
TYPE Original Research
PUBLISHED 14 February 2023
DOI 10.3389/frobt.2023.994488

OPEN ACCESS

EDITED BY

Antonios Gasteratos,
Democritus University of Thrace, Greece

REVIEWED BY

Levi Burner,
University of Maryland, College Park,
United States
Ioannis Kansizoglou,
Democritus University of Thrace, Greece

*CORRESPONDENCE

José Ribeiro-Gomes,
josepgomes@tecnico.ulisboa.pt

SPECIALTY SECTION

This article was submitted to Robot Vision
and Artificial Perception, a section of the
journal Frontiers in Robotics and AI

RECEIVED 14 July 2022
ACCEPTED 25 January 2023
PUBLISHED 14 February 2023

CITATION

Ribeiro-Gomes J, Gaspar J and Bernardino

A (2023), Event-based feature tracking in a

visual inertial odometry framework.

Front. Robot. AI 10:994488.

doi: 10.3389/frobt.2023.994488

COPYRIGHT

© 2023 Ribeiro-Gomes, Gaspar and
Bernardino. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Event-based feature tracking in a
visual inertial odometry framework

José Ribeiro-Gomes*, José Gaspar and Alexandre Bernardino

Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal

Introduction: Event cameras report pixel-wise brightness changes at high temporal
resolutions, allowing for high speed tracking of features in visual inertial odometry
(VIO) estimation, but require a paradigm shift, as common practices from the
past decades using conventional cameras, such as feature detection and tracking,
do not translate directly. One method for feature detection and tracking is
the Eventbased Kanade-Lucas-Tomasi tracker (EKLT), an hybrid approach that
combines frames with events to provide a high speed tracking of features. Despite
the high temporal resolution of the events, the local nature of the registration of
features imposes conservative limits to the camera motion speed.
Methods: Our proposed approach expands on EKLT by relying on the concurrent
use of the event-based feature tracker with a visual inertial odometry system
performing pose estimation, leveraging frames, events and Inertial Measurement
Unit (IMU) information to improve tracking. The problem of temporally combining
high-rate IMU information with asynchronous event cameras is solved by means
of an asynchronous probabilistic filter, in particular an Unscented Kalman Filter
(UKF). The proposed method of feature tracking based on EKLT takes into account
the state estimation of the pose estimator running in parallel and provides this
information to the feature tracker, resulting in a synergy that can improve not only
the feature tracking, but also the pose estimation. This approach can be seen as a
feedback, where the state estimation of the filter is fed back into the tracker, which
then produces visual information for the filter, creating a “closed loop”.
Results: The method is tested on rotational motions only, and comparisons
between a conventional (not event-based) approach and the proposed approach
are made, using synthetic and real datasets. Results support that the use of events
for the task improve performance.
Discussion: To the best of our knowledge, this is the first work proposing the fusion
of visual with inertial information using events cameras by means of an UKF, as well
as the use of EKLT in the context of pose estimation. Furthermore, our closed loop
approach proved to be an improvement over the base EKLT, resulting in better
feature tracking and pose estimation. The inertial information, despite prone to
drifting over time, allows keeping track of the features that would otherwise be
lost. Then, feature tracking synergically helps estimating and minimizing the drift.

KEYWORDS

event cameras, pose estimation, visual inertial odometry (VIO), unscented Kalman filter
(UKF)Lie groups

1 Introduction

Vision plays a very important role in the animal kingdom, and virtually every higher order
animal has developed some sort of visual system to improve their chances of survival. As such,
it is only natural that sensors that can imbue artificial systems with the sense of sight have been

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2023.994488
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2023.994488&domain=pdf&date_stamp=2021-10-15
mailto:josepgomes@tecnico.ulisboa.pt
https://doi.org/10.3389/frobt.2023.994488
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2023.994488/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.994488/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ribeiro-Gomes et al. 10.3389/frobt.2023.994488

created, in particular cameras (what we call throughout this work
as “conventional cameras,” referring to the familiar method of
image acquisition, where frames are produced at a constant rate,
to distinguish from event cameras, explained briefly). However,
conventional cameras do not exactly mimic animal’s visual system.
They are much slower (typically produce around 20–30 fps),
produce redundant information, and are much more energy-costly.
Furthermore, they are not very good with scenes with high contrast
(as detail is lost in bright and dark areas), or with high movement (as
images produced suffer from motion blur).

Neuromorphic hardware appears as a bio-inspired approach
to hardware development that tries to replicate the advantages of
animal systems, either in speed, energy efficiency, or any other
positive or desirable attribute. Our work focuses on the use of
the Dynamic Vision Sensors type of neuromorphic cameras [DVS
cameras (Lichtsteiner et al. 2008)], which are a type of event cameras
that report changes in the brightness captured by each pixel (precisely,
the log-intensity of the brightness captured by each pixel). Unlike
conventional cameras, that record a sequence of the intensity of all
pixels in the scene, and therefore produce redundant information, and
are not energy efficient, event cameras produce “events,” which contain
the timestamp, pixel location, and polarity of the change in the pixel.

