leq i \leq t$.
Corollary 2.5. [8, Theorem 2.5] Let $g(x)$ be the generator polynomial of BCH code over A with length $n=s$ such that $\alpha^{e_{1}}, \alpha^{e_{2}}, \cdots, \alpha^{e_{n-k}}$ are the roots of $g(x)$ in $H_{\alpha, n}$, where α has order n, then minimum Hamming distance of the code is greater than the largest number of consecutive integers modulo n in $E=\left\{e_{1}, e_{2}, e_{3}, \cdots, e_{n-k}\right\}$.

2.1 Algorithm

We can also use the extension of [7, Theorem 4] for the BCH bound of these codes. The algorithm for constructing a BCH type cyclic codes over the chain of rings $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}=\mathcal{A}$ is then as follows.

1. Choose irreducible polynomial $f_{i, j}(x)$ over $\mathbb{Z}_{p^{m_{j}}}$ of degree $h_{i}=b^{i}$, for $1 \leq i \leq t$, which are also irreducible over $G F(p)$ and form the chains of Galois rings

$$
\begin{aligned}
\mathbb{Z}_{p^{m_{j}}} & =G R\left(p^{m_{j}}, h_{0}\right) \subset G R\left(p^{m_{j}}, h_{1}\right) \subset \cdots \subset G R\left(p^{m_{j}}, h_{t-1}\right) \subset G R\left(p^{m_{j}}, h_{t}\right) \text { or } \\
A_{j} & =\mathcal{R}_{0, j} \subseteq \mathcal{R}_{1, j} \subseteq \mathcal{R}_{2, j} \subseteq \cdots \subseteq \mathcal{R}_{t-1, j} \subseteq \mathcal{R}_{t, j}=\mathcal{R}_{j}
\end{aligned}
$$

and its corresponding chain of residue fields is

$$
\begin{aligned}
\mathbb{Z}_{p} & =G F(p) \subset G F\left(p^{h_{1}}\right) \subset \cdots \subset G F\left(p^{h_{t-1}}\right) \subset G F\left(p^{h}\right) \text { or } \\
& =\mathbb{K}_{0} \subset \mathbb{K}_{1} \subset \mathbb{K}_{2} \cdots \subset \mathbb{K}_{t-1} \subset \mathbb{K},
\end{aligned}
$$

where each $G F\left(p^{h_{i}}\right) \simeq \frac{K[x]}{\left(\pi\left(f_{i, j}(x)\right)\right)}$, for $1 \leq i \leq t$.
2. Now put $\mathcal{A}_{i}=\mathcal{R}_{i, 1} \times \mathcal{R}_{i, 2} \times \mathcal{R}_{i, 3} \times \cdots \times \mathcal{R}_{i, r}$, for $0 \leq i \leq t$, where each $\mathcal{R}_{i, j}$ is a local commutative ring, and get a chain of rings

$$
\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}=\mathcal{A}
$$

with an other chain of rings

$$
\mathcal{K}_{0} \subset \mathcal{K}_{1} \subset \mathcal{K}_{2} \subset \cdots \subset \mathcal{K}_{t-1} \subset \mathcal{K}_{t}=\mathcal{K}
$$

where each $\mathcal{K}_{i}=\mathbb{K}_{i}^{r}$, for $0 \leq i \leq t$.
3. Let $\bar{\eta}_{i, j}=\bar{\eta}_{i}$ be the primitive elements in \mathbb{K}_{i}^{*}, for $0 \leq i \leq t$. Then $\eta_{i, j}$ has order $d_{i, j} . n_{i}$ in $\mathcal{R}_{i, j}^{*}$ for some integers $d_{i, j}$, put $\beta_{i, j}=\left(\eta_{i, j}\right)^{d_{i, j}}$. Then $\alpha_{i}=\left(\beta_{1_{i}}, \beta_{2_{i}}, \beta_{3_{i}}, \cdots, \beta_{r_{i}}\right)$ has order n_{i} in $\mathcal{R}_{i, j}^{*}$ and generates $H_{\alpha_{i}, n_{i}}$. For each i, where $0 \leq i \leq t$, let α_{i} be any element of $H_{\alpha_{i}, n_{i}}$.
4. Let $\alpha_{i}^{e_{1}}, \alpha_{i}^{e_{2}}, \alpha_{i}^{e_{3}}, \cdots, \alpha_{i}^{e_{n_{i}}-k_{i}}$ are chosen to be the roots of $g_{i}(x)$. Find $M_{i}^{e_{l_{i}}}(x)$ are the minimal polynomials of $\alpha_{i}^{e_{l_{i}}}$, for $l_{i}=1,2, \cdots, n_{i}-k_{i}$, where each $\alpha_{i}^{e_{l_{i}}}=\left(\beta_{i}^{e_{l_{i}}}, \beta_{i}^{e_{l_{i}}}, \beta_{i}^{e_{l_{i}}}, \cdots, \beta_{i}^{e_{i}}\right)$. Then $g_{i}(x)$ are given by

$$
g_{i}(x)=\operatorname{lcm}\left\{M_{i}^{e_{1}}(x), M_{i}^{e_{2}}(x), \cdots, M_{i}^{e_{n_{i}}-k_{i}}(x)\right\} .
$$

The length of each code in the chain is the Icm of the orders of $\alpha_{i}^{e_{1}}, \alpha_{i}^{e_{2}}, \alpha_{i}^{e_{3}}, \cdots, \alpha_{i}^{e_{n_{i}-k_{i}}}$, and the minimum distance of the code is greater than the largest number of consecutive integers in the set $E_{i}=\left\{e_{1}, e_{2}, e_{3}, \cdots, e_{n_{i}-k_{i}}\right\}$ for each i, where $0 \leq i \leq t$.

Example 2.6. We initiate by constructing a chain of codes of lengths 1,3 and 15 , taking $A_{1}=\mathbb{Z}_{4}$ and $A_{2}=\mathbb{Z}_{8}$. Since $M_{1}=\{0,2\}$ and $M_{2}=\{0,2,4,6\}$, so $K_{j}=\frac{A_{j}}{M_{j}} \simeq \mathbb{Z}_{2}$ for $i=1,2$. The regular polynomial $f_{1}(x)=x^{4}+x+1 \in \mathbb{Z}_{4}[x]$ and $f_{2}(x)=x^{4}+x+1 \in \mathbb{Z}_{8}[x]$ is such that $\pi_{1}\left(f_{1}(x)\right)=x^{4}+x+1$ and $\pi_{2}\left(f_{2}(x)\right)=x^{4}+x+1$ are irreducible polynomials with degree $h=2^{2}$ over \mathbb{Z}_{2}. By [9, Theorem 3], it follows that $f_{1}(x)$ and $f_{2}(x)$ are irreducible over A_{1} and A_{2}, respectively. Let $\mathcal{R}_{1}=\frac{\mathbb{Z}_{2}[x]}{\left(f_{1}(x)\right)}=$ $G R\left(2^{2}, 4\right)$ and $\mathcal{R}_{2}=\frac{\mathbb{Z}_{23}[x]}{\left(f_{2}(x)\right)}=G R\left(2^{3}, 4\right)$ be the Galois rings and $\mathbb{K}=\frac{\mathbb{Z}_{2}[x]}{\left(\pi_{j}\left(f_{j}(x)\right)\right)}=G F\left(2^{4}\right)$ be their corresponding common residue field. Since 1,2 and 2^{2} are the only divisors of 4 , it follows that put $h_{1}=1, h_{2}=2$ and $h_{3}=2^{2}$. Then there exist irreducible polynomials $f_{i, 1}(x)=x^{2}-x+1$ and $f_{i, 2}(x)=f_{2}(x)$ in $\mathbb{Z}_{4}[x]$ with degrees $h_{2}=2$ and $h_{3}=4$ such that we can constitute the Galois rings $\mathcal{R}_{i, 1}=\frac{\mathbb{Z}_{2^{2}}[x]}{\left(f_{i, 1}(x)\right)}=G R\left(2^{2}, h_{i}\right)$, and $\mathcal{R}_{i, 2}=\frac{\mathbb{Z}_{2^{3}}[x]}{\left(f_{i, 2}(x)\right)}=G R\left(2^{3}, h_{i}\right)$, where $1 \leq i \leq 2$. So $A_{j}=\mathcal{R}_{0, j} \subset \mathcal{R}_{1, j} \subset \mathcal{R}_{2, j}=\mathcal{R}_{j}$, for $j=1,2$. Again by the same argument $\mathbb{K}_{i}=\frac{\mathbb{Z}_{2}[x]}{\left(\pi_{j}\left(f_{i, j}(x)\right)\right)}=$
$G F\left(2, h_{i}\right)=G F\left(2^{h_{i}}\right)$, where $1 \leq i \leq 2$ and $1 \leq j \leq 2$. That is, $\mathbb{K}_{0}=G R(2,1)=Z_{2}, \mathbb{K}_{1}=G R(2,2)$, $\mathbb{K}_{2}=\mathbb{K}=G R(2,4)$, with $\mathbb{K}_{1} \subset \mathbb{K}_{2} \subset \mathbb{K}$. Now $\mathcal{A}_{i}=\mathcal{R}_{i, 1} \times \mathcal{R}_{i, 2}$ such that $\mathcal{A}_{0} \subseteq \mathcal{A}_{1} \subseteq \mathcal{A}_{2}$, i.e.,

$$
\begin{aligned}
& \mathcal{A}_{0}=\mathcal{R}_{0,1}=\mathbb{Z}_{4} \quad \times \quad \mathcal{R}_{0,2}=\mathbb{Z}_{8} \\
& \mathcal{A}_{1}=\mathcal{R}_{1,1}=\frac{\mathbb{Z}_{22}[x]}{\left(x_{2}+3 x+1\right)} \quad \times \quad \mathcal{R}_{1,2}=\frac{\mathbb{Z}_{23}[x]}{\left(x_{2}+7 x+2\right)} \\
& \mathcal{A}_{2}=\mathcal{R}_{2,1}=\frac{\left.\mathbb{Z}_{22} 2 x\right]}{\left(x^{2}+x+1\right)} \\
& \times \quad \mathcal{R}_{2,2}=\frac{\left.\mathbb{Z}_{23} 3 x\right]}{\left(x^{2}+x+1\right)}
\end{aligned}
$$

and

$$
\begin{array}{lll}
\mathcal{K}_{0}=\mathbb{K}_{0}=\mathbb{Z}_{2}\left[\begin{array}{l}
\mathbb{K}_{0} \\
\mathcal{K}_{2} \\
\mathcal{K}_{1}
\end{array}=\mathbb{K}_{1}=\frac{\mathbb{Z}_{2}}{\left(x^{2}+x\right]}\right. & \times & \mathbb{K}_{1}[x) \\
\mathbb{K}_{1,2}=\frac{\mathbb{Z}_{2}[x]}{\left(x^{2}+x+2\right)} \\
\mathcal{K}_{2}=\mathbb{K}_{2,1}=\frac{\left.\mathbb{Z}_{2}+x\right]}{\left(x^{4}+x+1\right)} & \times \mathbb{K}_{2,2}=\frac{\mathbb{Z}_{2}[x]}{\left(x^{4}+x+1\right)} .
\end{array}
$$

