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Abstract
LetA0 ⊂ A1 ⊂ · · · ⊂ At−1 ⊂ At be a chain of unitary commutative rings (eachAi is constructed by
the direct product of suitable Galois rings with multiplicative groupA∗i of units) andK0 ⊂ K1 ⊂ · · · ⊂
Kt−1 ⊂ Kt be the corresponding chain of unitary commutative rings (each Ki is constructed by the
direct product of corresponding residue fields of given Galois rings, with multiplicative groups K∗i of
units), where t is a non negative integer. In this work presents three different types of constructions
of generator polynomials of sequences of BCH codes having entries from A∗i and K∗i for each i,
where 0 ≤ i ≤ t.

Keywords: Units of a ring, BCH code, Galois rings
2010 Mathematics Subject Classification: 11T71, 94A15, 14G50

1 Introduction

Let A be a finite commutative ring with identity. The ring An, with n ∈ Z+, being a free A-module
preserve the concept of linear independence among its elements is similar to a vector space over a
field. Though it is the constraint that an r × r submatrix of r × n generator matrix M over A is non-
singular, or equivalently, has determinant unit in A. The existence of non-singular matrices having
not obligatory the unit elements is, in fact the primary obstacle in working over a local ring instead of
a field. The notion of elementary row operations in a matrix, and its consequences, also carry over
A with the understanding that only multiplication of a row by a unit element in A is allowed, which is
in contrast to the multiplication by any nonzero element in the case of a field. The structure of the
multiplicative group of units of A is the main motivation to calculate the McCoy rank [1] of a matrix M ,
that is the largest integer r such that r × r submatrix of M has determinant unit in A.
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Linear codes over finite rings have been discussed in a series of papers initiated by Blake [2],
[3], and Spiegel [4], [5]. However a remarkable development, nonetheless, began by Forney et al.
[6]. The structure of, the multiplicative group of unit elements of certain local finite commutative rings
have recently raised a great interest for its wonderful application in algebraic coding theory. Using
multiplicative group of unit elements of a Galois ring extension of Zpm , Shankar [7] has constructed
BCH codes over Zpm . However, Andrade and Palazzo [8] have further extend these construction of
BCH codes over finite commutative rings with identity. Both construction techniques of [7] and [8]
have been addressed from the approach of specifying a cyclic subgroup of the group of units of an
extension ring of finite commutative rings. The complexity of study is to get the factorization of xs − 1
over the group of units of the appropriate extension ring of the given local ring.

There exist corresponding Galois ring extensions Ri = GR(pm, hi), where 0 ≤ i ≤ t, h = bt,
b is prime, t is a positive integer and hi = bi (respectively, there residue fields Ki, where 0 ≤ i ≤ t
and hi = bi) of unitary local ring (R,M) with pm elements (respectively, p elements and residue
field R/M). For each i, for 0 ≤ i ≤ t, it follows that R∗i has one and only one cyclic subgroup
Gni of order ni (divides phi − 1) relatively to p (an extension in [7, Theorem 2]). Furthermore, if βi
generates a cyclic subgroup of order ni in K∗i . Then βi generates a cyclic subgroup of order nidi
in R∗i , where di is an integer greater than or equal to 1, and (βi)di generates the cyclic subgroup
Gni in R∗i for each i [7, Lemma 1]. Then by extending the given algorithm [7] for constructing a
BCH codes with symbols from the local ring A for each member in chains of Galois rings and residue
fields, respectively. Consequently there are two situations: si = bi for i = 2 or si = bi for i ≥ 2. By
these motivations in this paper for any t ∈ Z+, we let A0 ⊂ A1 ⊂ · · · ⊂ At−1 ⊂ At be a chain of
unitary commutative rings, whereas for each i, such that 0 ≤ i ≤ t, it follows that Ai is direct product
of Galois rings, i.e.,

A0 = R0,1 × R0,2 × · · · × R0,r

∩ ∩ ∩ ∩
A1 = R1,1 × R1,2 × · · · × R1,r

∩ ∩ ∩ ∩
...

...
...

. . .
...

∩ ∩ ∩ ∩
At = Rt,1 × Rt,2 × · · · × Rt,r

Whereas R0,j ⊂ R1,j ⊂ · · · ⊂ Rt−1,j ⊂ Rt,j , for each 1 ≤ j ≤ r, is the chain of Galois rings. In
construction I we have different Ri,j with same characteristic p. In constructions II and III we take
different Ri,j with different characteristic pj , where 1 ≤ j ≤ r.

Through of the chain A0 ⊂ A1 ⊂ · · · ⊂ At−1 ⊂ At, K0 ⊂ K1 ⊂ · · · ⊂ Kt−1 ⊂ Kt there is a chain
of rings constituted through the direct product of their residue fields, i.e.,

K0 = K0,1 × K0,2 × · · · × K0,r

∩ ∩ ∩ ∩
K1 = K1,1 × K1,2 × · · · × K1,r

∩ ∩ ∩ ∩
...

...
...

. . .
...

∩ ∩ ∩ ∩
Kt = Kt,1 × Kt,2 × · · · × Kt,r.

Whereas K0,j ⊂ K1,j ⊂ · · · ⊂ Kt−1,j ⊂ Kt,j , for each 1 ≤ j ≤ r, is the chain of corresponding
residue fields. In construction I we have Ki,j = Ki,j+1 and different in remaining types. It follows that
A∗i and K∗i , for each i, where 0 ≤ i ≤ t, are multiplicative groups of units of Ai and Ki, respectively.
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2 Construction I
For each j such that 1 ≤ j ≤ r, let p be any prime and mj be a positive integer. Then ring Aj = Zpmj

is the unitary finite local commutative ring with maximal idealMj and residue fieldK =
Aj

Mj
= Zp. The

natural projection πj : Aj [x]→ K[x] is defined by πj(
∑n
k=0 akx

k) =
∑n
k=0 akx

k, where ak = ak+Mj

for k = 0, · · · , n. Thus, the natural ring morphism Aj → K is simply the restrictions of πj to the
constant polynomial. Now, if fj(x) ∈ Aj [x] is a collection of basic irreducible polynomials with degree
h = bt, where each b is a prime and t is a positive integer, then Rj =

Aj [x]

(fj(x))
= GR(pmj , h) is the

Galois ring extension of Aj and

K =
Rj
Mj

=
Aj [x]/(fj(x))

(Mj , fj(x))/(fj(x))
=

Aj [x]

(Mj , fj(x))
=

(Aj/Mj)[x]

(πj(fj(x)))
=

K[x]

(πj(fj(x)))
= GF (ph)

is the residue field ofRj , whereMj = (Mj , fj(x))/(fj(x)) is the corresponding maximal ideal ofRj .
Since 1, b, b2, · · · , bt−1, bt are the only divisors of h, and take h0 = 1, h1 = b, h2 = b2, · · · , ht =

bt = h, therefore by [1, Lemma XVI.7] there exist basic irreducible polynomials f1,j(x), f2,j(x), · · · , ft,j(x) ∈
Aj [x] with degrees h1, h2, · · · , ht, respectively, such that we can constitute the Galois subrings

Ri,j =
Z
p
mj [x]

(fi,j(x))
= GR(pmj , hi) of Rj with the maximal ideal Mi,j = (Mj , fi,j(x))/(fi,j(x)), for

each i, j, where 0 ≤ i ≤ t and 1 ≤ j ≤ r. Thus the residue field of each Ri,j becomes

Ki =
Ri,j
Mi,j

=
Aj [X]/(fi,j(x))

(Mj , fi,j(x))/(fi,j(x))
=

Aj [x]

(Mj , fi,j(x))
=

(Aj/Mj)[x]

(πj(fi,j(x)))
=

K[x]

(f i,j(x))
= GF (phi).

As each hi divides hi+1 for all 0 ≤ i ≤ t, so by [1, Lemma XVI.7] it follows that

Aj = R0,j ⊂ R1,j ⊂ R2,j ⊂ · · · ⊂ Rt−1,j ⊂ Rt,j = Rj

is the chain of Galois rings with corresponding chain of residue fields

Zp = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kt−1 ⊂ K.

IfAi=Ri,1×Ri,2×Ri,3×· · ·×Ri,r, for each i such that 0 ≤ i ≤ t, then we get a chain of commutative
rings, i.e.,

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ At−1 ⊂ At = A
with an other chain of rings K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kt−1 ⊂ Kt = K where each Ki = Kri , for each i
such that 0 ≤ i ≤ t.