This approach has multiple advantages, such as 1) lower latency
(because there is no need for video compression at the camera level),
2) higher energy efficiency, 3) no redundant information, 4) higher
temporal resolution, in the order of microseconds, as opposed to
milliseconds of conventional cameras, and 5) higher dynamic range,
to name a few.

With said advantages, scenarios where speed is relevant are a
natural candidate for the use of event cameras, and two such areas
are that of pose estimation, and SLAM, which have used event
cameras with success (Zihao Zhu et al., 2017; and Vidal et al., 2018).
One keypoint in common with multiple approaches and methods is
the need of feature detection and tracking, with the paradigm of event
cameras in mind.

This work appears with the goal of improving on feature
tracking using conventional cameras, by combining the feature tracker
proposed in Gehrig et al. (2020) with the Unscented Kalman Filter
based on Lie groups proposed in Brossard et al. (2017), in effect
creating a synergy between the two systems.

2 Event cameras

Event cameras are image sensors that respond to changes in
brightness in the scene. Unlike conventional cameras, which capture
full image frames at a fixed frequency, commonly 30 Hz or 60 Hz,
produce redundant information and require a high bandwidth
for transmission, each pixel in an event-based camera operates
independently and asynchronously, react to changes of brightness in
the scene, eliminate the transmission of redundant information, allow
for much higher temporal resolution, in the order of microseconds, as
opposed to the milliseconds of conventional cameras.

Event cameras are inspired by the behaviour of the cells in
the retina. Oversimplifying, retinal cells respond to changes in the
environment (namely brightness), generating electrical impulses.
The transient response of each retinal cell is independent. Event
cameras mimic this behaviour by asynchronously and independently
responding to changes in brightness in the environment, at the level

of each pixel, generating ON/OFF events each time a predefined
threshold in brightness is exceeded.

Events are triggered when the brightness in a certain pixel
surpasses a certain threshold. In particular, discrete brightness
steps are pre-defined, and whenever brightness detected crosses the
threshold, an event is generated. Positive crossings generate ON
events, andnegative crossings generateOFF events. In effect, each pixel
is constantly working as a comparator, with corresponding electronic
to support this mode of working. Figure 1 shows example outputs of
event cameras, when recording a pen moving, or a person waving.

This architecture allows for interesting properties, such as
microsecond temporal resolution, high dynamic range (above
120 dB), which allows for scenes with both bright and dark zones,
and does not suffer from under/overexposure, nor motion blur.

Events are then defined as a four-component vector

e = ((x,y)T, t,pol)T = (p, t,pol)T. (1)

The component p = (x,y)T refers to the spatial position of the
event in the camera. The component t refers to the timestamp of the
event, and is of extreme importance due to the microsecond temporal
resolution of the camera. Lastly, the parameter pol refers to the polarity
of the event (ON/OFF events).

With this event structure, it is common to represent events in a
three-dimensional (space-time), representation, where each event is a
point with 2D spatial component, coupled with its 1D timestamp.

Conventional cameras and event cameras have fundamentally
different modes of operation and output. As such, a comparison of
the behaviour in the same scene, and an analysis of the output, is
interesting. Let us analyse the response of both a conventional camera
and an event camera when presented with a disk with a black dot
rotating at a high speed. The fixed capture rate of the conventional
camera is unable to keep up with the speed of the dot, and the images
suffer from motion blur and some discontinuity between frames. The
event camera, however, due to its asynchronous event generation
and high temporal resolution, is able to continuously produce events
relating to the movement of the dot.

Advances in camera manufacturing have allowed for cameras that
have both conventional camera pixel arrays, and event camera pixel
arrays. This enables hybrid algorithms, which take advantage of the
benefits of event cameras, with the extensive research on conventional
cameras.

3 Overview of related works

3.1 Event cameras, feedback loops, and pose
estimation

Event cameras have demonstrated to be useful in multiple
tasks where speed is paramount, of which quadrotor control comes
immediately to mind (Mueggler et al., 2014). They have also been
adopted in areas such as flow estimation (Akolkar et al. 2018), and
image and video reconstruction (Rebecq et al. 2019), to name a few
areas.