Let $u=\{x\}$ in $\mathcal{R}_{i, 1}$ such that $\bar{u}=\{x\}$ in \mathbb{K}_{i}. Then $\bar{u}+1$ has order 15 in \mathbb{K}_{2}, so $\bar{\beta}_{2}=\bar{u}+1$. But $u+1$ has order 30 in $\mathcal{R}_{2,1}$ and $\mathcal{R}_{2,2}$, so put $\beta_{2,1}=\beta_{2,2}=(u+1)^{2}$ and get $\alpha_{2}=\left(\beta_{2,1}, \beta_{2,2}\right)$ which generate $H_{\alpha_{2}, 15}$. Also \bar{u} has order 3 in \mathbb{K}_{1}, so $\bar{\beta}_{1}=\bar{u}$. But u has order 6 in $\mathcal{R}_{1,1}$ and $\mathcal{R}_{1,2}$, so $\beta_{1,1}=\beta_{1,2}=u^{2}$ and get $\alpha_{1}=\left(\beta_{1,1}, \beta_{1,2}\right)$ which generates $H_{\alpha_{1}, 3}$. Put $\beta_{0,1}=\beta_{0,2}=1$ and get $\alpha_{0}=\left(\beta_{0,1}, \beta_{0,2}\right)$ which generates $H_{\alpha_{0}, 1}$. Choose α_{i} and α_{i}^{3} to be roots of the generator polynomials $g_{i}(x)$ of the BCH codes \mathcal{C}_{i} over the chain $\mathcal{A}_{0} \subseteq \mathcal{A}_{1} \subseteq \mathcal{A}_{2}$. Then $M_{0}^{1}(x), M_{1}^{1}(x)$ and $M_{2}^{1}(x)$ has as roots all distinct element in the sets $B_{0}^{1}=\left\{\alpha_{0}\right\} \subset H_{\alpha_{0}, 1}, B_{1}^{1}=\left\{\alpha_{1}, \alpha_{1}^{2}\right\} \subset H_{\alpha_{1}, 3}$ and $B_{2}^{1}=\left\{\alpha_{2}, \alpha_{2}^{2}, \alpha_{2}^{4}, \alpha_{2}^{8}\right\} \subset H_{\alpha_{2}, 15}$, respectively. So

$$
M_{0}^{1}(x)=\left(x-\alpha_{0}\right), M_{1}^{1}(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{1}^{2}\right) \text { and } M_{2}^{1}(x)=\left(x-\alpha_{2}\right)\left(x-\alpha_{2}^{2}\right)\left(x-\alpha_{2}^{4}\right)\left(x-\alpha_{2}^{8}\right)
$$

Similarly,

$$
M_{0}^{1}(x)=M_{0}^{3}(x)=\left(x-\alpha_{0}\right), M_{1}^{3}(x)=(x-1) \text { and } M_{2}^{3}(x)=\left(x-\alpha_{2}^{3}\right)\left(x-\alpha_{2}^{6}\right)\left(x-\alpha_{2}^{12}\right)\left(x-\alpha_{2}^{9}\right) .
$$

Thus the polynomials $g_{i}(x)=l c m\left(M_{i}^{1}(x), M_{i}^{3}(x)\right)$ are given by

$$
\begin{gathered}
g_{0}(x)=(x-1), g_{1}(x)=(x-1)\left(x-\alpha_{1}\right)\left(x-\alpha_{1}^{2}\right), \\
g_{2}(x)=\left(x-\alpha_{2}\right)\left(x-\alpha_{2}^{2}\right)\left(x-\alpha_{2}^{3}\right)\left(x-\alpha_{2}^{4}\right)\left(x-\alpha_{2}^{6}\right)\left(x-\alpha_{2}^{8}\right)\left(x-\alpha_{2}^{9}\right)\left(x-\alpha_{2}^{12}\right),
\end{gathered}
$$

which generates the cyclic $B C H$ codes $\mathcal{C}_{0}, \mathcal{C}_{1}$ and \mathcal{C}_{2} of length 1,3 and 15 with minimum hamming distance at least 2,4 and 5 respectively. Also, if we replace α_{i} with $\bar{\alpha}_{i}$, then we get codes over \mathcal{K}_{i}, for $0 \leq i \leq 2$.

3 Construction II

Since for any prime p_{j} and a positive integers m, the collection of rings $A_{j}=\mathbb{Z}_{p_{j}^{m}}$ is the collection of unitary finite local commutative rings with maximal ideals M_{j} and residue fields $\mathbb{K}_{j}=\frac{A_{j}}{M_{j}}$, for each j such that $1 \leq j \leq r$. The natural projections $\pi_{j}: A_{j}[x] \rightarrow \mathbb{K}_{j}[x]$ is defined by $\pi\left(\sum_{k=0}^{n} a_{k} x^{k}\right)=$ $\sum_{k=0}^{n} \overline{a_{k}} x^{k}$, where $\overline{a_{k}}=a_{k}+M_{j}$ for $k=0, \cdots, n$. Thus, the natural ring morphism $A_{j} \rightarrow \mathbb{K}_{j}$ is simply the restriction of π_{j} to the constant polynomial. Now, if $f_{j}(x) \in A_{j}[x]$ is a basic irreducible polynomial with degree $h=b^{t}$, where b is a prime and t is a positive integer, then $\mathcal{R}_{j}=\frac{A_{j}[x]}{\left(f_{j}(x)\right)}=G R\left(p_{j}^{m}, h\right)$ is the family of the Galois ring extension of A_{j} and $\mathbb{K}_{j}=\frac{\mathcal{R}_{j}}{\mathcal{M}_{j}}=\frac{A_{j}[x] /\left(f_{j}(x)\right)}{\left(M_{j}, f_{j}(x)\right) /\left(f_{j}(x)\right)}=\frac{A_{j}[x]}{\left(M_{j}, f_{j}(x)\right)}=\frac{\left(A_{j} / M_{j}\right)[x]}{\left(\pi_{j}\left(f_{j}(x)\right)\right)}$ is the collection of residue field of \mathcal{R}_{j}, where $M_{j}=\left(M_{j}, f_{j}(x)\right)$ is the corresponding collection of the maximal ideals of \mathcal{R}_{j}. For the construction of a chain of Galois rings, [1, Lemma XVI.7] facilitate us.

Since $1, b, b^{2}, \cdots, b^{t-1}, b^{t}$ are the only divisors of h, and take $h_{0}=1, h_{1}=b, h_{2}=b^{2}, \cdots, h_{t}=$ $b^{t}=h$, so by [1, Lemma XVI.7] there exist basic irreducible polynomials $f_{1, j}(x), f_{2, j}(x), \cdots, f_{t, j}(x) \in$ $A_{j}[x]$ with degrees $h_{1}, h_{2}, \cdots, h_{t}$, respectively, such that we can constitute the Galois subrings $\mathcal{R}_{i, j}=$
$\frac{\frac{\mathbb{Z}_{p_{m}^{m}}[x]}{\left(f_{i, j}(x)\right)}}{}=G R\left(p_{j}^{m}, h_{i}\right)$, of \mathcal{R}_{j} with the maximal ideals $\mathcal{M}_{i, j}=\left(M_{j}, f_{i, j}(x)\right) /\left(f_{i, j}(x)\right)$, for each i, j, where $0 \leq i \leq t$ and $1 \leq j \leq r$. Then the residue field of each $\mathcal{R}_{i, j}$ becomes

$$
\mathbb{K}_{i, j}=\frac{\mathcal{R}_{i, j}}{\mathcal{M}_{\mathrm{i}, \mathrm{j}}}=\frac{A_{j}[x] /\left(f_{i, j}(x)\right)}{\left(M_{j}, f_{i, j}(x)\right) /\left(f_{i, j}(x)\right)}=\frac{A_{j}[x]}{\left(M_{j}, f_{i, j}(x)\right)}=\frac{\left(A_{j} / M_{j}\right)[x]}{\left(\pi_{j}\left(f_{i, j}(x)\right)\right)}=\frac{K_{j}[x]}{\left(\bar{f}_{i, j}(x)\right)}=G F\left(p_{j}^{h_{i}}\right)
$$

As each h_{i} divides h_{i+1} for each i such that $0 \leq i \leq t$, so by [1, Lemma XVI.7], there are chains

$$
A_{j}=\mathcal{R}_{0, j} \subset \mathcal{R}_{1, j} \subset \mathcal{R}_{2, j} \subset \cdots \subset \mathcal{R}_{t-1, j} \subset \mathcal{R}_{t, j}=\mathcal{R}_{j}
$$

of Galois rings, with corresponding chain of residue fields

$$
\mathbb{Z}_{p_{j}}=\mathbb{K}_{0, j} \subset \mathbb{K}_{1, j} \subset \mathbb{K}_{2, j} \cdots \subset \mathbb{K}_{t-1, j} \subset \mathbb{K}_{t, j}=\mathbb{K}_{j}
$$

Let $\mathcal{A}_{i}=\mathcal{R}_{i, 1} \times \mathcal{R}_{i, 2} \times \mathcal{R}_{i, 3} \times \cdots \times \mathcal{R}_{i, r}$, for $0 \leq i \leq t$. Then we get a chain of commutative rings, i.e.,

$$
\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}=\mathcal{A}
$$

with an other chain of commutative rings

$$
\mathcal{K}_{0} \subset \mathcal{K}_{1} \subset \mathcal{K}_{2} \subset \cdots \subset \mathcal{K}_{t-1} \subset \mathcal{K}_{t}=\mathcal{K}
$$

where each $\mathcal{K}_{i}=\mathbb{K}_{i, 1} \times \mathbb{K}_{i, 2} \times \cdots \times \mathbb{K}_{i, r}$, for each i such that $0 \leq i \leq t$.
Let $\mathcal{A}_{i}^{*}, \mathcal{K}_{i}^{*}, \mathcal{R}_{i, j}^{*}$ and $\mathbb{K}_{i, j}^{*}$ be the multiplicative groups of units of $\mathcal{A}_{i}, \mathcal{K}_{i}, \mathcal{R}_{i, j}$ and $\mathbb{K}_{i, j}$, respectively, for each i, j where $0 \leq i \leq t$ and $1 \leq j \leq r$. Now the next theorem, extension of [1, Theorem XVIII.1] has a fundamental role in the decomposition of the polynomial $x^{s_{i}}-1$ into linear factors over the rings \mathcal{A}_{i}^{*}. This theorem asserts that for each element $\alpha_{i} \in \mathcal{A}_{i}^{*}$ there exist unique elements $\beta_{i, j} \in \mathcal{R}_{i, j}^{*}$, for each i, j, where $0 \leq i \leq t$ and $1 \leq j \leq r$, such that $\alpha_{i}=\left(\beta_{i, 1}, \beta_{i, 2}, \cdots, \beta_{i, r}\right)$.

Theorem 3.1. Let $\mathcal{A}_{i}=\mathcal{R}_{i, 1} \times \mathcal{R}_{i, 2} \times \mathcal{R}_{i, 3} \times \cdots \times \mathcal{R}_{i, r}$, for $0 \leq i \leq t$, where each $\mathcal{R}_{i, j}$ is a local commutative ring. Then for each i, j, where $0 \leq i \leq t$ and $1 \leq \bar{j} \leq r$, it follows that $\mathcal{A}_{i}^{*}=$ $\mathcal{R}_{i, 1}^{*} \times \mathcal{R}_{i, 2}^{*} \times \mathcal{R}_{i, 3}^{*} \times \cdots \times \mathcal{R}_{i, r}^{*}$.

Note that corresponding $\bar{\alpha}_{i}=\left(\bar{\beta}_{i, 1}, \bar{\beta}_{i, 2}, \cdots, \bar{\beta}_{i, r}\right)$. Following theorem indicates the condition under which $x^{s_{i}}-1$ can be factored over \mathcal{A}_{i}^{*}, for $0 \leq i \leq t$.