Let A∗i ,R∗i,j and K∗i be the multiplicative groups of units of Ai,Ri,j and Ki respectively, for each
i, j, where 0 ≤ i ≤ t and 1 ≤ j ≤ r. Now, the next theorem extended [1, Theorem XVIII.1], which has
a fundamental role in the decomposition of the polynomial xsi − 1 into linear factors over the ring A∗i .
This theorem asserts that for each element αi ∈ A∗i there exist unique elements βi,j ∈ R∗i,j , for each
i, j, where 0 ≤ i ≤ t and 1 ≤ j ≤ r, such that αi = (βi,1, βi,2, · · · , βi,r).

Theorem 2.1. LetAi = Ri,1×Ri,2×Ri,3×· · ·×Ri,r for each i such that 0 ≤ i ≤ t, where eachRi,j
is a local commutative ring. Then A∗i = R∗i,1×R∗i,2 ×R∗i,3 × · · ·×R∗i,r, for each i, j, where 0 ≤ i ≤ t
and 1 ≤ j ≤ r.

Note that βi,1 = βi,2 = βi,3 = · · · = βi,r = βi, and therefore αi = (βi, βi, βi, · · · , βi). Following
theorem indicates the condition under which xsi − 1 can be factored over A∗i , for each i, such that
0 ≤ i ≤ t.

Theorem 2.2. For each i such that 0 ≤ i ≤ t, the polynomial xsi − 1 can be factored over the
multiplicative group A∗i as xsi − 1 = (x− αi)(x− α2

i ) · · · (x− αsi ) if and only if β̄i, has order si in K∗i ,
where gcd(si, p) = 1 and αi = (βi,1, βi,2, · · · , βi,r).
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Proof. Suppose that the polynomial xsi − 1 can be factored over A∗i as xsi − 1 = (x − αi)(x −
α2
i ) · · · (x−αsii ). Then xsi −1 can be factored overR∗i,j as xsi −1 = (x−βi,j)(x−β2

i,j) · · · (x−βsii,j),
for each i such that 0 ≤ i ≤ t and 1 ≤ j ≤ r. Now it follows from the extension of [7, Theorem 3]
that β̄i has order si in K∗i , for each i such that 0 ≤ i ≤ t. Conversely, suppose that β̄i has order
si in K∗i , for each i such that 0 ≤ i ≤ t. Again it follows from the extension of [7, Theorem 3] that
the polynomial xsi − 1 can be factored over R∗i,jas xsi − 1 = (x − βi,j)(x − β2

i,j) · · · (x − βsii,j), for
0 ≤ i ≤ t and 1 ≤ j ≤ r. Since αi = (βi,1, βi,2, · · · , βi,r), for each i such that 0 ≤ i ≤ t, therefore
xsi − 1 = (x− αi)(x− α2

i ) · · · (x− αsii ) over A∗i , for each i such that 0 ≤ i ≤ t.
Let Hαi,si denotes the cyclic subgroup of A∗i generated by αi, for each i such that 0 ≤ i ≤ t, i.e.,

Hαi,si contains all the roots of xsi − 1 provided the condition of Theorem 2.2 is met. The BCH codes
Ci over A∗i can be obtained as the direct product of BCH codes Ci,j over R∗i,j . To construct the cyclic
BCH codes over A∗i , we need to choose certain elements of Hαi,ni , where ni = si, as the roots of
generator polynomials gi(x) of the codes. So that, αe1i , α

e2
i , α

e3
i , · · · , α

eni−ki
i are all the roots of gi(x)

in Hαi,ni , we construct gi(x) as

gi(x) = lcm{Me1
i (x),Me2

i (x), · · · ,Meni−ki
i (x)},

where for each i such that 0 ≤ i ≤ t, it follows that M
eli
i (x) is the minimal polynomial of α

eli
i , for

l = 1, 2, · · · , ni− ki, whereas each α
eli
i = (β

eli
i,1 , β

eli
i,2 , · · · , β

eli
i,r ), and M

eli
i (x). The following theorem

is the extension of [7, Lemma 3] and provides us a method for construction of M
eli
i (x), the minimal

polynomial of α
eli
i over the ring Ai, for 0 ≤ i ≤ t.

Theorem 2.3. For each i such that 0 ≤ i ≤ t, let M
eli
i (x) be the minimal polynomial of α

eli
i over

Ai, where α
eli
i generates Hαi,ni , for li = 1, 2, · · · , ni − ki. Then M

eli
i (x) =

∏
ξi∈B

li
i

(x− ξi), where

Blii = {(αelii )mi,j : mi,j =
∏r
j=1 p

qi,j , 1 ≤ li ≤ ni − ki, 0 ≤ qi,j ≤ hi − 1}.
Proof. Let M

eli
i (x) be the projection of M

eli
i (x) over the field Ki and M

eli
i (x) be the minimal

polynomial of α
eli
i over K∗i , for each i, j, where 0 ≤ i ≤ t and 1 ≤ li ≤ ni − ki. We can verify

that each M
eli
i (x) (minimal polynomial of α

eli
i ) is divisible by M

eli
i,j (x) (minimal polynomial of β

eli
i ),

for 0 ≤ i ≤ t and 1 ≤ li ≤ ni − ki. Thus it has, among its roots, distinct elements of the sequences
α
eli
i , (α

eli
i )p, (α

eli
i )p

2

, · · · , (αelii )p
hi−1

, for 0 ≤ i ≤ t and 1 ≤ li ≤ ni−ki. Hence M
eli
i (x) has, among

its roots, distinct elements of the sequence α
eli
i , (α

eli
i )p, (α

eli
i )p

2

, · · · , (αelii )p
hi−1

, for each i such
that 0 ≤ i ≤ t and 1 ≤ li ≤ ni − ki. Thus the element ξi = (α

eli
i )p

mi is the root of M
eli
i (x), for each

i such that 0 ≤ i ≤ t, 0 ≤ mi ≤ hi − 1 and 1 ≤ li ≤ ni − ki. Hence M
eli
i (x) =

∏
ξi∈B

li
i

(x− ξi).

Remark 2.1. Since, for each i such that 0 ≤ i ≤ t, it follows that M
eli
i (x) (minimal polynomial of α

eli
i )

is the projection of M
eli
i (x) (minimal polynomial of α

eli
i ) over the rings Ki. So M

eli
i (x) generates the

sequence of codes over the special chain of rings Ki = Kr
i .

The lower bound on the minimum distances derived in the following theorem applies to any cyclic
code. The BCH codes are a class of cyclic codes whose generator polynomials are chosen so that the
minimum distances are guaranteed by this bound. In this sense, the following extended [8, Theorem
2.5].

Theorem 2.4. [9, Theorem 11] For each i such that 0 ≤ i ≤ t, let gi(x) be the generator polynomial
of BCH code Ci over the ring Ai from the chain A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ At−1 ⊂ At, with length
ni = si, and let αe1i , α

e2
i , α

e3
i , · · · , α

eni−ki
i be the roots of gi(x) in Hαi,ni , where αi has order ni. The

minimum Hamming distance of this code is greater than the largest number of consecutive integers
modulo ni in Ei = {e1, e2, e3, · · · , eni−ki}, for each i such that 0 ≤ i ≤ t.
Corollary 2.5. [8, Theorem 2.5] Let g(x) be the generator polynomial of BCH code over A with length
n = s such that αe1 , αe2 , · · · , αen−k are the roots of g(x) in Hα,n, where α has order n, then minimum
Hamming distance of the code is greater than the largest number of consecutive integers modulo n
in E = {e1, e2, e3, · · · , en−k}.
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2.1 Algorithm
We can also use the extension of [7, Theorem 4] for the BCH bound of these codes. The algorithm for
constructing a BCH type cyclic codes over the chain of rings A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ At−1 ⊂ At = A
is then as follows.

1. Choose irreducible polynomial fi,j(x) over Zpmj of degree hi = bi, for1 ≤ i ≤ t, which are
also irreducible over GF (p) and form the chains of Galois rings

Zpmj = GR(pmj , h0) ⊂ GR(pmj , h1) ⊂ · · · ⊂ GR(pmj , ht−1) ⊂ GR(pmj , ht) or

Aj = R0,j ⊆ R1,j ⊆ R2,j ⊆ · · · ⊆ Rt−1,j ⊆ Rt,j = Rj

and its corresponding chain of residue fields is

Zp = GF (p) ⊂ GF (ph1) ⊂ · · · ⊂ GF (pht−1) ⊂ GF (ph) or

= K0 ⊂ K1 ⊂ K2 · · · ⊂ Kt−1 ⊂ K,

where each GF (phi) ' K[x]
(π(fi,j(x)))

, for 1 ≤ i ≤ t.