The main idea behind this work is that of a feedback loop, where
the event-based feature tracking is improved by combining it with
a pose estimator. This notion of combining two systems by means
of feedback loop with the aim of improving the global performance
is not novel, but not necessarily the most common. Works such

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2023.994488
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ribeiro-Gomes et al. 10.3389/frobt.2023.994488

FIGURE 1
(A) iniVation DVS240 event camera, (B) the available connectors, (C) relevant coordinate frames, namely world frame W and camera frame C. Outputs of
event cameras, pen moving in front of the camera (D) and a person’s hand waving in front of the camera (E). White and black denote the polarity of the
event being represented, in particular positive and negative, respectively.

as (Oberweger et al., 2015) use this idea in the context of the pose
estimation of a hand, where the result from the main neural network
is fed back into the system, by means of a secondary neural network.

(Chen et al., 2020) proposes a feedback loop in the form of a
Madgwick filter in order to improve the pose estimation of a stereo
VIO-system. The main takeaway is that such approach allows to have
better estimates as there aremultiple components that can benefit from
the current state estimation.

More closely related to our work, Bai et al. (2019) proposes a
feedback loop in the context of visual inertial odometry, where
information from the Kalman filter used in the pose estimator is fed
into the keyframe detector, in order to improve initial estimation, thus
improving the pose estimator.

Our work borrowed from this idea, by merging the feature tracker
proposed in Gehrig et al. (2020) with the pose estimator described in
Brossard et al. (2017), and creating a feedback loop between the two, so
that the feature tracker could benefit from the current pose estimation,
leading to better features, in turn improving pose estimation.

The problem of pose estimation shares some goals and similarities
with SLAM (Simultaneous Localization and Mapping), as one of the
problems is that of localization, which relies on a correct estimation
of the pose of the system. According to (Gallego et al., 2019), the
first work on camera tracking with an event camera was presented in
Weikersdorfer and Conradt. (2012), and proposed an implementation
based on particle filters, but was limited to a planar motion.

(Reinbacher et al., 2017) proposed an implementations which,
event though limited to rotation, and therefore without the
need of translation or depth, paved the way for more complex
implementations, such as (Vidal et al., 2018), which we consider to
be the state of the art in terms of localization using event cameras.

Multiple authors have opted for approaches that try to rely on
bridging the “classic” approaches with event cameras. For example,
Zihao Zhu et al. (2017) relies on features tracked by Zhu et al. (2017),
and combines them with IMU information by means of an Extended

Kalman Filter (EKF). Our proposed approach borrows from this idea
as well. Furthermore, the feedback loop contained in our work that
we present as a contribution can be considered to expand on this
work.

On the “conventional” side of pose estimation, multiple SLAM
approaches based on vision (Visual SLAM, or vSLAM) are worth
mentioning, however we highlight ORB-SLAM (Mur-Artal and
Tardós 2017).

3.2 Feature detection and tracking with
event cameras

For event-based cameras, new types of features, as well of
detectors, are being proposed, as classical techniques are not easily
transferable in most cases, or result in a non-negligible performance
decrease, due to conversion overhead from asynchronous events to
frames. Due to the nature of events, gradient operators are not possible
(at least directly applied to the event stream), since there is no image
on which to apply them, and multiple techniques have been proposed.

The work from (Clady et al., 2015) introduces the use of a space-
time representation of events for feature detection and tracking. In this
case, features correspond to image corners.

This method relies on the space-time properties of events, and
creates a 3D representation, containing the spatial position of an event
(x,y), as well as the time it was received. In this representation, edges
moving with uniform linear speed create planes (stack of lines at
different instants), and corner movement creates lines (stack of points
at different instants).

As such, this technique tracksmoving edges by fitting planes in this
3D representation, implicitly estimating the speed of the moving edge
(optical flow). Each new event is matched to the previously estimated
planes, and the estimates are updated.Theway this technique identifies
(and tracks corners) is by detecting intersection between these planes,

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2023.994488
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ribeiro-Gomes et al. 10.3389/frobt.2023.994488

as these intersections correspond to the corner movement through a
period of time.

The approach proposed in Vasco et al. (2016) relies on the Surface
of Active Events (SAE), a representation system for events, which
keeps track of the timestamp of the most recent event for any given
pixel, regardless of polarity, defined by SAE:(x,y) → t. Indeed, it is a
spatial representation ((x,y) coordinates, corresponding to each pixel),
which can be discretised by assigning a value to each pixel based on its
timestamp. Since this discretised representation is now a frame in the
classical sense, we can apply the Harris Corner Detector directly to the
SAE and identify the corners from these results.

A more efficient implementation relies on considering only the
neighbouring region of an event as it arrives, instead of the whole
SAE. As such, only a subset of the SAE is analysed. Since each event,
and consequently, each subset, is independent on the other subsets
(provided the subsets do not overlap), parallel implementations are
possible, and also improve speed. Such method is described in
Mueggler et al. (2017), which merges the SAE with the FAST method
of feature detection.

This technique also relies on the SAE representation of events
but does not perform any computations. Rather, it performs only
comparison operations on a local neighbourhood around the relevant
event.