Theorem 3.2. For each i, where $0 \leq i \leq t$, the polynomial $x^{s_{i}}-1$ can be factored over the multiplicative groups \mathcal{A}_{i}^{*} as $x^{s_{i}}-1=\left(\bar{x}-\alpha_{i}\right)\left(x-\alpha_{i}^{2}\right) \cdots\left(x-\alpha_{i}^{s_{i}}\right)$ if and only if each $\bar{\beta}_{i, j}, 1 \leq j \leq r$, has order s_{i} in $\mathbb{K}_{i, j}^{*}$, where $\operatorname{gcd}\left(s_{i}, p\right)=1$ and $\alpha_{i}=\left(\beta_{i, 1}, \beta_{i, 2}, \cdots, \beta_{i, r}\right)$, for each $i, 0 \leq i \leq t$.
Proof. For each i, where $0 \leq i \leq t$, suppose that the polynomial $x^{s_{i}}-1$ can be factored over \mathcal{A}_{i}^{*} as $x^{s_{i}}-1=\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{2}\right) \cdots\left(x-\alpha_{i}^{s_{i}}\right)$. Then $x^{s_{i}}-1$ can be factored over $\mathcal{R}_{i, j}^{*}$ as $x^{s_{i}}-1=\left(x-\beta_{i, j}\right)\left(x-\beta_{i, j}^{2}\right) \cdots\left(x-\beta_{i, j}^{s_{i}}\right)$ for $0 \leq i \leq t$ and $1 \leq j \leq r$. Now it follows from the extension of [7, Theorem 3] that $\bar{\beta}_{i, j}$ has order s_{i} in $\mathbb{K}_{i, j}^{*}$, for $0 \leq i \leq t$ and $1 \leq j \leq r$. Conversely, suppose that $\bar{\beta}_{i, j}$ has order s_{i} in $\mathbb{K}_{i, j}^{*}$, for $0 \leq i \leq t$ and $1 \leq j \leq r$. Again it follows from the extension of [7, Theorem 3] that, the polynomial $x^{s_{i}}-1$ can be factored over $\mathcal{R}_{i, j}^{*}$ as $x^{s_{i}}-1=\left(x-\beta_{i, j}\right)\left(x-\beta_{i, j}^{2}\right) \cdots\left(x-\beta_{i, j}^{s_{i}}\right)$, for each i, j, where $0 \leq i \leq t$ and $1 \leq j \leq r$. Since $\alpha_{i}=\left(\beta_{i, 1}, \beta_{i, 2}, \cdots, \beta_{i, r}\right)$, for $0 \leq i \leq t$, so $x^{s_{i}}-1=\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{2}\right) \cdots\left(x-\alpha_{i}^{s_{i}}\right)$ over \mathcal{A}_{i}^{*}, for each i such that $0 \leq i \leq t$.

Corollary 3.3. [8, Theorem 3.4] The polynomials $x^{s}-1$ can be factored over the multiplicative group \mathcal{R}^{*} as $x^{s}-1=(x-\alpha)\left(x-\alpha^{2}\right) \cdots\left(x-\alpha^{s}\right)$ if and only if $\overline{\beta_{j}}$ has order s in \mathbb{K}_{j}^{*}, where $\operatorname{gcd}\left(s, p_{j}\right)=1$ and α corresponds to $\beta=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{r}\right)$, where $j=1,2,3, \cdots, r$.

Let $H_{\alpha_{i}, s_{i}}$ denotes the cyclic subgroup of \mathcal{A}_{i}^{*} generated by α_{i}, for each i such that $0 \leq i \leq t$, i.e., $H_{\alpha_{i}, s_{i}}$ contains all the roots of $x^{s_{i}}-1$ provided the condition of above theorem are met. The BCH codes \mathcal{C}_{i} over \mathcal{A}_{i}^{*} can be obtained as the direct product of BCH codes $\mathcal{C}_{i, j}$ over $\mathcal{R}_{i, j}^{*}$. To construct the
cyclic BCH codes over \mathcal{A}_{i}^{*}, we need to choose certain elements of $H_{\alpha_{i}, n_{i}}$ as the roots of generator polynomials $g_{i}(x)$ of the codes, where $n_{i}=\operatorname{gcd}\left(p_{1}^{h_{i}}, p_{2}^{h_{i}}, p_{3}^{h_{i}}, \cdots, p_{r}^{h_{i}}\right)$. So that, $\alpha_{i}^{e_{1}}, \alpha_{i}^{e_{2}}, \cdots, \alpha_{i}^{e_{n_{i}-k_{i}}}$ are all the roots of $g_{i}(x)$ in $H_{\alpha_{i}, n_{i}}$, we construct $g_{i}(x)$ as

$$
g_{i}(x)=\operatorname{lcm}\left\{M_{i}^{e_{1}}(x), M_{i}^{e_{2}}(x), \cdots, M_{i}^{e_{n_{i}}-k_{i}}(x)\right\}
$$

where $M_{i}^{e_{l_{i}}}(x)$ are the minimal polynomials of $\alpha_{i}^{e_{l_{i}}}$, for $l=1,2, \cdots, n_{i}-k_{i}$, where each $\alpha_{i}^{e_{l_{i}}}=$ $\left(\beta_{i, 1}^{e_{l_{i}}}, \beta_{i, 2}^{e_{i}{ }_{i}}, \cdots, \beta_{i, r}^{e_{l_{i}}}\right)$. The following theorem is the extension of [7, Lemma 3] and provides us a method for construction of $M_{i}^{e_{l_{i}}}(x)$, the minimal polynomial of $\alpha_{i}^{e_{l_{i}}}$ over the ring \mathcal{A}_{i}.
Theorem 3.4. For each i such that $0 \leq i \leq t$, let $M_{i}^{e_{l}}(x)$ be the minimal polynomial of $\alpha_{i}^{e_{l_{i}}}$ over \mathcal{A}_{i}, where $\alpha_{i}^{e_{l_{i}}}$ generates $H_{\alpha_{i}, n_{i}}$, for $l_{i}=1,2, \cdots, n_{i}-k_{i}$ and $0 \leq i \leq t$. Then $M_{i}^{e_{l_{i}}}(x)=\prod_{\xi_{i} \in B_{i}^{l_{i}}}\left(x-\xi_{i}\right)$, where $B_{i}^{l_{i}}=\left\{\left(\alpha_{i}^{e_{l_{i}}}\right)^{m_{i, j}}: m_{i, j}=\prod_{j=1}^{r} p_{i}^{q_{i, j}}\right.$, for $1 \leq l_{i} \leq n_{i}-k_{i}, 0 \leq q_{i, j} \leq h_{i}-1$ and $\left.0 \leq i \leq t\right\}$. Proof. Let $\bar{M}_{i}^{e_{l_{i}}}(x)$ be the projection of $M_{i}^{e_{l_{i}}}(x)$ over the fields $\mathbb{K}_{i, j}$ and $\bar{M}_{i, j}^{e_{l_{i}}}(x)$ be the minimal polynomial of $\bar{\alpha}_{i}^{e_{l}}$ over $\mathbb{K}_{i, j}^{*}$, for each i such that $0 \leq i \leq t, 1 \leq j \leq r$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. We can verify that each $\bar{M}_{i}^{e_{l_{i}}}(x)$ is divisible by $\bar{M}_{i, j}^{e_{i}}(x)$, for $0 \leq i \leq t, 1 \leq j \leq r$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. Thus it has, among its roots, distinct elements of the sequences $\bar{\alpha}_{i}^{e_{L_{i}}},\left(\bar{\alpha}_{i}^{e_{i}}\right)^{p_{j}},\left(\bar{\alpha}_{i}^{e_{l_{i}}}\right)^{p_{j}^{2}}, \cdots,\left(\bar{\alpha}_{i}^{e_{l_{i}}}\right)^{p_{j}^{h_{i}-1}}$, for each i, j such that $0 \leq i \leq t, 1 \leq j \leq r$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. Hence $M_{i}^{e_{l_{i}}}(x)$ has, among its roots, distinct elements of the sequence $\alpha_{i}^{e_{l_{i}}},\left(\alpha_{i}^{e_{l_{i}}}\right)^{p_{j}},\left(\alpha_{i}^{e_{l_{i}}}\right)^{p_{j}^{2}}, \cdots,\left(\alpha_{i}^{e_{l_{i}}}\right)^{p_{j}^{h_{i}-1}}$, for each i, j such that $0 \leq i \leq t, 1 \leq j \leq r$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. Thus any element $\gamma_{i}=\left(\alpha_{i}^{e_{i}}\right)^{p_{j}^{m_{i}}}$ of the above sequence is the root of $M_{i}^{e_{l_{i}}}(x)$, for each i, j such that $0 \leq i \leq t, 1 \leq j \leq r, 0 \leq m_{i} \leq h_{i}-1$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. Choose any k in the range $1 \leq k \leq r$ such that $\bar{k} \neq j$. Then we know that $\gamma_{i, k}$ a root of $\bar{M}_{i, k}^{e_{l_{i}}}(x)$ implies that $\left(\gamma_{i, k}\right)^{p_{k}^{q_{i}}}$ is a root of $M_{i}^{e_{l_{i}}}(x)$ (which has coefficients in $\mathbb{K}_{i, k}$), for $0 \leq q_{i} \leq h_{i}-1$. Hence $\left(\gamma_{i}\right)^{p_{k}^{q_{i}}}=\left(\alpha_{i}^{e_{l_{i}}}\right)^{p_{j}^{m_{i}}} p_{k}^{q_{i}}$ is a root of $M_{i}^{e_{l_{i}}}(x)$. Proceeding in this manner, we can show that $M_{i}^{e_{i}}(x)$ necessarily has as roots all distinct member of $B_{i}^{l_{i}}$. But the polynomial $\prod_{\xi_{i} \in B_{i}^{l_{i}}}\left(x-\xi_{i}\right)$ has, by construction, coefficient in the direct product of A_{j}. Hence $M_{i}^{e_{l_{i}}}(x)=\prod_{\xi_{i} \in B_{i}^{l_{i}}}\left(x-\xi_{i}\right)$.

Corollary 3.5. [8, Theorem 3.5] For any positive integer l, let $M_{l}(x)$ be the minimal polynomial of α^{l} over \mathcal{R}, where α generates $H_{\alpha, n}$. Then $M_{l}(x)=\prod_{\xi \in B_{l}}(x-\xi)$, where B_{l} is all distinct elements of the sequence $\left\{\left(\alpha^{l}\right)^{m}: m=\prod_{j=1}^{r} q_{j}^{s_{j}}, q_{j}=p_{j}^{m_{j}}\right.$, where $\left.0 \leq s_{j} \leq h-1\right\}$.

Remark 3.1. Since $\bar{M}_{i}^{e_{l_{i}}}(x)$ be the projection of $M_{i}^{e_{l_{i}}}(x)$ over the field $\mathbb{K}_{i, j}$, for each i, j such that $0 \leq i \leq t$ and $1 \leq j \leq r$. So $\bar{M}_{i}^{e_{l_{i}}}(x)$ generates the sequence of codes over the special chain of rings $\mathcal{K}_{i}=\mathbb{K}_{i, 1} \times \mathbb{K}_{i, 2} \times \cdots \times \mathbb{K}_{i, r}$, for each i such that $0 \leq i \leq t$.

The lower bound on the minimum distances derived in the following theorem applies to any cyclic code. The BCH codes are a class of cyclic codes whose generator polynomials are chosen so that the minimum distances are guaranteed by this bound. In this sense, the following extended [8 , Theorem 2.5].

Theorem 3.6. [9, Theorem 11] For each i such that $0 \leq i \leq t$, let $g_{i}(x)$ be the generator polynomial of BCH code \mathcal{C}_{i} over \mathcal{A}_{i} from the chain $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}$, with length $n_{i}=s_{i}$, and let $\alpha_{i}^{e_{1}}, \alpha_{i}^{e_{2}}, \alpha_{i}^{e_{3}}, \cdots, \alpha_{i}^{e_{n_{i}-k_{i}}}$ be the roots of $g_{i}(x)$ in $H_{\alpha_{i}, n_{i}}$, where α_{i} has order n_{i}. The minimum Hamming distance of this code is greater than the largest number of consecutive integers modulo n_{i} in $E_{i}=\left\{e_{1}, e_{2}, e_{3}, \cdots, e_{n_{i}-k_{i}}\right\}$, for each i such that $0 \leq i \leq t$.
Corollary 3.7. [8, Theorem 2.5] Let $g(x)$ be the generator polynomial of BCH code over A with length $n=s$ such that $\alpha^{e_{1}}, \alpha^{e_{2}}, \cdots, \alpha^{e_{n-k}}$ are the roots of $g(x)$ in $H_{\alpha, n}$, where α has order n, then minimum Hamming distance of the code is greater than the largest number of consecutive integers modulo n in $E=\left\{e_{1}, e_{2}, e_{3}, \cdots, e_{n-k}\right\}$.