2. Now put Ai = Ri,1 × Ri,2 × Ri,3 × · · · × Ri,r, for 0 ≤ i ≤ t, where each Ri,j is a local
commutative ring, and get a chain of rings

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ At−1 ⊂ At = A

with an other chain of rings

K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kt−1 ⊂ Kt = K,

where each Ki = Kri , for 0 ≤ i ≤ t.
3. Let ηi,j = ηi be the primitive elements in K∗i , for 0 ≤ i ≤ t. Then ηi,j has order di,j .ni in R∗i,j

for some integers di,j , put βi,j = (ηi,j)
di,j . Then αi = (β1i , β2i , β3i , · · · , βri) has order ni in

R∗i,j and generates Hαi,ni . For each i, where 0 ≤ i ≤ t, let αi be any element of Hαi,ni .

4. Let αe1i , α
e2
i , α

e3
i , · · · , α

eni−ki
i are chosen to be the roots of gi(x). Find M

eli
i (x) are the

minimal polynomials of α
eli
i , for li = 1, 2, · · · , ni−ki, where each α

eli
i = (β

eli
i , β

eli
i , β

eli
i , · · · , βelii ).

Then gi(x) are given by

gi(x) = lcm{Me1
i (x),Me2

i (x), · · · ,Meni−ki
i (x)}.

The length of each code in the chain is the lcm of the orders of αe1i , α
e2
i , α

e3
i , · · · , α

eni−ki
i , and

the minimum distance of the code is greater than the largest number of consecutive integers
in the set Ei = {e1, e2, e3, · · · , eni−ki} for each i, where 0 ≤ i ≤ t.

Example 2.6. We initiate by constructing a chain of codes of lengths 1, 3 and 15, taking A1 = Z4

and A2 = Z8. Since M1 = {0, 2} and M2 = {0, 2, 4, 6}, so Kj =
Aj

Mj
' Z2 for i = 1, 2. The regular

polynomial f1(x) = x4+x+1 ∈ Z4[x] and f2(x) = x4+x+1 ∈ Z8[x] is such that π1(f1(x)) = x4+x+1
and π2(f2(x)) = x4 + x+ 1 are irreducible polynomials with degree h = 22 over Z2. By [9, Theorem
3], it follows that f1(x) and f2(x) are irreducible over A1 and A2, respectively. Let R1 =

Z
22

[x]

(f1(x))
=

GR(22, 4) and R2 =
Z
23

[x]

(f2(x))
= GR(23, 4) be the Galois rings and K = Z2[x]

(πj(fj(x)))
= GF (24) be their

corresponding common residue field. Since 1, 2 and 22 are the only divisors of 4, it follows that put
h1 = 1, h2 = 2 and h3 = 22. Then there exist irreducible polynomials fi,1(x) = x2 − x + 1 and
fi,2(x) = f2(x) in Z4[x] with degrees h2 = 2 and h3 = 4 such that we can constitute the Galois
rings Ri,1 =

Z
22

[x]

(fi,1(x))
= GR(22, hi), and Ri,2 =

Z
23

[x]

(fi,2(x))
= GR(23, hi), where 1 ≤ i ≤ 2. So

Aj = R0,j ⊂ R1,j ⊂ R2,j = Rj , for j = 1, 2. Again by the same argument Ki = Z2[x]
(πj(fi,j(x)))

=
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GF (2, hi) = GF (2hi), where 1 ≤ i ≤ 2 and 1 ≤ j ≤ 2. That is, K0 = GR(2, 1) = Z2, K1 = GR(2, 2),
K2 = K = GR(2, 4), with K1 ⊂ K2 ⊂ K. Now Ai = Ri,1 ×Ri,2 such that A0 ⊆ A1 ⊆ A2, i.e.,

A0 = R0,1 = Z4 × R0,2 = Z8

A1 = R1,1 =
Z
22

[x]

(x2+3x+1)
× R1,2 =

Z
23

[x]

(x2+7x+2)

A2 = R2,1 =
Z
22

[x]

(x4+x+1)
× R2,2 =

Z
23

[x]

(x4+x+1)

and
K0 = K0 = Z2 × K0 = Z2

K1 = K1 = Z2[x]

(x2+x+1)
× K1,2 = Z2[x]

(x2+x+2)

K2 = K2,1 = Z2[x]

(x4+x+1)
× K2,2 = Z2[x]

(x4+x+1)
.

Let u = {x} in Ri,1 such that u = {x} in Ki. Then u+ 1 has order 15 in K2, so β2 = u+ 1. But u+ 1
has order 30 in R2,1 and R2,2, so put β2,1 = β2,2 = (u+ 1)2 and get α2 = (β2,1, β2,2) which generate
Hα2,15. Also u has order 3 in K1, so β1 = u. But u has order 6 in R1,1 and R1,2, so β1,1 = β1,2 = u2

and get α1 = (β1,1, β1,2) which generates Hα1,3. Put β0,1 = β0,2 = 1 and get α0 = (β0,1, β0,2) which
generates Hα0,1. Choose αi and α3

i to be roots of the generator polynomials gi(x) of the BCH codes
Ci over the chain A0 ⊆ A1 ⊆ A2. Then M1

0 (x), M1
1 (x) and M1

2 (x) has as roots all distinct element
in the sets B1

0 = {α0} ⊂ Hα0,1, B1
1 = {α1, α

2
1} ⊂ Hα1,3 and B1

2 = {α2, α
2
2, α

4
2, α

8
2} ⊂ Hα2,15,

respectively. So

M1
0 (x) = (x− α0), M1

1 (x) = (x− α1)(x− α2
1) and M1

2 (x) = (x− α2)(x− α2
2)(x− α4

2)(x− α8
2)

Similarly,

M1
0 (x) = M3

0 (x) = (x− α0), M3
1 (x) = (x− 1) and M3

2 (x) = (x− α3
2)(x− α6

2)(x− α12
2 )(x− α9

2).

Thus the polynomials gi(x) = lcm(M1
i (x),M3

i (x)) are given by

g0(x) = (x− 1), g1(x) = (x− 1)(x− α1)(x− α2
1),

g2(x) = (x− α2)(x− α2
2)(x− α3

2)(x− α4
2)(x− α6

2)(x− α8
2)(x− α9

2)(x− α12
2 ),

which generates the cyclic BCH codes C0, C1 and C2 of length 1, 3 and 15 with minimum hamming
distance at least 2, 4 and 5 respectively. Also, if we replace αi with αi, then we get codes over Ki, for
0 ≤ i ≤ 2.

3 Construction II
Since for any prime pj and a positive integers m, the collection of rings Aj = Zpmj is the collection of

unitary finite local commutative rings with maximal ideals Mj and residue fields Kj =
Aj

Mj
, for each

j such that 1 ≤ j ≤ r. The natural projections πj : Aj [x] → Kj [x] is defined by π(
∑n
k=0 akx

k) =∑n
k=0 akx

k, where ak = ak+Mj for k = 0, · · · , n. Thus, the natural ring morphism Aj → Kj is simply
the restriction of πj to the constant polynomial. Now, if fj(x) ∈ Aj [x] is a basic irreducible polynomial
with degree h = bt, where b is a prime and t is a positive integer, thenRj =

Aj [x]

(fj(x))
= GR(pmj , h) is the

family of the Galois ring extension of Aj and Kj =
Rj

Mj
=

Aj [x]/(fj(x))

(Mj ,fj(x))/(fj(x))
=

Aj [x]

(Mj ,fj(x))
=

(Aj/Mj)[x]

(πj(fj(x)))

is the collection of residue field of Rj , where Mj = (Mj , fj(x)) is the corresponding collection of the
maximal ideals of Rj . For the construction of a chain of Galois rings, [1, Lemma XVI.7] facilitate us.

Since 1, b, b2, · · · , bt−1, bt are the only divisors of h, and take h0 = 1, h1 = b, h2 = b2, · · · , ht =
bt = h, so by [1, Lemma XVI.7] there exist basic irreducible polynomials f1,j(x), f2,j(x), · · · , ft,j(x) ∈
Aj [x] with degrees h1, h2, · · · , ht, respectively, such that we can constitute the Galois subringsRi,j =
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Zpm
j

[x]

(fi,j(x))
= GR(pmj , hi), of Rj with the maximal ideals Mi,j = (Mj , fi,j(x))/(fi,j(x)), for each i, j,

where 0 ≤ i ≤ t and 1 ≤ j ≤ r. Then the residue field of each Ri,j becomes

Ki,j =
Ri,j
Mi,j

=
Aj [x]/(fi,j(x))

(Mj , fi,j(x))/(fi,j(x))
=

Aj [x]

(Mj , fi,j(x))
=

(Aj/Mj)[x]

(πj(fi,j(x)))
=

Kj [x]

(f i,j(x))
= GF (phi

j )

As each hi divides hi+1 for each i such that 0 ≤ i ≤ t, so by [1, Lemma XVI.7], there are chains

Aj = R0,j ⊂ R1,j ⊂ R2,j ⊂ · · · ⊂ Rt−1,j ⊂ Rt,j = Rj

of Galois rings, with corresponding chain of residue fields

Zpj = K0,j ⊂ K1,j ⊂ K2,j · · · ⊂ Kt−1,j ⊂ Kt,j = Kj

Let Ai=Ri,1 ×Ri,2 ×Ri,3 × · · · ×Ri,r, for 0 ≤ i ≤ t. Then we get a chain of commutative rings,
i.e.,

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ At−1 ⊂ At = A
with an other chain of commutative rings

K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kt−1 ⊂ Kt = K

where each Ki = Ki,1 ×Ki,2 × · · · ×Ki,r, for each i such that 0 ≤ i ≤ t.
LetA∗i ,K∗i ,R∗i,j and K∗i,j be the multiplicative groups of units ofAi,Ki,Ri,j and Ki,j , respectively,

for each i, j where 0 ≤ i ≤ t and 1 ≤ j ≤ r. Now the next theorem, extension of [1, Theorem XVIII.1]
has a fundamental role in the decomposition of the polynomial xsi−1 into linear factors over the rings
A∗i . This theorem asserts that for each element αi ∈ A∗i there exist unique elements βi,j ∈ R∗i,j , for
each i, j, where 0 ≤ i ≤ t and 1 ≤ j ≤ r, such that αi = (βi,1, βi,2, · · · , βi,r).

Theorem 3.1. Let Ai = Ri,1 × Ri,2 × Ri,3 × · · · × Ri,r, for 0 ≤ i ≤ t, where each Ri,j is a
local commutative ring. Then for each i, j, where 0 ≤ i ≤ t and 1 ≤ j ≤ r, it follows that A∗i =
R∗i,1 ×R∗i,2 ×R∗i,3 × · · · × R∗i,r.

Note that corresponding αi = (βi,1, βi,2, · · · , βi,r). Following theorem indicates the condition
under which xsi − 1 can be factored over A∗i , for 0 ≤ i ≤ t.

Theorem 3.2. For each i, where 0 ≤ i ≤ t, the polynomial xsi − 1 can be factored over the
multiplicative groups A∗i as xsi − 1 = (x−αi)(x−α2

i ) · · · (x−αsii ) if and only if each β̄i,j , 1 ≤ j ≤ r,
has order si in K∗i,j , where gcd(si, p) = 1 and αi = (βi,1, βi,2, · · · , βi,r), for each i, 0 ≤ i ≤ t.
Proof. For each i, where 0 ≤ i ≤ t, suppose that the polynomial xsi − 1 can be factored over
A∗i as xsi − 1 = (x − αi)(x − α2

i ) · · · (x − αsii ). Then xsi − 1 can be factored over R∗i,j as
xsi−1 = (x−βi,j)(x−β2

i,j) · · · (x−βsii,j) for 0 ≤ i ≤ t and 1 ≤ j ≤ r. Now it follows from the extension
of [7, Theorem 3] that β̄i,j has order si in K∗i,j , for 0 ≤ i ≤ t and 1 ≤ j ≤ r. Conversely, suppose that
β̄i,j has order si in K∗i,j , for 0 ≤ i ≤ t and 1 ≤ j ≤ r. Again it follows from the extension of [7, Theorem
3] that, the polynomial xsi − 1 can be factored overR∗i,j as xsi − 1 = (x−βi,j)(x−β2

i,j) · · · (x−βsii,j),
for each i, j, where 0 ≤ i ≤ t and 1 ≤ j ≤ r. Since αi = (βi,1, βi,2, · · · , βi,r), for 0 ≤ i ≤ t, so
xsi − 1 = (x− αi)(x− α2

i ) · · · (x− αsii ) over A∗i , for each i such that 0 ≤ i ≤ t.

Corollary 3.3. [8, Theorem 3.4] The polynomials xs− 1 can be factored over the multiplicative group
R∗ as xs − 1 = (x− α)(x− α2) · · · (x− αs) if and only if βj has order s in K∗j , where gcd(s, pj) = 1
and α corresponds to β = (β1, β2, · · · , βr), where j = 1, 2, 3, · · · , r.

Let Hαi,si denotes the cyclic subgroup of A∗i generated by αi, for each i such that 0 ≤ i ≤ t, i.e.,
Hαi,si contains all the roots of xsi − 1 provided the condition of above theorem are met. The BCH
codes Ci over A∗i can be obtained as the direct product of BCH codes Ci,j overR∗i,j . To construct the
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cyclic BCH codes over A∗i , we need to choose certain elements of Hαi,ni as the roots of generator
polynomials gi(x) of the codes, where ni = gcd(phi

1 , p
hi
2 , p

hi
3 , · · · , phi

r ). So that, αe1i , α
e2
i , · · · , α

eni−ki
i

are all the roots of gi(x) in Hαi,ni , we construct gi(x) as

gi(x) = lcm{Me1
i (x),Me2

i (x), · · · ,Meni−ki
i (x)},

where M
eli
i (x) are the minimal polynomials of α

eli
i , for l = 1, 2, · · · , ni − ki, where each α

eli
i =

(β
eli
i,1 , β

eli
i,2 , · · · , β

eli
i,r ). The following theorem is the extension of [7, Lemma 3] and provides us a

method for construction of M
eli
i (x), the minimal polynomial of α

eli
i over the ring Ai.

Theorem 3.4. For each i such that 0 ≤ i ≤ t, let M
eli
i (x) be the minimal polynomial of α

eli
i over Ai,

where α
eli
i generatesHαi,ni , for li = 1, 2, · · · , ni−ki and 0 ≤ i ≤ t. ThenM

eli
i (x) =

∏
ξi∈B

li
i

(x−ξi),

where Blii = {(αelii )
m

i,j : mi,j =
∏r
j=1 p

qi,j
i , for 1 ≤ li ≤ ni − ki, 0 ≤ qi,j ≤ hi − 1 and 0 ≤ i ≤ t}.

Proof. Let M
eli
i (x) be the projection of M

eli
i (x) over the fields Ki,j and M

eli
i,j (x) be the minimal

polynomial of α
eli
i over K∗i,j , for each i such that 0 ≤ i ≤ t, 1 ≤ j ≤ r and 1 ≤ li ≤ ni − ki. We can

verify that each M
eli
i (x) is divisible by M

eli
i,j (x), for 0 ≤ i ≤ t, 1 ≤ j ≤ r and 1 ≤ li ≤ ni − ki. Thus

it has, among its roots, distinct elements of the sequences α
eli
i , (α

eli
i )pj , (α

eli
i )p

2
j , · · · , (αelii )p

hi−1
j ,

for each i, j such that 0 ≤ i ≤ t, 1 ≤ j ≤ r and 1 ≤ li ≤ ni − ki. Hence M
eli
i (x) has, among

its roots, distinct elements of the sequence α
eli
i , (α

eli
i )pj , (α

eli
i )p

2
j , · · · , (αelii )p

hi−1
j , for each i, j such

that 0 ≤ i ≤ t, 1 ≤ j ≤ r and 1 ≤ li ≤ ni − ki. Thus any element γi = (α
eli
i )p

mi
j of the above

sequence is the root of M
eli
i (x), for each i, j such that 0 ≤ i ≤ t, 1 ≤ j ≤ r, 0 ≤ mi ≤ hi − 1 and

1 ≤ li ≤ ni−ki. Choose any k in the range 1 ≤ k ≤ r such that k 6= j. Then we know that γi,k a root of
M

eli
i,k (x) implies that (γi,k)

pqi
k is a root of M

eli
i (x) (which has coefficients in Ki,k), for 0 ≤ qi ≤ hi− 1.