3.1 Algorithm

The algorithm for constructing a BCH type cyclic codes over the chain of such type of commutative rings $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}=\mathcal{A}$ is then as follows.

1. Choose irreducible polynomial $f_{i, j}(x)$ over $\mathbb{Z}_{p_{j}^{m}}$, of degree $h_{i}=b^{i}$, for $1 \leq i \leq t$, which are also irreducible over $G F(p)$ and form the chains of Galois rings

$$
\begin{aligned}
\mathbb{Z}_{p_{j}^{m}} & =G R\left(p_{j}^{m}, h_{0}\right) \subset G R\left(p_{j}^{m}, h_{1}\right) \subset \cdots \subset G R\left(p_{j}^{m}, h_{t-1}\right) \subset G R\left(p_{j}^{m}, h_{t}\right) \text { or } \\
A_{j} & =\mathcal{R}_{0, j} \subseteq \mathcal{R}_{1, j} \subseteq \mathcal{R}_{2, j} \subseteq \cdots \subseteq \mathcal{R}_{t-1, j} \subseteq \mathcal{R}_{t, j}=\mathcal{R}_{j}
\end{aligned}
$$

and its corresponding chains of residue fields are

$$
\begin{aligned}
\mathbb{Z}_{p_{j}} & =G F\left(p_{j}\right) \subset G F\left(p_{j}^{h_{1}}\right) \subset \cdots \subset G F\left(p_{j}^{h_{t-1}}\right) \subset G F\left(p_{j}^{h}\right) \text { or } \\
& =\mathbb{K}_{0, j} \subset \mathbb{K}_{1, j} \subset \mathbb{K}_{2, j} \cdots \subset \mathbb{K}_{t-1, j} \subset \mathbb{K}_{t, j}=\mathbb{K}_{j},
\end{aligned}
$$

where each $G F\left(p_{j}^{h_{i}}\right) \simeq \frac{\mathbb{K}_{j}[x]}{\left(\pi_{j}\left(f_{i, j}(x)\right)\right)}$, for $1 \leq i \leq t$.
2. Now put $\mathcal{A}_{i}=\mathcal{R}_{i, 1} \times \mathcal{R}_{i, 2} \times \mathcal{R}_{i, 3} \times \cdots \times \mathcal{R}_{i, r}$, for $0 \leq i \leq t$, where each $\mathcal{R}_{i, j}$ is a local commutative ring, and get a chain of rings

$$
\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}=\mathcal{A}
$$

with an other chain of rings

$$
\mathcal{K}_{0} \subset \mathcal{K}_{1} \subset \mathcal{K}_{2} \subset \cdots \subset \mathcal{K}_{t-1} \subset \mathcal{K}_{t}=\mathcal{K}
$$

where each $\mathcal{K}_{i}=\mathbb{K}_{i, 1} \times \mathbb{K}_{i, 2} \times \cdots \times \mathbb{K}_{i, r}$, the direct product of corresponding residue fields r times, for $0 \leq i \leq t$.
3. Let $\bar{\eta}_{i, j}$ be the primitive elements in $\mathbb{K}_{i, j}^{*}$, for $0 \leq i \leq t$ and $1 \leq j \leq r$. Then $\eta_{i, j}$ has order $d_{i, j} n_{i}$ in $\mathcal{R}_{i, j}^{*}$ for some integers $d_{i, j}$, put $\beta_{i, j}=\left(\eta_{i, j}\right)^{d_{i, j}}$. Then $\alpha_{i}=\left(\beta_{1_{i}}, \beta_{2_{i}}, \beta_{3_{i}}, \cdots, \beta_{r_{i}}\right)$ has order n_{i} in $\mathcal{R}_{i, j}^{*}$ and generates $H_{\alpha_{i}, n_{i}}$. Assume for each i, where $0 \leq i \leq t$, let α_{i} be any element of $H_{\alpha_{i}, n_{i}}$.
4. Let $\alpha_{i}^{e_{1}}, \alpha_{i}^{e_{2}}, \alpha_{i}^{e_{3}}, \cdots, \alpha_{i}^{e_{n_{i}}-k_{i}}$ are chosen to be the roots of $g_{i}(x)$. Find $M_{i}^{e_{l_{i}}}(x)$ are the minimal polynomials of $\alpha_{i}^{e_{l_{i}}}$, for $l_{i}=1,2, \cdots, n_{i}-k_{i}$, where each $\alpha_{i}^{e_{l_{i}}}=\left(\beta_{i}^{e_{l_{i}}}, \beta_{i}^{e_{l_{i}}}, \beta_{i}^{e_{l_{i}}}, \cdots, \beta_{i}^{e_{l_{i}}}\right)$. Then $g_{i}(X)$ are given by

$$
g_{i}(x)=\operatorname{lcm}\left\{M_{i}^{e_{1}}(x), M_{i}^{e_{2}}(x), \cdots, M_{i}^{e_{n_{i}-k_{i}}}(x)\right\} .
$$

The length of each code in the chain is the Icm of the orders of $\alpha_{i}^{e_{1}}, \alpha_{i}^{e_{2}}, \alpha_{i}^{e_{3}}, \cdots, \alpha_{i}^{e_{n_{i}-k_{i}}}$, and the minimum distance of the code is greater than the largest number of consecutive integers in the set $E_{i}=\left\{e_{1}, e_{2}, e_{3}, \cdots, e_{n_{i}-k_{i}}\right\}$ for each i, where $0 \leq i \leq t$.

Example 3.8. We initiate by constructing a chain of codes of lengths 1,8 and 16, taking $A_{1}=\mathbb{Z}_{9}$ and $A_{2}=\mathbb{Z}_{25}$. Since $M_{1}=\{0,3,6\}$ and $M_{2}=\{0,5,10,15,20\}$, it follows that $K_{1}=\frac{A_{1}}{M_{1}} \simeq \mathbb{Z}_{3}$ and $K_{2}=$ $\frac{A_{2}}{M_{2}} \simeq \mathbb{Z}_{5}$. The regular polynomials $f_{1}(x)=x^{4}+x+8 \in \mathbb{Z}_{9}[x]$ and $f_{2}(X)=x^{4}+x^{2}+x+1 \in \mathbb{Z}_{25}[x]$ are such that $\pi_{1}\left(f_{1}(x)\right)=x^{4}+x+2$ and $\pi_{2}\left(f_{2}(x)\right)=x^{4}+x^{2}+x+1$ are irreducible polynomials with degree $h=2^{2}$ over \mathbb{Z}_{3} and Z_{5}, respectively. By [9, Theorem 3], it follows that $f_{1}(x)$ and $f_{2}(x)$ are irreducible over A_{1} and A_{2}. Let $\mathcal{R}_{1}=\frac{\mathbb{Z}_{3}[x]}{\left(f_{1}(x)\right)}=G R\left(3^{2}, 4\right), \mathcal{R}_{2}=\frac{\mathbb{Z}_{5^{2}}[x]}{\left(f_{2}(x)\right)}=G R\left(5^{2}, 4\right)$ be the Galois rings and $\mathbb{K}_{1}=\frac{\mathbb{Z}_{3}[x]}{\left(\pi_{1}\left(f_{1}(x)\right)\right)}=G F\left(3^{4}\right)$, $\mathbb{K}_{2}=\frac{\mathbb{Z}_{5}[x]}{\left(\pi_{2}\left(f_{2}(x)\right)\right)}=G F\left(5^{4}\right)$ be their corresponding residue fields. Since 1, 2 and 2^{2} are the only divisors of 4, therefore let $h_{1}=1, h_{2}=2, h_{3}=2^{2}$. Then there exist irreducible polynomials $f_{1,1}(x)=x^{2}+1, f_{2,1}(x)=f_{1}(x)$ in $\mathbb{Z}_{9}[x]$, and $f_{1,2}(x)=x^{2}+2$, $f_{2,2}(x)=f_{2}(x)$ in $\mathbb{Z}_{25}[x]$ with degrees $h_{2}=2$ and $h_{3}=4$ such that we can constitute the Galois rings
$\mathcal{R}_{0,1}=A_{1}, \mathcal{R}_{1,1}=\frac{\mathbb{Z}_{3^{2}}[x]}{\left(f_{1,1}(x)\right)}=G R\left(3^{2}, h_{2}\right), \mathcal{R}_{2,1}=\mathcal{R}_{1}$ and $\mathcal{R}_{0,2}=A_{2}, \mathcal{R}_{1,2}=\frac{\mathbb{Z}_{5}[x]}{\left(f_{1,2}(x)\right)}=G R\left(5^{2}, h_{2}\right)$ and $\mathcal{R}_{1,2}=\mathcal{R}_{2}$. So

$$
A_{j}=\mathcal{R}_{0, j} \subset \mathcal{R}_{1, j} \subset \mathcal{R}_{2, j}=\mathcal{R}_{j}, \text { for } j=1,2 .
$$

Again by the same argument $\mathbb{K}_{0,1}=\mathbb{Z}_{2}, \mathbb{K}_{1,1}=\frac{\mathbb{Z}_{3}[x]}{\left(\pi_{1}\left(f_{1,1}(x)\right)\right)}=G F\left(3^{2}\right), \mathbb{K}_{2,1}=\mathbb{K}_{1}$ and $\mathbb{K}_{0,2}=$ $\mathbb{Z}_{5}, \mathbb{K}_{1,2}=\frac{\mathbb{Z}_{5}[x]}{\left(\pi_{2}\left(f_{1,2}(x)\right)\right)}=G F\left(5^{2}\right), \mathbb{K}_{2,2}=\mathbb{K}_{2}$. So we get chains of fields

$$
A_{j}=\mathbb{K}_{0, j} \subset \mathbb{K}_{1, j} \subset \mathbb{K}_{2, j}=\mathbb{K}_{j}, \text { for } j=1,2 .
$$

$\operatorname{Now} \mathcal{A}_{i}=\mathcal{R}_{i, 1} \times \mathcal{R}_{i, 2}$ such that $\mathcal{A}_{0} \subseteq \mathcal{A}_{1} \subseteq \mathcal{A}_{2}$, i.e.,

$$
\begin{array}{ll}
\mathcal{A}_{0}=\mathcal{R}_{0,1}=\mathbb{Z}_{9} & \times \mathcal{R}_{0,2}=\mathbb{Z}_{25} \\
\mathcal{A}_{1}=\mathcal{R}_{1,1}=\frac{\mathbb{Z}_{32}[x]}{\left(x^{2}+1\right)} & \times \mathcal{R}_{1,2}=\frac{\mathbb{Z}_{52}[x]}{\left(x^{2}+2\right)} \\
\mathcal{A}_{2}=\mathcal{R}_{2,1}=\frac{\mathbb{Z}_{22}[x]}{\left(x^{4}+x-1\right)} & \times \mathcal{R}_{2,2}=\frac{\mathbb{Z}_{5}}{\left(x^{4}+x^{2}+x+1\right)}
\end{array}
$$

and

$$
\begin{array}{ll}
\mathcal{K}_{0}=\mathbb{K}_{0,1}=\mathbb{Z}_{3} & \times \mathbb{K}_{0,2}=\mathbb{Z}_{5} \\
\mathcal{K}_{1}=\mathbb{K}_{1,1}=\frac{\mathbb{Z}_{3}[x]}{\left(x^{2}+1\right)} & \times \mathbb{K}_{1,2}=\frac{\mathbb{Z}_{5}[x]}{\left(x^{2}+2\right)} \\
\mathcal{K}_{2}=\mathbb{K}_{2,1}=\frac{\mathbb{Z}_{3}[x]}{\left(x^{4}+x-1\right)} & \times \mathbb{K}_{2,2}=\frac{\mathbb{Z}_{5}}{\left(x^{4}+x^{2}+x+1\right)}
\end{array}
$$