Hence (γi)
p
qi
k = (α

eli
i )p

mi
j p

qi
k is a root of M

eli
i (x). Proceeding in this manner, we can show that

M
eli
i (x) necessarily has as roots all distinct member of Blii . But the polynomial

∏
ξi∈B

li
i

(x− ξi) has,

by construction, coefficient in the direct product of Aj . Hence M
eli
i (x) =

∏
ξi∈B

li
i

(x− ξi).

Corollary 3.5. [8, Theorem 3.5] For any positive integer l, let Ml(x) be the minimal polynomial of αl

over R, where α generates Hα,n. Then Ml(x) =
∏
ξ∈Bl

(x − ξ), where Bl is all distinct elements of
the sequence {(αl)m : m =

∏r
j=1 q

sj
j , qj = p

mj

j , where 0 ≤ sj ≤ h− 1}.

Remark 3.1. Since M
eli
i (x) be the projection of M

eli
i (x) over the field Ki,j , for each i, j such that

0 ≤ i ≤ t and 1 ≤ j ≤ r. So M
eli
i (x) generates the sequence of codes over the special chain of

rings Ki = Ki,1 ×Ki,2 × · · · ×Ki,r, for each i such that 0 ≤ i ≤ t.
The lower bound on the minimum distances derived in the following theorem applies to any cyclic

code. The BCH codes are a class of cyclic codes whose generator polynomials are chosen so that the
minimum distances are guaranteed by this bound. In this sense, the following extended [8, Theorem
2.5].

Theorem 3.6. [9, Theorem 11] For each i such that 0 ≤ i ≤ t, let gi(x) be the generator polynomial
of BCH code Ci over Ai from the chain A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ At−1 ⊂ At, with length ni = si, and
let αe1i , α

e2
i , α

e3
i , · · · , α

eni−ki
i be the roots of gi(x) in Hαi,ni , where αi has order ni. The minimum

Hamming distance of this code is greater than the largest number of consecutive integers modulo ni
in Ei = {e1, e2, e3, · · · , eni−ki}, for each i such that 0 ≤ i ≤ t.

Corollary 3.7. [8, Theorem 2.5] Let g(x) be the generator polynomial of BCH code over A with length
n = s such that αe1 , αe2 , · · · , αen−k are the roots of g(x) in Hα,n, where α has order n, then minimum
Hamming distance of the code is greater than the largest number of consecutive integers modulo n
in E = {e1, e2, e3, · · · , en−k}.
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3.1 Algorithm
The algorithm for constructing a BCH type cyclic codes over the chain of such type of commutative
rings A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ At−1 ⊂ At = A is then as follows.

1. Choose irreducible polynomial fi,j(x) over Zpmj , of degree hi = bi, for 1 ≤ i ≤ t, which are
also irreducible over GF (p) and form the chains of Galois rings

Zpmj = GR(pmj , h0) ⊂ GR(pmj , h1) ⊂ · · · ⊂ GR(pmj , ht−1) ⊂ GR(pmj , ht) or

Aj = R0,j ⊆ R1,j ⊆ R2,j ⊆ · · · ⊆ Rt−1,j ⊆ Rt,j = Rj

and its corresponding chains of residue fields are

Zpj = GF (pj) ⊂ GF (ph1
j ) ⊂ · · · ⊂ GF (p

ht−1

j ) ⊂ GF (phj ) or

= K0,j ⊂ K1,j ⊂ K2,j · · · ⊂ Kt−1,j ⊂ Kt,j = Kj ,

where each GF (phi
j ) ' Kj [x]

(πj(fi,j(x)))
, for 1 ≤ i ≤ t.

2. Now put Ai = Ri,1×Ri,2 ×Ri,3 × · · ·×Ri,r, for 0 ≤ i ≤ t, where each Ri,j is a local
commutative ring, and get a chain of rings

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ At−1 ⊂ At = A

with an other chain of rings

K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kt−1 ⊂ Kt = K

where each Ki = Ki,1 ×Ki,2 × · · · ×Ki,r, the direct product of corresponding residue fields r
times, for 0 ≤ i ≤ t.

3. Let ηi,j be the primitive elements in K∗i,j , for 0 ≤ i ≤ t and 1 ≤ j ≤ r . Then ηi,j has order
di,jni in R∗i,j for some integers di,j , put βi,j = (ηi,j)

di,j . Then αi = (β1i , β2i , β3i , · · · , βri)
has order ni in R∗i,j and generates Hαi,ni . Assume for each i, where 0 ≤ i ≤ t, let αi be any
element of Hαi,ni .

4. Let αe1i , α
e2
i , α

e3
i , · · · , α

eni−ki
i are chosen to be the roots of gi(x). Find M

eli
i (x) are the

minimal polynomials of α
eli
i , for li = 1, 2, · · · , ni−ki, where each α

eli
i = (β

eli
i , β

eli
i , β

eli
i , · · · , βelii ).

Then gi(X) are given by

gi(x) = lcm{Me1
i (x),Me2

i (x), · · · ,Meni−ki
i (x)}.

The length of each code in the chain is the lcm of the orders of αe1i , α
e2
i , α

e3
i , · · · , α

eni−ki
i , and

the minimum distance of the code is greater than the largest number of consecutive integers
in the set Ei = {e1, e2, e3, · · · , eni−ki} for each i, where 0 ≤ i ≤ t.

Example 3.8. We initiate by constructing a chain of codes of lengths 1, 8 and 16, taking A1 = Z9 and
A2 = Z25. Since M1 = {0, 3, 6} and M2 = {0, 5, 10, 15, 20}, it follows that K1 = A1

M1
' Z3 and K2 =

A2
M2
' Z5. The regular polynomials f1(x) = x4 + x+ 8 ∈ Z9[x] and f2(X) = x4 + x2 + x+ 1 ∈ Z25[x]

are such that π1(f1(x)) = x4 +x+ 2 and π2(f2(x)) = x4 +x2 +x+ 1 are irreducible polynomials with
degree h = 22 over Z3 and Z5, respectively. By [9, Theorem 3], it follows that f1(x) and f2(x) are
irreducible over A1 and A2. Let R1 =

Z
32

[x]

(f1(x))
= GR(32, 4), R2 =

Z
52

[x]

(f2(x))
= GR(52, 4) be the Galois

rings and K1 = Z3[x]
(π1(f1(x)))

= GF (34), K2 = Z5[x]
(π2(f2(x)))

= GF (54) be their corresponding residue
fields. Since 1, 2 and 22 are the only divisors of 4, therefore let h1 = 1, h2 = 2, h3 = 22. Then
there exist irreducible polynomials f1,1(x) = x2 + 1, f2,1(x) = f1(x) in Z9[x], and f1,2(x) = x2 + 2,
f2,2(x) = f2(x) in Z25[x] with degrees h2 = 2 and h3 = 4 such that we can constitute the Galois rings

937



British Journal of Applied Science & Technology 4(6), 929-944, 2014

R0,1 = A1, R1,1 =
Z
32

[x]

(f1,1(x))
= GR(32, h2), R2,1 = R1 and R0,2 = A2, R1,2 =

Z
52

[x]

(f1,2(x))
= GR(52, h2)

and R1,2 = R2. So
Aj=R0,j ⊂ R1,j ⊂ R2,j = Rj , for j = 1, 2.

Again by the same argument K0,1 = Z2, K1,1 = Z3[x]
(π1(f1,1(x)))

= GF (32), K2,1 = K1 and K0,2 =

Z5,K1,2 = Z5[x]
(π2(f1,2(x)))

= GF (52),K2,2 = K2. So we get chains of fields

Aj = K0,j ⊂ K1,j ⊂ K2,j = Kj , for j = 1, 2.

Now Ai = Ri,1 ×Ri,2 such that A0 ⊆ A1 ⊆ A2, i.e.,

A0 = R0,1 = Z9 × R0,2 = Z25

A1 = R1,1 =
Z
32

[x]

(x2+1)
× R1,2 =

Z
52

[x]

(x2+2)

A2 = R2,1 =
Z
32

[x]

(x4+x−1)
× R2,2 =

Z
52

[x]

(x4+x2+x+1)

and
K0 = K0,1 = Z3 × K0,2 = Z5

K1 = K1,1 = Z3[x]

(x2+1)
× K1,2 = Z5[x]

(x2+2)

K2 = K2,1 = Z3[x]

(x4+x−1)
× K2,2 = Z5[x]

(x4+x2+x+1)
.