Let $u=\{x\}$ in $\mathcal{R}_{i, j}$ such that $\bar{u}=\{x\}$ in $\mathbb{K}_{i, j}$. Then $\bar{u}+1$ has order $8,24,80$ and 624 in $\mathbb{K}_{1,1}, \mathbb{K}_{1,2}, \mathbb{K}_{2,1}$ and $\mathbb{K}_{2,2}$, respectively. So $\bar{\beta}_{1,1}=\bar{\beta}_{1,2}=\bar{\beta}_{2,1}=\bar{\beta}_{2,2}=\bar{u}+1$. But $u+1$ has order 24, 120, 240 and 3120 in $\mathcal{R}_{1,1}, \mathcal{R}_{1,2}, \mathcal{R}_{2,1}$ and $\mathcal{R}_{2,2}$, so put $\beta_{1,1}=(u+1)^{3}, \beta_{1,2}=\beta_{2,1}=(u+1)^{15}$ and $\beta_{2,2}=(u+1)^{195}$ and get $\alpha_{2}=\left(\beta_{2,1}, \beta_{2,2}\right)$ which generates $H_{\alpha_{2}, 16}$ and $\alpha_{1}=\left(\beta_{1,1}, \beta_{1,2}\right)$ which generates $H_{\alpha_{1}, 8}$. Also 2 has order 4 in $\mathbb{K}_{0,2}$ and has order 2 in $\mathbb{K}_{0,1}$, so $\bar{\beta}_{0,1}=\bar{\beta}_{0,2}=2$. But 2 has order 20 in $\mathcal{R}_{0,2}$ and has order 6 in $\mathcal{R}_{0,1}$, so $\beta_{0,1}=8$ and $\beta_{0,2}=24$ get $\alpha_{0}=\left(\beta_{0,1}, \beta_{0,2}\right)$ which generates $H_{\alpha_{0}, 2}$. Choose α_{i} and α_{i}^{2} to be roots of the generator polynomials $g_{i}(x)$ of the $B C H$ codes \mathcal{C}_{i} over the chain $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2}$. Then $M_{0}^{1}(x), M_{1}^{1}(x)$ and $M_{2}^{1}(x)$ has as roots all distinct element in the sets $B_{0}^{1}=\left\{\alpha_{0}\right\} \subset H_{\alpha_{0}, 2}, B_{1}^{1}=$ $\left\{\alpha_{1}, \alpha_{1}^{3}, \alpha_{1}^{5}, \alpha_{1}^{7}\right\} \subset H_{\alpha_{1}, 8}$ and $B_{2}^{1}=\left\{\alpha_{2}, \alpha_{2}^{3}, \alpha_{2}^{5}, \alpha_{2}^{7}, \alpha_{2}^{9}, \alpha_{2}^{11}, \alpha_{2}^{13}, \alpha_{2}^{15}\right\} \subset H_{\alpha_{2}, 16}$, respectively. So

$$
M_{0}^{1}(x)=\left(x-\alpha_{0}\right), M_{1}^{1}(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{1}^{3}\right)\left(x-\alpha_{1}^{5}\right)\left(x-\alpha_{1}^{7}\right),
$$

and

$$
M_{2}^{1}(x)=\left(x-\alpha_{2}\right)\left(x-\alpha_{2}^{3}\right)\left(x-\alpha_{2}^{5}\right)\left(x-\alpha_{2}^{7}\right)\left(x-\alpha_{2}^{9}\right)\left(x-\alpha_{2}^{11}\right)\left(x-\alpha_{2}^{13}\right)\left(x-\alpha_{2}^{15}\right) .
$$

Similarly,

$$
M_{0}^{2}(x)=(x-1), M_{1}^{2}(x)=\left(x-\alpha_{1}^{2}\right)\left(x-\alpha_{1}^{6}\right) \text { and } M_{2}^{3}(x)=\left(x-\alpha_{2}^{2}\right)\left(x-\alpha_{2}^{6}\right)\left(x-\alpha_{2}^{10}\right)\left(x-\alpha_{2}^{14}\right) .
$$

Thus the polynomials $g_{i}(x)=\operatorname{lcm}\left(M_{i}^{1}(x), M_{i}^{2}(x)\right)$ are given by

$$
g_{0}(x)=(x-1)\left(x-\alpha_{0}\right), g_{1}(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{1}^{2}\right)\left(x-\alpha_{1}^{3}\right)\left(x-\alpha_{1}^{5}\right)\left(x-\alpha_{1}^{6}\right)\left(x-\alpha_{1}^{7}\right) \text {, and }
$$

$g_{2}(x)=\left(x-\alpha_{2}\right)\left(x-\alpha_{2}^{2}\right)\left(x-\alpha_{2}^{3}\right)\left(x-\alpha_{2}^{5}\right)\left(x-\alpha_{2}^{6}\right)\left(x-\alpha_{2}^{7}\right)\left(x-\alpha_{2}^{9}\right)\left(x-\alpha_{2}^{10}\right)\left(x-\alpha_{2}^{11}\right)\left(x-\alpha_{2}^{13}\right)\left(x-\alpha_{2}^{14}\right)\left(x-\alpha_{2}^{15}\right)$
which generates the cyclic $B C H$ codes $\mathcal{C}_{0}, \mathcal{C}_{1}$ and \mathcal{C}_{2} of length 2,8 and 16 with minimum hamming distance at least 3, 4 and 4, respectively. Similarly we can construct a sequence of cyclic codes over \mathcal{K}_{i} if we replace α_{i} with $\bar{\alpha}_{i}$, for $0 \leq i \leq 2$.

4 Construction III

For any j such that $1 \leq j \leq r$, let p_{j} be a prime and m_{j} a positive integer. The ring $A_{j}=\mathbb{Z}_{p_{j}}{ }^{j_{j}}$ is a unitary finite local commutative ring with maximal ideals M_{j} and residue fields $\mathbb{K}_{j}=\frac{A_{j}}{M_{j}}$. The natural
projections $\pi_{j}: A_{j}[x] \rightarrow \mathbb{K}_{j}[x]$ is defined by $\pi\left(\sum_{k=0}^{n} a_{k} x^{k}\right)=\sum_{k=0}^{n} \overline{a_{k}} x^{k}$, where $\overline{a_{k}}=a_{k}+M_{j}$ for $k=0,1, \cdots, n$. Thus, the natural ring morphism $A_{j} \rightarrow K_{j}$ is simply the restriction of π_{j} to the constant polynomial. Now, if $f_{j}(x) \in A_{j}[x]$ is a basic irreducible polynomial with degree $h=b^{t}$, where b is a prime and t is a positive integer, then $\mathcal{R}_{j}=\frac{A_{j}[x]}{\left.\left(f_{j}(x)\right)\right)}=G R\left(p_{j}^{m_{j}}, h\right)$ is the collection of the Galois ring extension of A_{j} and $\mathbb{K}_{j}=\frac{\mathcal{R}_{j}}{\mathcal{M}_{j}}=\frac{A_{j}[x] /\left(f_{j}(x)\right)}{\left(M_{j}, f_{j}(x)\right) /\left(f_{j}(x)\right)}=\frac{A_{j}[x]}{\left(M_{j}, f_{j}(x)\right)}=\frac{\left(A_{j} / M_{j}\right)[x]}{\left(\pi_{j}\left(f_{j}(x)\right)\right)}$ is the residue field of \mathcal{R}_{j}, where $M_{j}=\left(M_{j}, f_{j}(x)\right)$ is the corresponding maximal ideal of \mathcal{R}_{j} for each j such that $1 \leq j \leq r$. For the construction of a chain of Galois ring, [1, Lemma XVI.7] facilitate us.

Since $1, b, b^{2}, \cdots, b^{t-1}, b^{t}$ are the only divisors of h, and take $h_{0}=1, h_{1}=b, h_{2}=b^{2}, \cdots, h_{t}=$ $b^{t}=h$, so by [1, Lemma XVI.7], there exist basic irreducible polynomials $f_{1, j}(x), f_{2, j}(x), \cdots, f_{t, j}(x) \in$ $A_{j}[x]$ with degrees $h_{1}, h_{2}, \cdots, h_{t}$, respectively, such that we can constitute the Galois subring $\mathcal{R}_{i, j}=$ $\mathbb{Z}_{p_{i}{ }^{m_{j}}[x]}$ $\frac{\mathbb{Z}_{p_{j}}^{m_{j}}(x]}{\left(f_{i, j}(x)\right)}=G R\left(p_{j}^{m_{j}}, h_{i}\right)$, of \mathcal{R}_{j} with the maximal ideal $\mathcal{M}_{\mathrm{i}, \mathrm{j}}=\left(M_{j}, f_{i, j}(x)\right) /\left(f_{i, j}(x)\right)$, for each i such that $0 \leq i \leq t$ and $1 \leq j \leq r$. Then the residue fields of each $\mathcal{R}_{i, j}$ becomes

$$
\mathbb{K}_{i, j}=\frac{\mathcal{R}_{i, j}}{\mathcal{M}_{i, j}}=\frac{A_{j}[x] /\left(f_{i, j}(x)\right)}{\left(M_{j}, f_{i, j}(x)\right) /\left(f_{i, j}(x)\right)}=\frac{A_{j}[x]}{\left(M_{j}, f_{i, j}(x)\right)}=\frac{\left(A_{j} / M_{j}\right)[x]}{\left(\pi_{j}\left(f_{i, j}(x)\right)\right)}=\frac{K_{j}[x]}{\left(\bar{f}_{i, j}(x)\right)}=G F\left(p_{j}^{h_{i}}\right) .
$$

As each h_{i} divides h_{i+1} for all $0 \leq i \leq t$, so by [1, Lemma XVI.7], there is a chain

$$
A_{j}=\mathcal{R}_{0, j} \subset \mathcal{R}_{1, j} \subset \mathcal{R}_{2, j} \subset \cdots \subset \mathcal{R}_{t-1, j} \subset \mathcal{R}_{t, j}=\mathcal{R}_{j}
$$

of Galois rings with corresponding chain of residue fields

$$
\mathbb{Z}_{p_{j}}=\mathbb{K}_{0, j} \subset \mathbb{K}_{1, j} \subset \mathbb{K}_{2, j} \subset \cdots \subset \mathbb{K}_{t-1, j} \subset \mathbb{K}_{j}
$$

Let $\mathcal{A}_{i}=\mathcal{R}_{i, 1} \times \mathcal{R}_{i, 2} \times \mathcal{R}_{i, 3} \times \cdots \times \mathcal{R}_{i, r}$, for each i such that $0 \leq i \leq t$. Then we get a chain of commutative rings, i.e.,

$$
\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}=\mathcal{A}
$$

with an other chain of commutative rings

$$
\mathcal{K}_{0} \subset \mathcal{K}_{1} \subset \mathcal{K}_{2} \subset \cdots \subset \mathcal{K}_{t-1} \subset \mathcal{K}_{t}=\mathcal{K}
$$

where each $\mathcal{K}_{i}=\mathbb{K}_{1_{i}} \times \mathbb{K}_{2_{i}} \times \cdots \times \mathbb{K}_{r_{i}}$, for each i such that $0 \leq i \leq t$.
Let $\mathcal{A}_{i}^{*}, \mathcal{K}_{i}^{*}, \mathcal{R}_{i, j}^{*}$ and $\mathbb{K}_{i, j}^{*}$ be the multiplicative groups of units of $\mathcal{A}_{i}, \mathcal{K}_{i}, \mathcal{R}_{i, j}$ and $\mathbb{K}_{i, j}$, for $1 \leq j \leq r$, respectively, for each i such that $0 \leq i \leq t$. Now the next theorem, extension of [1, Theorem XVIII.1], is fundamental in the decomposition of the polynomial $x^{s_{i}}-1$ into linear factors over the rings \mathcal{A}_{i}^{*}. This theorem asserts that for each element $\alpha_{i} \in \mathcal{A}_{i}^{*}$ there exist unique elements $\beta_{i, j} \in \mathcal{R}_{i, j}^{*}$, for each i, where $0 \leq i \leq t$ and $1 \leq j \leq r$, such that $\alpha_{i}=\left(\beta_{i, 1}, \beta_{i, 2}, \cdots, \beta_{i, r}\right)$.

Theorem 4.1. For each i such that $0 \leq i \leq t$, let $\mathcal{A}_{i}=\mathcal{R}_{i, 1} \times \mathcal{R}_{i, 2} \times \mathcal{R}_{i, 3} \times \cdots \times \mathcal{R}_{i, r}$, where each $\mathcal{R}_{i, j}$, for $1 \leq j \leq r$, is a local commutative ring. Then $\mathcal{A}_{i}^{*}=\mathcal{R}_{i, 1}^{*} \times \mathcal{R}_{i, 2}^{*} \times \mathcal{R}_{i, 3}^{*} \times \cdots \times \mathcal{R}_{i, r}^{*}$ for each i such that $0 \leq i \leq t$.

Note that $\bar{\alpha}_{i}=\left(\bar{\beta}_{i, 1}, \bar{\beta}_{i, 2}, \cdots, \bar{\beta}_{i, r}\right)$. Following theorem indicates the condition under which $x^{s_{i}}-1$ can be factored over \mathcal{A}_{i}^{*}, for each i such that $0 \leq i \leq t$.

Theorem 4.2. For each i, where $0 \leq i \leq t$, the polynomial $x^{s_{i}}-1$ can be factored over the multiplicative group \mathcal{A}_{i}^{*} as $x^{s_{i}}-1=\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{2}\right) \cdots\left(x-\alpha_{i}^{s}\right)$ if and only if $\bar{\beta}_{i, j}$, for each j such that $1 \leq j \leq r$, has order s_{i} in $\mathbb{K}_{i, j}^{*}$ such that $g c d\left(s_{i}, p\right)=1$ and $\alpha_{i}=\left(\beta_{i, 1}, \beta_{i, 2}, \cdots, \beta_{i, r}\right)$.
Proof. Suppose that the polynomial $x^{s_{i}}-1$ can be factored over \mathcal{A}_{i}^{*} as $x^{s_{i}}-1=\left(x-\alpha_{i}\right)(x-$ $\left.\alpha_{i}^{2}\right) \cdots\left(x-\alpha_{i}^{s_{i}}\right)$, for each i such that $0 \leq i \leq t$. Then $x^{s_{i}}-1$ can be factored over $\mathcal{R}_{i, j}^{*}$ as $x^{s_{i}}-1=\left(x-\beta_{i, j}\right)\left(x-\beta_{i, j}^{2}\right) \cdots\left(x-\beta_{i, j}^{s_{i}}\right)$, for each $1 \leq j \leq r$. Now it follows from the extension of [7, theorem 3] that $\bar{\beta}_{i, j}$ has order s_{i} in $\mathbb{K}_{i, j}^{*}$, for each $0 \leq i \leq t$ and for each $1 \leq j \leq r$. Conversely, suppose that $\bar{\beta}_{i, j}$ has order s_{i} in $\mathbb{K}_{i, j}^{*}$, for each i, j, where $0 \leq i \leq t$ and $1 \leq j \leq r$. Again it
follows, from the extension of [7, theorem 3], that the polynomial $x^{s_{i}}-1$ can be factored over $\mathcal{R}_{i, j}^{*}$ as $x^{s_{i}}-1=\left(x-\beta_{i, j}\right)\left(x-\beta_{i, j}^{2}\right) \cdots\left(x-\beta_{i, j}^{s_{i}}\right)$, for each i, j, where $0 \leq i \leq t$ and $1 \leq j \leq r$. Since $\alpha_{i}=\left(\beta_{i, 1}, \beta_{i, 2}, \cdots, \beta_{i, r}\right)$, for $0 \leq i \leq t$, so $x^{s_{i}}-1=\left(x-\alpha_{i}\right)\left(x-\alpha_{i}^{2}\right) \cdots\left(x-\alpha_{i}^{s_{i}}\right)$ over \mathcal{A}_{i}^{*}, for each i, where $0 \leq i \leq t$.

Corollary 4.3. [8, Theorem 3.4] The polynomial $x^{s}-1$ can be factored over the multiplicative group \mathcal{R}^{*} as $x^{s}-1=(x-\alpha)\left(x-\alpha^{2}\right) \cdots\left(x-\alpha^{s}\right)$ if and only if $\overline{\beta_{j}}$ has order s in \mathbb{K}_{j}^{*}, where $\operatorname{gcd}\left(s, p_{j}\right)=1$ and α corresponds to $\beta=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{r}\right)$, where $j=1,2,3, \cdots, r$.

Let $H_{\alpha_{i}, s_{i}}$ denotes the cyclic subgroup of \mathcal{A}_{i}^{*} generated by α_{i}, for each i, where $0 \leq i \leq t$, i.e., $H_{\alpha_{i}, s_{i}}$ contains all the roots of $x^{s_{i}}-1$ provided the condition of above theorem are met. The BCH codes \mathcal{C}_{i} over \mathcal{A}_{i}^{*} can be obtained as the direct product of BCH codes $\mathcal{C}_{i, j}$ over $\mathcal{R}_{i, j}^{*}$. To construct the cyclic BCH codes over \mathcal{A}_{i}^{*}, we need to choose certain elements of $H_{\alpha_{i}, n_{i}}$ as the roots of generator polynomials $g_{i}(x)$ of the codes, where $n_{i}=\operatorname{gcd}\left(p_{1}^{h_{i}}, p_{2}^{h_{i}}, p_{3}^{h_{i}}, \cdots, p_{r}^{h_{i}}\right)$. So that, $\alpha_{i}^{e_{1}}, \alpha_{i}^{e_{2}}, \cdots, \alpha_{i}^{e_{n_{i}-k_{i}}}$ are all the roots of $g_{i}(x)$ in $H_{\alpha_{i}, n_{i}}$, we construct $g_{i}(x)$ as

$$
g_{i}(x)=\operatorname{lcm}\left\{M_{i}^{e_{1}}(x), M_{i}^{e_{2}}(x), \cdots, M_{i}^{e_{n_{i}-k_{i}}}(x)\right\}
$$

where $M_{i}^{e_{l_{i}}}(x)$ are the minimal polynomials of $\alpha_{i}^{e_{l_{i}}}$, for $l=1,2, \cdots, n_{i}-k_{i}$, where each $\alpha_{i}^{e_{l_{i}}}=$ $\left(\beta_{i, 1}^{e_{i}}, \beta_{i, 2}^{e_{i},}, \cdots, \beta_{i, r}^{e_{l_{i}}}\right)$. The following theorem is the extension of [7, Lemma 3] and provides us a method for construction of $M_{i}^{e_{l_{i}}}(x)$, the minimal polynomial of $\alpha_{i}^{e_{l_{i}}}$ over the ring \mathcal{A}_{i}.

Theorem 4.4. For each i such that $0 \leq i \leq t$, let $M_{i}^{e_{l_{i}}}(x)$ be the minimal polynomial of $\alpha_{i}^{e_{l_{i}}}$ over \mathcal{A}_{i}, where $\alpha_{i}^{e_{l_{i}}}$ generates $H_{\alpha_{i}, n_{i}}$, for $l_{i}=1,2, \cdots, n_{i}-k_{i}$ and $0 \leq i \leq t$. Then $M_{i}^{e_{l_{i}}}(x)=\prod_{\xi_{i} \in B_{i}^{l_{i}}}\left(x-\xi_{i}\right)$, where $B_{i}^{l_{i}}=\left\{\left(\alpha_{i}^{e_{l_{i}}}\right)^{m_{i, j}}: m_{i, j}=\prod_{j=1}^{r} p_{i}^{q_{i, j}}\right.$, where $\left.1 \leq l_{i} \leq n_{i}-k_{i}, 0 \leq q_{i, j} \leq h_{i}-1\right\}$.
Proof. Let $\bar{M}_{i}^{e_{i}}(x)$ be the projection of $M_{i}^{e_{l_{i}}}(x)$ over the fields $\mathbb{K}_{i, j}$ and $\bar{M}_{i, j}^{e_{l_{i}}}(x)$ be the minimal polynomial of $\bar{\alpha}_{i}^{e_{l}}$ over $\mathbb{K}_{i, j}^{*}$, for each i, where $0 \leq i \leq t, 1 \leq j \leq r$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. We can verify that each $\bar{M}_{i}^{e_{i}}(x)$ is divisible by $\bar{M}_{i, j}^{e_{i}}(x)$, for $0 \leq i \leq t, 1 \leq j \leq r$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. Thus it has, among its roots, distinct elements of the sequences $\bar{\alpha}_{i}^{e_{l_{i}}},\left(\bar{\alpha}_{i}^{e_{l_{i}}}\right)^{p_{j}},\left(\bar{\alpha}_{i}^{e_{l_{i}}}\right)^{p_{j}^{2}}, \ldots,\left(\bar{\alpha}_{i}^{e_{i}}\right)^{p_{j}^{h_{i}-1}}$, for each i, j, where $0 \leq i \leq t, 1 \leq j \leq r$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. Hence $M_{i}^{e_{l_{i}}}(x)$ has, among its roots, distinct elements of the sequence $\alpha_{i}^{e_{l_{i}}},\left(\alpha_{i}^{e_{l_{i}}}\right)^{p_{j}},\left(\alpha_{i}^{e_{l_{i}}}\right)^{p_{j}^{2}}, \cdots,\left(\alpha_{i}^{e_{i}}\right)_{m_{i}}^{p_{j}^{h_{i}-1}}$, for each i, j, where $0 \leq i \leq t, 1 \leq j \leq r$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. Thus any element $\gamma_{i}=\left(\alpha_{i}^{e_{l_{i}}}\right)^{p_{j}^{m_{i}}}$ of the above sequence is the root of $M_{i}^{e_{l_{i}}}(x)$, for each i, j, where $0 \leq i \leq t, 1 \leq j \leq r, 0 \leq m_{i} \leq h_{i}-1$ and $1 \leq l_{i} \leq n_{i}-k_{i}$. Choose any k in the range $1 \leq k \leq r$ such that $k \neq j$. Then we know that if $\gamma_{i, k}$ is a root of $\bar{M}_{i, k}^{e_{i}}(x)$ implies that $\left(\gamma_{i, k}\right)_{m_{k}}^{q_{i}}$ is a root of $M_{i}^{e_{l_{i}}}(x)$ (which has coefficients in $\mathbb{K}_{i, k}$), for $0 \leq q_{i} \leq h_{i}-1$. Hence $\left(\gamma_{i}\right)^{q_{k}^{q_{i}}}=\left(\alpha_{i}^{e_{l_{i}}}\right)^{p_{j}^{m_{i}} p_{k}^{q_{i}}}$ is a root of $M_{i}^{e_{l_{i}}}(x)$. Proceeding in this manner, we can show that $M_{i}^{e_{l_{i}}}(x)$ necessarily has as roots all distinct member of $B_{i}^{l_{i}}$. But the polynomial $\prod_{\xi_{i} \in B_{i}^{l_{i}}}\left(x-\xi_{i}\right)$ has, by construction, coefficient in the direct product of A_{j}. Hence $M_{i}^{e_{l_{i}}}(x)=\prod_{\xi_{i} \in B_{i}^{l_{i}}}\left(x-\xi_{i}\right)$.

Corollary 4.5. [8, Theorem 3.5] For any positive integer l, let $M_{l}(x)$ be the minimal polynomial of α^{l} over \mathcal{R}, where α generates $H_{\alpha, n}$. Then $M_{l}(x)=\prod_{\xi \in B_{l}}(x-\xi)$, where B_{l} is all distinct elements of the sequence $\left\{\left(\alpha^{l}\right)^{m}: m=\prod_{j=1}^{r} q_{j}^{s_{j}}, q_{j}=p_{j}^{m_{j}}, 0 \leq s_{j} \leq h-1\right\}$.