Let u = {x} inRi,j such that u = {x} in Ki,j . Then u+1 has order 8, 24, 80 and 624 in K1,1, K1,2, K2,1

and K2,2, respectively. So β1,1 = β1,2 = β2,1 = β2,2 = u+1. But u+1 has order 24, 120, 240 and 3120

inR1,1,R1,2,R2,1 andR2,2, so put β1,1 = (u+ 1)3, β1,2 = β2,1 = (u+ 1)15 and β2,2 = (u+ 1)195 and
get α2 = (β2,1, β2,2) which generates Hα2,16 and α1 = (β1,1, β1,2) which generates Hα1,8. Also 2 has
order 4 in K0,2 and has order 2 in K0,1, so β0,1 = β0,2 = 2. But 2 has order 20 inR0,2 and has order 6

in R0,1, so β0,1 = 8 and β0,2 = 24 get α0 = (β0,1, β0,2) which generates Hα0,2. Choose αi and α2
i to

be roots of the generator polynomials gi(x) of the BCH codes Ci over the chain A0 ⊂ A1 ⊂ A2. Then
M1

0 (x), M1
1 (x) and M1

2 (x) has as roots all distinct element in the sets B1
0 = {α0} ⊂ Hα0,2, B

1
1 =

{α1, α
3
1, α

5
1, α

7
1} ⊂ Hα1,8 and B1

2 = {α2, α
3
2, α

5
2, α

7
2, α

9
2, α

11
2 , α

13
2 , α

15
2 } ⊂ Hα2,16, respectively. So

M1
0 (x) = (x− α0), M1

1 (x) = (x− α1)(x− α3
1)(x− α5

1)(x− α7
1),

and
M1

2 (x) = (x− α2)(x− α3
2)(x− α5

2)(x− α7
2)(x− α9

2)(x− α11
2 )(x− α13

2 )(x− α15
2 ).

Similarly,

M2
0 (x) = (x− 1), M2

1 (x) = (x− α2
1)(x− α6

1) and M3
2 (x) = (x− α2

2)(x− α6
2)(x− α10

2 )(x− α14
2 ).

Thus the polynomials gi(x) = lcm(M1
i (x),M2

i (x)) are given by

g0(x) = (x− 1)(x− α0), g1(x) = (x− α1)(x− α2
1)(x− α3

1)(x− α5
1)(x− α6

1)(x− α7
1), and

g2(x) = (x−α2)(x−α2
2)(x−α3

2)(x−α5
2)(x−α6

2)(x−α7
2)(x−α9

2)(x−α10
2 )(x−α11

2 )(x−α13
2 )(x−α14

2 )(x−α15
2 )

which generates the cyclic BCH codes C0, C1 and C2 of length 2, 8 and 16 with minimum hamming
distance at least 3, 4 and 4, respectively. Similarly we can construct a sequence of cyclic codes over
Ki if we replace αi with αi, for 0 ≤ i ≤ 2.

4 Construction III
For any j such that 1 ≤ j ≤ r, let pj be a prime and mj a positive integer. The ring Aj = Z

p
mj
j

is a

unitary finite local commutative ring with maximal ideals Mj and residue fields Kj =
Aj

Mj
. The natural
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projections πj : Aj [x] → Kj [x] is defined by π(
∑n
k=0 akx

k) =
∑n
k=0 akx

k, where ak = ak + Mj

for k = 0, 1, · · · , n. Thus, the natural ring morphism Aj → Kj is simply the restriction of πj to the
constant polynomial. Now, if fj(x) ∈ Aj [x] is a basic irreducible polynomial with degree h = bt,
where b is a prime and t is a positive integer, then Rj =

Aj [x]

(fj(x)))
= GR(p

mj

j , h) is the collection of

the Galois ring extension of Aj and Kj =
Rj

Mj
=

Aj [x]/(fj(x))

(Mj ,fj(x))/(fj(x))
=

Aj [x]

(Mj ,fj(x))
=

(Aj/Mj)[x]

(πj(fj(x)))
is the

residue field ofRj , where Mj = (Mj , fj(x)) is the corresponding maximal ideal ofRj for each j such
that 1 ≤ j ≤ r. For the construction of a chain of Galois ring, [1, Lemma XVI.7] facilitate us.

Since 1, b, b2, · · · , bt−1, bt are the only divisors of h, and take h0 = 1, h1 = b, h2 = b2, · · · , ht =
bt = h, so by [1, Lemma XVI.7], there exist basic irreducible polynomials f1,j(x), f2,j(x), · · · , ft,j(x) ∈
Aj [x] with degrees h1, h2, · · · , ht, respectively, such that we can constitute the Galois subring Ri,j =
Z
p
mj
j

[x]

(fi,j(x))
= GR(p

mj

j , hi), of Rj with the maximal idealMi,j = (Mj , fi,j(x))/(fi,j(x)), for each i such
that 0 ≤ i ≤ t and 1 ≤ j ≤ r. Then the residue fields of each Ri,j becomes

Ki,j =
Ri,j
Mi,j

=
Aj [x]/(fi,j(x))

(Mj , fi,j(x))/(fi,j(x))
=

Aj [x]

(Mj , fi,j(x))
=

(Aj/Mj)[x]

(πj(fi,j(x)))
=

Kj [x]

(f̄i,j(x))
= GF (phi

j ).

As each hi divides hi+1 for all 0 ≤ i ≤ t, so by [1, Lemma XVI.7], there is a chain

Aj = R0,j ⊂ R1,j ⊂ R2,j ⊂ · · · ⊂ Rt−1,j ⊂ Rt,j = Rj

of Galois rings with corresponding chain of residue fields

Zp
j

= K0,j ⊂ K1,j ⊂ K2,j ⊂ · · · ⊂ Kt−1,j ⊂ Kj .

Let Ai = Ri,1 × Ri,2 × Ri,3 × · · · × Ri,r, for each i such that 0 ≤ i ≤ t. Then we get a chain of
commutative rings, i.e.,

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ At−1 ⊂ At = A
with an other chain of commutative rings

K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kt−1 ⊂ Kt = K,

where each Ki = K1i ×K2i × · · · ×Kri , for each i such that 0 ≤ i ≤ t.
Let A∗i , K∗i , R∗i,j and K∗i,j be the multiplicative groups of units of Ai, Ki, Ri,j and Ki,j , for

1 ≤ j ≤ r, respectively, for each i such that 0 ≤ i ≤ t. Now the next theorem, extension of [1,
Theorem XVIII.1], is fundamental in the decomposition of the polynomial xsi − 1 into linear factors
over the rings A∗i . This theorem asserts that for each element αi ∈ A∗i there exist unique elements
βi,j ∈ R∗i,j , for each i, where 0 ≤ i ≤ t and 1 ≤ j ≤ r, such that αi = (βi,1, βi,2, · · · , βi,r).

Theorem 4.1. For each i such that 0 ≤ i ≤ t, let Ai = Ri,1 ×Ri,2 ×Ri,3 × · · · × Ri,r, where each
Ri,j , for 1 ≤ j ≤ r, is a local commutative ring. Then A∗i = R∗i,1 ×R∗i,2 ×R∗i,3 × · · · ×R∗i,r for each i
such that 0 ≤ i ≤ t.

Note that αi = (βi,1, βi,2, · · · , βi,r). Following theorem indicates the condition under which xsi−1
can be factored over A∗i , for each i such that 0 ≤ i ≤ t.

Theorem 4.2. For each i, where 0 ≤ i ≤ t, the polynomial xsi − 1 can be factored over the
multiplicative group A∗i as xsi − 1 = (x − αi)(x − α2

i ) · · · (x − αsi ) if and only if β̄i,j , for each j
such that 1 ≤ j ≤ r, has order si in K∗i,j such that gcd(si, p) = 1 and αi = (βi,1, βi,2, · · · , βi,r).
Proof. Suppose that the polynomial xsi − 1 can be factored over A∗i as xsi − 1 = (x − αi)(x −
α2
i ) · · · (x − αsii ), for each i such that 0 ≤ i ≤ t. Then xsi − 1 can be factored over R∗i,j as
xsi − 1 = (x − βi,j)(x − β2

i,j) · · · (x − βsii,j), for each 1 ≤ j ≤ r. Now it follows from the extension of
[7, theorem 3] that β̄i,j has order si in K∗i,j , for each 0 ≤ i ≤ t and for each 1 ≤ j ≤ r. Conversely,
suppose that β̄i,j has order si in K∗i,j , for each i, j, where 0 ≤ i ≤ t and 1 ≤ j ≤ r. Again it
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follows, from the extension of [7, theorem 3], that the polynomial xsi − 1 can be factored over R∗i,j
as xsi − 1 = (x − βi,j)(x − β2

i,j) · · · (x − βsii,j), for each i, j, where 0 ≤ i ≤ t and 1 ≤ j ≤ r. Since
αi = (βi,1, βi,2, · · · , βi,r), for 0 ≤ i ≤ t, so xsi − 1 = (x− αi)(x− α2

i ) · · · (x− αsii ) over A∗i , for each
i, where 0 ≤ i ≤ t.

Corollary 4.3. [8, Theorem 3.4] The polynomial xs − 1 can be factored over the multiplicative group
R∗ as xs − 1 = (x− α)(x− α2) · · · (x− αs) if and only if βj has order s in K∗j , where gcd(s, pj) = 1
and α corresponds to β = (β1, β2, · · · , βr), where j = 1, 2, 3, · · · , r.

Let Hαi,si denotes the cyclic subgroup of A∗i generated by αi, for each i, where 0 ≤ i ≤ t, i.e.,
Hαi,si contains all the roots of xsi − 1 provided the condition of above theorem are met. The BCH
codes Ci over A∗i can be obtained as the direct product of BCH codes Ci,j overR∗i,j . To construct the
cyclic BCH codes over A∗i , we need to choose certain elements of Hαi,ni as the roots of generator
polynomials gi(x) of the codes, where ni = gcd(phi

1 , p
hi
2 , p

hi
3 , · · · , phi

r ). So that, αe1i , α
e2
i , · · · , α

eni−ki
i

are all the roots of gi(x) in Hαi,ni , we construct gi(x) as

gi(x) = lcm{Me1
i (x),Me2

i (x), · · · ,Meni−ki
i (x)},

where M
eli
i (x) are the minimal polynomials of α

eli
i , for l = 1, 2, · · · , ni − ki, where each α

eli
i =

(β
eli
i,1 , β

eli
i,2 , · · · , β

eli
i,r ). The following theorem is the extension of [7, Lemma 3] and provides us a

method for construction of M
eli
i (x), the minimal polynomial of α

eli
i over the ring Ai.

Theorem 4.4. For each i such that 0 ≤ i ≤ t, let M
eli
i (x) be the minimal polynomial of α

eli
i over Ai,

where α
eli
i generatesHαi,ni , for li = 1, 2, · · · , ni−ki and 0 ≤ i ≤ t. ThenM

eli
i (x) =

∏
ξi∈B

li
i

(x−ξi),

where Blii = {(αelii )mi,j : mi,j =
∏r
j=1 p

qi,j
i , where 1 ≤ li ≤ ni − ki, 0 ≤ qi,j ≤ hi − 1}.

Proof. Let M
eli
i (x) be the projection of M

eli
i (x) over the fields Ki,j and M

eli
i,j (x) be the minimal

polynomial of α
eli
i over K∗i,j , for each i, where 0 ≤ i ≤ t, 1 ≤ j ≤ r and 1 ≤ li ≤ ni − ki. We can

verify that each M
eli
i (x) is divisible by M

eli
i,j (x), for 0 ≤ i ≤ t, 1 ≤ j ≤ r and 1 ≤ li ≤ ni − ki. Thus

it has, among its roots, distinct elements of the sequences α
eli
i , (α

eli
i )pj , (α

eli
i )p

2
j , · · · , (αelii )p

hi−1
j ,

for each i, j, where 0 ≤ i ≤ t, 1 ≤ j ≤ r and 1 ≤ li ≤ ni − ki. Hence M
eli
i (x) has, among its

roots, distinct elements of the sequence α
eli
i , (α

eli
i )pj , (α

eli
i )p

2
j , · · · , (αelii )p

hi−1
j , for each i, j, where

0 ≤ i ≤ t, 1 ≤ j ≤ r and 1 ≤ li ≤ ni − ki. Thus any element γi = (α
eli
i )p

mi
j of the above sequence

is the root of M
eli
i (x), for each i, j, where 0 ≤ i ≤ t, 1 ≤ j ≤ r, 0 ≤ mi ≤ hi− 1 and 1 ≤ li ≤ ni− ki.

Choose any k in the range 1 ≤ k ≤ r such that k 6= j. Then we know that if γi,k is a root of M
eli
i,k (x)

implies that (γi,k)p
qi
k is a root of M

eli
i (x) (which has coefficients in Ki,k), for 0 ≤ qi ≤ hi − 1. Hence

(γi)
p
qi
k = (α

eli
i )

p
mi
j pqi

k is a root of M
eli
i (x). Proceeding in this manner, we can show that M

eli
i (x)

necessarily has as roots all distinct member of Blii . But the polynomial
∏
ξi∈B

li
i

(x − ξi) has, by

construction, coefficient in the direct product of Aj . Hence M
eli
i (x) =

∏
ξi∈B

li
i

(x− ξi).

Corollary 4.5. [8, Theorem 3.5] For any positive integer l, let Ml(x) be the minimal polynomial of αl

over R, where α generates Hα,n. Then Ml(x) =
∏
ξ∈Bl

(x − ξ), where Bl is all distinct elements of
the sequence {(αl)m : m =

∏r
j=1 q

sj
j , qj = p

mj

j , 0 ≤ sj ≤ h− 1}.

The lower bound on the minimum distances derived in the following theorem applies to any cyclic
code. The BCH codes are a class of cyclic codes whose generator polynomials are chosen so that
the minimum distances are guaranteed by this bound. In this sense, the following extend [8, Theorem
2.5]
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Theorem 4.6. [9, Theorem 11] For each i such that 0 ≤ i ≤ t, let gi(x) be the generator polynomial
of BCH code Ci over Ai from the chain A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ At−1 ⊂ At, with length ni = si, and
let αe1i , α

e2
i , α

e3
i , · · · , α

eni−ki
i be the roots of gi(x) in Hαi,ni , where αi has order ni. The minimum

Hamming distance of this code is greater than the largest number of consecutive integers modulo ni
in Ei = {e1, e2, e3, · · · , eni−ki}.

Corollary 4.7. [8, Theorem 2.5] Let g(x) be the generator polynomial of BCH code over A with length
n = s such that αe1 , αe2 , · · · , αen−k are the roots of g(x) in Hα,n, where α has order n, then minimum
Hamming distance of the code is greater than the largest number of consecutive integers modulo n
in E = {e1, e2, e3, · · · , en−k}.

4.1 Algorithm
The algorithm for constructing a BCH type cyclic codes over the chain of such type of commutative
rings A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ At−1 ⊂ At = A is then as follows.

1. Choose irreducible polynomial fi,j(x) over Z
p
mj
j

of degree hi = bi, for 1 ≤ i ≤ t, which are

also irreducible over GF (p) and form the chains of Galois rings

Z
p
m

j
j

= GR(p
mj

j , h0) ⊂ GR(p
mj

j , h1) ⊂ · · · ⊂ GR(p
mj

j , ht−1) ⊂ GR(p
mj

j , ht) or

Aj = R0,j ⊆ R1,j ⊆ R2,j ⊆ · · · ⊆ Rt−1,j ⊆ Rt,j = Rj

and its corresponding chains of residue fields are

Zpj = GF (pj) ⊂ GF (ph1
j ) ⊂ · · · ⊂ GF (p

ht−1

j ) ⊂ GF (phj ) or

= K0,j ⊂ K1,j ⊂ K2,j · · · ⊂ Kt−1,j ⊂ Kt,j = Kj ,

where each GF (phi
j ) ' Kj [x]

(πj(fi,j(x)))
, for 1 ≤ i ≤ t.

2. Now putAi = Ri,1×Ri,2×Ri,3×· · ·×Ri,r, for 0 ≤ i ≤ t, where eachRi,j is local commutative
ring, and get a chain of rings

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ At−1 ⊂ At = A

with an other chain of rings

K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kt−1 ⊂ Kt = K

where each Ki = Kri , for 0 ≤ i ≤ t.

3. Let ηi,j = ηi be the primitive elements in K∗i , for 0 ≤ i ≤ t. Then ηi,j has order di,jni in R∗i,j
for some integers di,j , put βi,j = (ηi,j)

di,j . Then αi = (β1i , β2i , β3i , · · · , βri) has order ni in
R∗i,j and generates Hαi,ni . Assume for each i, where 0 ≤ i ≤ t, αi be any element of Hαi,ni .