The lower bound on the minimum distances derived in the following theorem applies to any cyclic code. The BCH codes are a class of cyclic codes whose generator polynomials are chosen so that the minimum distances are guaranteed by this bound. In this sense, the following extend [8 , Theorem 2.5]

Theorem 4.6. [9, Theorem 11] For each i such that $0 \leq i \leq t$, let $g_{i}(x)$ be the generator polynomial of BCH code \mathcal{C}_{i} over \mathcal{A}_{i} from the chain $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}$, with length $n_{i}=s_{i}$, and let $\alpha_{i}^{e_{1}}, \alpha_{i}^{e_{2}}, \alpha_{i}^{e_{3}}, \cdots, \alpha_{i}^{e_{n_{i}}-k_{i}}$ be the roots of $g_{i}(x)$ in $H_{\alpha_{i}, n_{i}}$, where α_{i} has order n_{i}. The minimum Hamming distance of this code is greater than the largest number of consecutive integers modulo n_{i} in $E_{i}=\left\{e_{1}, e_{2}, e_{3}, \cdots, e_{n_{i}-k_{i}}\right\}$.

Corollary 4.7. [8, Theorem 2.5] Let $g(x)$ be the generator polynomial of $B C H$ code over A with length $n=s$ such that $\alpha^{e_{1}}, \alpha^{e_{2}}, \cdots, \alpha^{e_{n-k}}$ are the roots of $g(x)$ in $H_{\alpha, n}$, where α has order n, then minimum Hamming distance of the code is greater than the largest number of consecutive integers modulo n in $E=\left\{e_{1}, e_{2}, e_{3}, \cdots, e_{n-k}\right\}$.

4.1 Algorithm

The algorithm for constructing a BCH type cyclic codes over the chain of such type of commutative rings $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}=\mathcal{A}$ is then as follows.

1. Choose irreducible polynomial $f_{i, j}(x)$ over $\mathbb{Z}_{p_{j}} m_{j}$ of degree $h_{i}=b^{i}$, for $1 \leq i \leq t$, which are also irreducible over $G F(p)$ and form the chains of Galois rings

$$
\begin{aligned}
\mathbb{Z}_{p_{j}}^{m_{j}} & =G R\left(p_{j}^{m_{j}}, h_{0}\right) \subset G R\left(p_{j}^{m_{j}}, h_{1}\right) \subset \cdots \subset G R\left(p_{j}^{m_{j}}, h_{t-1}\right) \subset G R\left(p_{j}^{m_{j}}, h_{t}\right) \text { or } \\
A_{j} & =\mathcal{R}_{0, j} \subseteq \mathcal{R}_{1, j} \subseteq \mathcal{R}_{2, j} \subseteq \cdots \subseteq \mathcal{R}_{t-1, j} \subseteq \mathcal{R}_{t, j}=\mathcal{R}_{j}
\end{aligned}
$$

and its corresponding chains of residue fields are

$$
\begin{aligned}
\mathbb{Z}_{p_{j}} & =G F\left(p_{j}\right) \subset G F\left(p_{j}^{h_{1}}\right) \subset \cdots \subset G F\left(p_{j}^{h_{t-1}}\right) \subset G F\left(p_{j}^{h}\right) \text { or } \\
& =\mathbb{K}_{0, j} \subset \mathbb{K}_{1, j} \subset \mathbb{K}_{2, j} \cdots \subset \mathbb{K}_{t-1, j} \subset \mathbb{K}_{t, j}=\mathbb{K}_{j},
\end{aligned}
$$

where each $G F\left(p_{j}^{h_{i}}\right) \simeq \frac{K_{j}[x]}{\left(\pi_{j}\left(f_{i, j}(x)\right)\right)}$, for $1 \leq i \leq t$.
2. Now put $\mathcal{A}_{i}=\mathcal{R}_{i, 1} \times \mathcal{R}_{i, 2} \times \mathcal{R}_{i, 3} \times \cdots \times \mathcal{R}_{i, r}$, for $0 \leq i \leq t$, where each $\mathcal{R}_{i, j}$ is local commutative ring, and get a chain of rings

$$
\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}=\mathcal{A}
$$

with an other chain of rings

$$
\mathcal{K}_{0} \subset \mathcal{K}_{1} \subset \mathcal{K}_{2} \subset \cdots \subset \mathcal{K}_{t-1} \subset \mathcal{K}_{t}=\mathcal{K}
$$

where each $\mathcal{K}_{i}=\mathbb{K}_{i}^{r}$, for $0 \leq i \leq t$.
3. Let $\bar{\eta}_{i, j}=\bar{\eta}_{i}$ be the primitive elements in \mathbb{K}_{i}^{*}, for $0 \leq i \leq t$. Then $\eta_{i, j}$ has order $d_{i, j} n_{i}$ in $\mathcal{R}_{i, j}^{*}$ for some integers $d_{i, j}$, put $\beta_{i, j}=\left(\eta_{i, j}\right)^{d_{i, j}}$. Then $\alpha_{i}=\left(\beta_{1_{i}}, \beta_{2_{i}}, \beta_{3_{i}}, \cdots, \beta_{r_{i}}\right)$ has order n_{i} in $\mathcal{R}_{i, j}^{*}$ and generates $H_{\alpha_{i}, n_{i}}$. Assume for each i, where $0 \leq i \leq t, \alpha_{i}$ be any element of $H_{\alpha_{i}, n_{i}}$.
4. Let $\alpha_{i}^{e_{1}}, \alpha_{i}^{e_{2}}, \alpha_{i}^{e_{3}}, \cdots, \alpha_{i_{e^{\prime}}-k_{i}}^{e_{n_{i}}}$ are chosen to be the roots of $g_{i}(x)$. Find $M_{i}^{e_{l_{i}}}(x)$ are the minimal polynomials of $\alpha_{i}^{e_{l_{i}}}$, for $l_{i}=1,2, \cdots, n_{i}-k_{i}$, where each $\alpha_{i}^{e_{l_{i}}}=\left(\beta_{i}^{e_{l_{i}}}, \beta_{i}^{{ }^{{ }_{l}^{l}}{ }_{i}}, \beta_{i}^{e_{l_{i}}}, \cdots, \beta_{i}^{e_{l_{i}}}\right)$. Then $g_{i}(x)$ are given by

$$
g_{i}(x)=\operatorname{lcm}\left\{M_{i}^{e_{1}}(x), M_{i}^{e_{2}}(x), \cdots, M_{i}^{e_{n_{i}-k_{i}}}(x)\right\} .
$$

The length of each code in the chain is the Icm of the orders of $\alpha_{i}^{e_{1}}, \alpha_{i}^{e_{2}}, \alpha_{i}^{e_{3}}, \cdots, \alpha_{i}^{e_{n_{i}-k_{i}}}$, and the minimum distance of the code is greater than the largest number of consecutive integers in the set $E_{i}=\left\{e_{1}, e_{2}, e_{3}, \cdots, e_{n_{i}-k_{i}}\right\}$ for each i, where $0 \leq i \leq t$.

Example 4.8. We initiate by constructing a chain of codes of lengths 1,8 and 16, taking $A_{1}=\mathbb{Z}_{9}$ and $A_{2}=\mathbb{Z}_{5}$. Since $M_{1}=\{0,3,6\}$ and $M_{2}=\{0\}$, so $K_{1}=\frac{A_{1}}{M_{1}} \simeq \mathbb{Z}_{3}$ and $K_{2}=\frac{A_{2}}{M_{2}} \simeq \mathbb{Z}_{5}$. The regular polynomials $f_{1}(x)=x^{4}+x+8 \in \mathbb{Z}_{9}[x]$ and $f_{2}(x)=x^{4}+x^{2}+x+1 \in \mathbb{Z}_{5}[x]$ are such that $\pi_{1}\left(f_{1}(x)\right)=x^{4}+x+2$ and $\pi_{2}\left(f_{2}(x)\right)=x^{4}+x^{2}+x+1$ are irreducible polynomials with degree $h=2^{2}$ over \mathbb{Z}_{3} and \mathbb{Z}_{5}, respectively. By [9 , Theorem 3], it follows that $f_{1}(x)$ and $f_{2}(x)$ are irreducible over A_{1} and A_{2}. Let $\mathcal{R}_{1}=\frac{\mathbb{Z}_{32}[x]}{\left(f_{1}(x)\right)}=G R\left(3^{2}, 4\right), \mathcal{R}_{2}=\frac{\mathbb{Z}_{5}[x]}{\left(f_{2}(x)\right)}=G R(5,4)$ be the Galois rings and $\mathbb{K}_{1}=\frac{\mathbb{Z}_{3}[x]}{\left(\pi_{1}\left(f_{1}(x)\right)\right)}=G F\left(3^{4}\right)$, $\mathbb{K}_{2}=\frac{\mathbb{Z}_{5}[x]}{\left(\pi_{2}\left(f_{2}(x)\right)\right)}=G F\left(5^{4}\right)$ be their corresponding residue fields. Since 1, 2 and 2^{2} are the only divisors of 4, it follows that $h_{1}=1, h_{2}=2$ and $h_{3}=2^{2}$. Then there exist irreducible polynomials $f_{1,1}(x)=x^{2}+1, f_{2,1}(x)=f_{1}(x)$ in $\mathbb{Z}_{9}[x]$, and $f_{1,2}(x)=x^{2}+2$, $f_{2,2}(x)=f_{2}(x)$ in $\mathbb{Z}_{5}[x]$ with degrees $h_{2}=2$ and $h_{3}=4$ such that we can constitute the Galois rings $\mathcal{R}_{0,1}=A_{1}, \mathcal{R}_{1,1}=\frac{\mathbb{Z}_{32}[x]}{\left(f_{1,1}(x)\right)}=\operatorname{GR}\left(3^{2}, h_{2}\right), \mathcal{R}_{2,1}=\mathcal{R}_{1}$ and $\mathcal{R}_{0,2}=A_{2}, \mathcal{R}_{1,2}=\frac{\mathbb{Z}_{5}[x]}{\left(f_{1,2}(x)\right)}=G R\left(5, h_{2}\right)$ and $\mathcal{R}_{1,2}=\mathcal{R}_{2}$. So

$$
A_{j}=\mathcal{R}_{0, j} \subset \mathcal{R}_{1, j} \subset \mathcal{R}_{2, j}=\mathcal{R}_{j}, \text { for } j=1,2 .
$$

Again by the same argument $\mathbb{K}_{0,1}=\mathbb{Z}_{3}, \mathbb{K}_{1,1}=\frac{\mathbb{Z}_{3}[x]}{\left(\pi_{1}\left(f_{1,1}(x)\right)\right)}=G F\left(3^{2}\right), \mathbb{K}_{2,1}=\mathbb{K}_{1}$ and $\mathbb{K}_{0,2}=\mathbb{Z}_{5}$, $\mathbb{K}_{1,2}=\frac{\mathbb{Z}_{5}[x]}{\left(\pi_{2}\left(f_{1,2}(x)\right)\right)}=G F\left(5^{2}\right), \mathbb{K}_{2,2}=\mathbb{K}_{2}$. So we get chains of fields

$$
A_{j}=\mathbb{K}_{0, j} \subset \mathbb{K}_{1, j} \subset \mathbb{K}_{2, j}=\mathbb{K}_{j}, \text { for } j=1,2 .
$$

$\operatorname{Now} \mathcal{A}_{i}=\mathcal{R}_{i, 1} \times \mathcal{R}_{i, 2}$ such that $\mathcal{A}_{0} \subseteq \mathcal{A}_{1} \subseteq \mathcal{A}_{2}$, i.e.,

$$
\begin{array}{ll}
\mathcal{A}_{0}=\mathcal{R}_{0,1}=\mathbb{Z}_{9} & \times \mathcal{R}_{0,2}=\mathbb{Z}_{5} \\
\mathcal{A}_{1}=\mathcal{R}_{1,1}=\frac{\mathbb{Z}_{32}[x]}{\left(x^{2}+1\right)} & \times \mathcal{R}_{1,2}=\frac{\mathbb{Z}_{5}[x]}{\left(x^{2}+2\right)} \\
\mathcal{A}_{2}=\mathcal{R}_{2,1}=\frac{\mathbb{Z}_{32}[x]}{\left(x^{4}+x-1\right)} & \times \mathcal{R}_{2,2}=\frac{\mathbb{Z}_{5}[x]}{\left(x^{4}+x^{2}+x+1\right)}
\end{array}
$$

and

$$
\begin{array}{ll}
\mathcal{K}_{0}=\mathbb{K}_{0,1}=\mathbb{Z}_{3} & \times \mathbb{K}_{0,2}=\mathbb{Z}_{5} \\
\mathcal{K}_{1}=\mathbb{K}_{1,1}=\frac{\mathbb{Z}_{3}[x]}{\left(x^{2}+1\right)} & \times \mathbb{K}_{1,2}=\frac{\mathbb{Z}_{5}[x]}{\left(x^{2}+2\right)} \\
\mathcal{K}_{2}=\mathbb{K}_{2,1}=\frac{\mathbb{Z}_{3}[x]}{\left(x^{4}+x-1\right)} & \times \mathbb{K}_{2,2}=\frac{\mathbb{Z}_{5}[x]}{\left(x^{4}+x^{2}+x+1\right)}
\end{array}
$$

Let $u=\{x\}$ in $\mathcal{R}_{i, j}$ such that $\bar{u}=\{X\}$ in $\mathbb{K}_{i, j}$. Then $\bar{u}+1$ has order $8,24,80$ and 624 in $\mathbb{K}_{1,1}, \mathbb{K}_{1,2}, \mathbb{K}_{2,1}$ and $\mathbb{K}_{2,2}$, respectively. So $\bar{\beta}_{1,1}=\bar{\beta}_{1,2}=\bar{\beta}_{2,1}=\bar{\beta}_{2,2}=\bar{u}+1$. But $u+1$ has order $24,120,80$ and 624 in $\mathcal{R}_{1,1}, \mathcal{R}_{1,2}, \mathcal{R}_{2,1}$ and $\mathcal{R}_{2,2}$, so put $\beta_{1,1}=(u+1)^{3}, \beta_{1,2}=(u+1)^{15}, \beta_{2,1}=(u+1)^{5}$ and $\beta_{2,2}=(u+1)^{39}$ and get $\alpha_{2}=\left(\beta_{2,1}, \beta_{2,2}\right)$ which generates $H_{\alpha_{2}, 16}$ and $\alpha_{1}=\left(\beta_{1,1}, \beta_{1,2}\right)$ which generates $H_{\alpha_{1}, 8}$. Also 2 has order 4 in $\mathbb{K}_{0,2}$ and has order 2 in $\mathbb{K}_{0,1}$, so $\bar{\beta}_{0,1}=\bar{\beta}_{0,2}=2$. But 2 has order 4 in $\mathcal{R}_{0,2}$ and has order 6 in $\mathcal{R}_{0,1}$, so $\beta_{0,1}=2$ and $\beta_{0,2}=24$ get $\alpha_{0}=\left(\beta_{0,1}, \beta_{0,2}\right)$ which generates $H_{\alpha_{0}, 2}$. Choose α_{i} and α_{i}^{2} to be roots of the generator polynomials $g_{i}(X)$ of the BCH codes \mathcal{C}_{i} over the chain $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \mathcal{A}_{2}$. Then $M_{0}^{1}(x), M_{1}^{1}(x)$ and $M_{2}^{1}(x)$ has as roots all distinct element in the sets $B_{0}^{1}=\left\{\alpha_{0}\right\} \subset H_{\alpha_{0}, 2}$, $B_{1}^{1}=\left\{\alpha_{1}, \alpha_{1}^{3}, \alpha_{1}^{5}, \alpha_{1}^{7}\right\} \subset H_{\alpha_{1}, 8}$ and $B_{2}^{1}=\left\{\alpha_{2}, \alpha_{2}^{3}, \alpha_{2}^{5}, \alpha_{2}^{7}, \alpha_{2}^{9}, \alpha_{2}^{11}, \alpha_{2}^{13}, \alpha_{2}^{15}\right\} \subset H_{\alpha_{2}, 16}$, respectively. So

$$
M_{0}^{1}(x)=\left(x-\alpha_{0}\right), M_{1}^{1}(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{1}^{3}\right)\left(x-\alpha_{1}^{5}\right)\left(x-\alpha_{1}^{7}\right),
$$

and

$$
M_{2}^{1}(x)=\left(x-\alpha_{2}\right)\left(x-\alpha_{2}^{3}\right)\left(x-\alpha_{2}^{5}\right)\left(x-\alpha_{2}^{7}\right)\left(x-\alpha_{2}^{9}\right)\left(x-\alpha_{2}^{11}\right)\left(x-\alpha_{2}^{13}\right)\left(x-\alpha_{2}^{15}\right)
$$

Similarly,

$$
\begin{aligned}
& M_{0}^{2}(x)=(x-1), M_{1}^{2}(x)=\left(x-\alpha_{1}^{2}\right)\left(x-\alpha_{1}^{6}\right), \\
& M_{2}^{3}(x)=\left(x-\alpha_{2}^{2}\right)\left(x-\alpha_{2}^{6}\right)\left(x-\alpha_{2}^{10}\right)\left(x-\alpha_{2}^{14}\right)
\end{aligned}
$$

Thus the polynomials $g_{i}(x)=\operatorname{lcm}\left(M_{i}^{1}(x), M_{i}^{2}(x)\right)$ are given by

$$
\begin{gathered}
g_{0}(x)=(x-1)\left(x-\alpha_{0}\right), g_{1}(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{1}^{2}\right)\left(x-\alpha_{1}^{3}\right)\left(x-\alpha_{1}^{5}\right)\left(x-\alpha_{1}^{6}\right)\left(x-\alpha_{1}^{7}\right), \\
g_{2}(x)=\left(x-\alpha_{2}\right)\left(x-\alpha_{2}^{2}\right)\left(x-\alpha_{2}^{3}\right)\left(x-\alpha_{2}^{5}\right)\left(x-\alpha_{2}^{6}\right)\left(x-\alpha_{2}^{7}\right)\left(x-\alpha_{2}^{9}\right)\left(x-\alpha_{2}^{10}\right)\left(x-\alpha_{2}^{11}\right)\left(x-\alpha_{2}^{13}\right)\left(x-\alpha_{2}^{14}\right)\left(x-\alpha_{2}^{15}\right)
\end{gathered}
$$

which generates the cyclic $B C H$ codes $\mathcal{C}_{0}, \mathcal{C}_{1}$ and \mathcal{C}_{2} of length 2,8 and 16 with minimum hamming distance 2, 3 and 3, respectively. Similarly, we can construct cyclic codes over \mathcal{K}_{i} if we replace α_{i} with $\bar{\alpha}_{i}$, for $0 \leq i \leq 2$.

5 Conclusion

For a non negative integer t, let $\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \cdots \subset \mathcal{A}_{t-1} \subset \mathcal{A}_{t}$ be a chain of unitary commutative rings (each \mathcal{A}_{i} is constructed by the direct product of suitable Galois rings with multiplicative group \mathcal{A}_{i}^{*} of units) and $\mathcal{K}_{0} \subset \mathcal{K}_{1} \subset \cdots \subset \mathcal{K}_{t-1} \subset \mathcal{K}_{t}$ be the corresponding chain of unitary commutative rings (each \mathcal{K}_{i} is constructed by the direct product of corresponding residue fields of given Galois rings, with multiplicative groups \mathcal{K}_{i}^{*} of units).

Despite [8], the construction of BCH codes with symbols from the commutative ring \mathcal{A}_{i}, the direct product of local commutative rings $\mathcal{R}_{i, j}$, where $0 \leq i \leq t$ and $0 \leq j \leq t$ having residue fields $\mathbb{K}_{i, j}$, where $0 \leq i \leq t$. For each member in the chain of direct product of Galois rings and residue fields, respectively, we obtain the sequence of BCH codes $\mathcal{C}_{0}, \mathcal{C}_{1}, \cdots, \mathcal{C}_{t-1}, \mathcal{C}$ over the direct product of local commutative rings $\mathcal{R}_{i, j}$ with different lengths and sequence of BCH codes $\mathcal{C}_{0}^{\prime}, \mathcal{C}_{1}^{\prime}, \cdots, \mathcal{C}_{t-1}^{\prime}, \mathcal{C}^{\prime}$ over the direct product of residue fields $\mathbb{K}_{i, j}$ with proper lengths, i.e.,

$$
\begin{array}{ccccccccc}
\mathcal{C}_{0} & = & \mathcal{C}_{0,0} & \times & \mathcal{C}_{0,1} & \times & \cdots & \times & \mathcal{C}_{0, r} \\
\mathcal{C}_{1} & = & \mathcal{C}_{1,0} & \times & \mathcal{C}_{1,1} & \times & \cdots & \times & \mathcal{C}_{1, r} \\
\vdots & & \vdots & & \vdots & & \ddots & & \vdots \\
\mathcal{C} & = & \mathcal{C}_{t, 0} & \times & \mathcal{C}_{t, 1} & \times & & \times & \mathcal{C}_{t, r}
\end{array}
$$

and

$$
\begin{array}{ccccccccc}
\mathcal{C}_{0}^{\prime} & = & \mathcal{C}_{0,0}^{\prime} & \times & \mathcal{C}_{0,1}^{\prime} & \times & \cdots & \times & \mathcal{C}_{0, r}^{\prime} \\
\mathcal{C}_{1}^{\prime} & = & \mathcal{C}_{1,0}^{\prime} & \times & \mathcal{C}_{1,1}^{\prime} & \times & \cdots & \times & \mathcal{C}_{1, r}^{\prime,} \\
\vdots & & \vdots & & \vdots & & \ddots & & \vdots \\
\mathcal{C}^{\prime} & = & \mathcal{C}_{t, 0}^{\prime} & \times & \mathcal{C}_{t, 1}^{\prime} & \times & & \times & \mathcal{C}_{t, r}^{\prime} .
\end{array}
$$

In fact this technique provides a choice to select a most suitable BCH code \mathcal{C}_{i} (respectively, BCH code \mathcal{C}_{i}^{\prime}), where $0 \leq i \leq t$, with required error correction capabilities and code rate but with compromising length

Acknowledgment

The authors would like to thank the anonymous reviewers for their intuitive commentary that significantly improved the worth of this work and the FAPESP by financial support 2013/04124-6.

Competing Interests

The authors declare that no competing interests exist.

References

[1] McDonlad, BR. Finite rings with identity. Marcel Dekker, New York; 1974
[2] Blake, IF. Codes over certain rings. Information and Control. 1972; 20: 396-404.
[3] Blake, IF. Codes over integer residue rings. Information and Control. 1975; 29: 295-300.
[4] Spiegel, E. Codes over \mathbb{Z}_{m}. Information and Control. 1977: 35: 48-51.
[5] Spiegel, E. Codes over \mathbb{Z}_{m}, revised. Information and Control. 1978; 37: 100-104.
[6] Forney Jr., GD. On decoding BCH codes. IEEE Trans. Inform. Theory. 1965; IT-11(4): 549-557.
[7] Shankar, P. On BCH codes over arbitrary integer rings. IEEE Trans. Inform. Theory. 1979; IT25(4): 480-483.
[8] Andrade, AA, Palazzo Jr., R. Construction and decoding of BCH codes over finite rings. Linear Algebra and its Applications. 1999; 286: 69-85.
[9] Andrade, AA, Shah, T, Qamar, A. Chain of finite rings and construction of BCH Codes. Proceending of XXX Brazilian Symposium of Telecommunications - SBrT12, 13-16 of September of 2012, Brasília - DF.
(C) 2014 Shah et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]
[^0]: *Corresponding author: E-mail: andrade@ibilce.unesp.br

[^1]: Peer-review history:
 The peer review history for this paper can be accessed here (Please copy paste the total link in yourbrowser address bar)
 www.sciencedomain.org/review-history.php?iid=366\&id=5\&aid=2845