4. Let αe1i , α
e2
i , α

e3
i , · · · , α

eni−ki
i are chosen to be the roots of gi(x). Find M

eli
i (x) are the

minimal polynomials of α
eli
i , for li = 1, 2, · · · , ni−ki, where each α

eli
i = (β

eli
i , β

eli
i , β

eli
i , · · · , βelii ).

Then gi(x) are given by

gi(x) = lcm{Me1
i (x),Me2

i (x), · · · ,Meni−ki
i (x)}.

The length of each code in the chain is the lcm of the orders of αe1i , α
e2
i , α

e3
i , · · · , α

eni−ki
i , and

the minimum distance of the code is greater than the largest number of consecutive integers
in the set Ei = {e1, e2, e3, · · · , eni−ki} for each i, where 0 ≤ i ≤ t.
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Example 4.8. We initiate by constructing a chain of codes of lengths 1, 8 and 16, taking A1 = Z9

and A2 = Z5. Since M1 = {0, 3, 6} and M2 = {0}, so K1 = A1
M1
' Z3 and K2 = A2

M2
' Z5.

The regular polynomials f1(x) = x4 + x + 8 ∈ Z9[x] and f2(x) = x4 + x2 + x + 1 ∈ Z5[x] are
such that π1(f1(x)) = x4 + x + 2 and π2(f2(x)) = x4 + x2 + x + 1 are irreducible polynomials with
degree h = 22 over Z3 and Z5, respectively. By [9, Theorem 3], it follows that f1(x) and f2(x) are
irreducible over A1 and A2. Let R1 =

Z
32

[x]

(f1(x))
= GR(32, 4), R2 = Z5[x]

(f2(x))
= GR(5, 4) be the Galois

rings and K1 = Z3[x]
(π1(f1(x)))

= GF (34), K2 = Z5[x]
(π2(f2(x)))

= GF (54) be their corresponding residue
fields. Since 1, 2 and 22 are the only divisors of 4, it follows that h1 = 1, h2 = 2 and h3 = 22. Then
there exist irreducible polynomials f1,1(x) = x2 + 1, f2,1(x) = f1(x) in Z9[x], and f1,2(x) = x2 + 2,
f2,2(x) = f2(x) in Z5[x] with degrees h2 = 2 and h3 = 4 such that we can constitute the Galois rings
R0,1 = A1, R1,1 =

Z
32

[x]

(f1,1(x))
= GR(32, h2), R2,1 = R1 and R0,2 = A2, R1,2 = Z5[x]

(f1,2(x))
= GR(5, h2)

and R1,2 = R2. So
Aj=R0,j ⊂ R1,j ⊂ R2,j = Rj , for j = 1, 2.

Again by the same argument K0,1 = Z3, K1,1 = Z3[x]
(π1(f1,1(x)))

= GF (32), K2,1 = K1 and K0,2 = Z5,

K1,2 = Z5[x]
(π2(f1,2(x)))

= GF (52), K2,2 = K2. So we get chains of fields

Aj = K0,j ⊂ K1,j ⊂ K2,j = Kj , for j = 1, 2.

Now Ai = Ri,1 ×Ri,2 such that A0 ⊆ A1 ⊆ A2, i.e.,

A0 = R0,1 = Z9 × R0,2 = Z5

A1 = R1,1 =
Z
32

[x]

(x2+1)
× R1,2 = Z5[x]

(x2+2)

A2 = R2,1 =
Z
32

[x]

(x4+x−1)
× R2,2 = Z5[x]

(x4+x2+x+1)

and
K0 = K0,1 = Z3 × K0,2 = Z5

K1 = K1,1 = Z3[x]

(x2+1)
× K1,2 = Z5[x]

(x2+2)

K2 = K2,1 = Z3[x]

(x4+x−1)
× K2,2 = Z5[x]

(x4+x2+x+1)

Let u = {x} inRi,j such that u = {X} in Ki,j . Then u+1 has order 8, 24, 80 and 624 in K1,1, K1,2, K2,1

and K2,2, respectively. So β1,1 = β1,2 = β2,1 = β2,2 = u+1. But u+1 has order 24, 120, 80 and 624 in
R1,1,R1,2,R2,1 andR2,2, so put β1,1 = (u+1)3, β1,2 = (u+1)15, β2,1 = (u+1)5 and β2,2 = (u+1)39

and get α2 = (β2,1, β2,2) which generates Hα2,16 and α1 = (β1,1, β1,2) which generates Hα1,8. Also 2
has order 4 in K0,2 and has order 2 in K0,1, so β0,1 = β0,2 = 2. But 2 has order 4 inR0,2 and has order
6 in R0,1, so β0,1 = 2 and β0,2 = 24 get α0 = (β0,1, β0,2) which generates Hα0,2. Choose αi and α2

i

to be roots of the generator polynomials gi(X) of the BCH codes Ci over the chain A0 ⊂ A1 ⊂ A2.
Then M1

0 (x), M1
1 (x) and M1

2 (x) has as roots all distinct element in the sets B1
0 = {α0} ⊂ Hα0,2,

B1
1 = {α1, α

3
1, α

5
1, α

7
1} ⊂ Hα1,8 and B1

2 = {α2, α
3
2, α

5
2, α

7
2, α

9
2, α

11
2 , α

13
2 , α

15
2 } ⊂ Hα2,16, respectively.

So
M1

0 (x) = (x− α0), M1
1 (x) = (x− α1)(x− α3

1)(x− α5
1)(x− α7

1),

and
M1

2 (x) = (x− α2)(x− α3
2)(x− α5

2)(x− α7
2)(x− α9

2)(x− α11
2 )(x− α13

2 )(x− α15
2 )

Similarly,
M2

0 (x) = (x− 1), M2
1 (x) = (x− α2

1)(x− α6
1),

M3
2 (x) = (x− α2

2)(x− α6
2)(x− α10

2 )(x− α14
2 )

Thus the polynomials gi(x) = lcm(M1
i (x),M2

i (x)) are given by

g0(x) = (x− 1)(x− α0), g1(x) = (x− α1)(x− α2
1)(x− α3

1)(x− α5
1)(x− α6

1)(x− α7
1),

g2(x) = (x−α2)(x−α2
2)(x−α3

2)(x−α5
2)(x−α6

2)(x−α7
2)(x−α9

2)(x−α10
2 )(x−α11

2 )(x−α13
2 )(x−α14

2 )(x−α15
2 )
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which generates the cyclic BCH codes C0, C1 and C2 of length 2, 8 and 16 with minimum hamming
distance 2, 3 and 3, respectively. Similarly, we can construct cyclic codes over Ki if we replace αi
with αi, for 0 ≤ i ≤ 2.

5 Conclusion
For a non negative integer t, let A0 ⊂ A1 ⊂ · · · ⊂ At−1 ⊂ At be a chain of unitary commutative rings
(each Ai is constructed by the direct product of suitable Galois rings with multiplicative group A∗i of
units) and K0 ⊂ K1 ⊂ · · · ⊂ Kt−1 ⊂ Kt be the corresponding chain of unitary commutative rings
(each Ki is constructed by the direct product of corresponding residue fields of given Galois rings,
with multiplicative groups K∗i of units).

Despite [8], the construction of BCH codes with symbols from the commutative ring Ai, the direct
product of local commutative rings Ri,j , where 0 ≤ i ≤ t and 0 ≤ j ≤ t having residue fields Ki,j ,
where 0 ≤ i ≤ t. For each member in the chain of direct product of Galois rings and residue fields,
respectively, we obtain the sequence of BCH codes C0, C1, · · · , Ct−1, C over the direct product of local
commutative rings Ri,j with different lengths and sequence of BCH codes C′0, C′1, · · · , C′t−1, C′ over
the direct product of residue fields Ki,j with proper lengths, i.e.,

C0 = C0,0 × C0,1 × · · · × C0,r
C1 = C1,0 × C1,1 × · · · × C1,r
...

...
...

. . .
...

C = Ct,0 × Ct,1 × × Ct,r

and
C
′
0 = C′0,0 × C′0,1 × · · · × C′0,r
C′1 = C′1,0 × C′1,1 × · · · × C′1,r
...

...
...

. . .
...

C′ = C′t,0 × C′t,1 × × C′t,r.
In fact this technique provides a choice to select a most suitable BCH code Ci (respectively,

BCH code C′i), where 0 ≤ i ≤ t, with required error correction capabilities and code rate but with
compromising length.
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