As each event is received, its timestamp is compared with the
neighbouring pixels using circular segments (for isotropic response
and efficiency), and checked if, in the region, each event is
subsequently older than the central, current event (contiguous pixels
with decreasing timestamps), as these are typical corner patterns.

Though this method is not as effective, it is much faster, as
no computations are performed, and each event can be processed
independently (and concurrently in a parallel fashion).

Lastly, the Event-based Kanade-Lucas-Tomasi Tracker, EKLT
(Gehrig et al., 2020), is a hybrid feature tracking technique that is able
to merge information from conventional cameras and events (and
hence is more suitable for event cameras that output these two types
of data simultaneously), that tracks corners across time. This method
tracks corners, as they are easy to recognize in both conventional
cameras and correspond to areas with high event generation.

The idea behind this tracker is to detect features using a
conventional frame, which are then tracked using events until a new
frame arrives, at which point the estimation from events is compared
to the corner detection in the new frame, in essence correcting this
estimation. If the feature is not detected, it is still tracked in event space,
as subsequent frames may re-detect missed features. This approach
is particularly useful in high-speed movements, where motion blur
becomes a problem for frames, but not for events.

This comparison between frames and events is crucial, and the key
concept is “image variation in a frame patch.” As previously discussed,
event cameras respond to brightness changes in the environment.
Therefore, it is not farfetched to compare events to image gradients,
as zones with higher gradients in the world are precisely the ones
that produce the most events. In fact, integration (accumulation) of
events over a period of time produce results that are very similar to
the gradient of the image.

This is the idea at the core of this approach, as the brightness
change behaves as the descriptor for the features, and are used as
patches for a Lucas-Kanade inspired patch comparison and matching,
using both the patch and estimated velocity (estimated through
events).

While a new frame is not received, the corner is tracked in event
space and the local patch is being created for comparison with a frame
patch created from image gradients.

3.3 Contributions

We propose a Lie group-based UKF approach to solve the pose
estimation problem which, to the best of our knowledge, is a novel
approach in the context of event cameras. This approach attempts to
combine visual information in the form of events and frames, with
inertial information obtained from an IMU, bymeans of anUnscented
Kalman Filter.

Also, we propose the use of the Event-basedKanade-Lucas-Tomasi
tracker (EKLT, Gehrig et al. (2020)) in the context of pose estimation,
which, as far as we are aware, has not yet been done before.

Furthermore, we propose a possible way to improve said tracker
by taking into account the current estimation of the pose, in effect
improving sensor output by combining it locally (at the sensor level)
with measurements from outside the sensor, which is an unusual
approach to improving sensor reading, extending the idea present in
works such as (Zihao Zhu et al., 2017).

4 Problem formulation

This work appears in the sequence of attempting to estimate the
orientation of an eye by means of visual odometry. The eye produces
very fast (under 200 ms) and short (usually under 25 deg)movements,
called saccades, on the order of 700 deg/s (Luo, 2015). This poses
some challenges for conventional cameras, that are susceptible to
motion blur, and therefore lose features during this period. In order to
minimize the effect ofmotion artifacts on feature tracking, exploratory
work using event cameras was pursued. Given the availability of the
embedded IMU sensor in most event cameras, inertial information
was also used, which can be biologically justified by the synergy
between the ocular (visual) and vestibular (inertial) systems in
animals.

As such, our system is composed of an event camera that
contains an IMU sensor embedded. It is important to understand
what each sensor is reading and what reference frame each one uses
to make sense of the data being fed into, and received from, the
system.

Our IMU reports two types of information: angular velocity ω =
[ωxωyωz]

T ∈ ℝ3 and linear acceleration a = [axayaz]
T ∈ ℝ3. There is

no magnetometer information available. The IMU reference frame
is aligned in the same way as the camera reference frame, and
their centres are also aligned. As such, there is no need to change
information between reference frames.

The setup is shown in Figure 1, showing the event camera with
embedded IMU, the world frame W , with regards to which we want
to estimate the position and orientation of our system (for the pose
estimator), and the camera frame C, with regards to which the sensor
readings are produced.

The odometry methods presented in this work intend to estimate
the position of the camera, at all times, with regards to the initial
(base) frame, typically the world frame W . Given the interest
in estimating an eye orientation, focus was placed on rotation
movements.

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2023.994488
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ribeiro-Gomes et al. 10.3389/frobt.2023.994488

FIGURE 2
Block diagram of EKLT (A), illustrating the comparison between brightness changes from images and events, adapted from (Gehrig et al., 2020).
Comparison of the brightness change from event integration (B), versus the brightness change from image gradient (C).

5 Feature tracking with event cameras

5.1 Feature detection and tracking

As stated, there are multiple choices for feature detection and
tracking using event cameras. EKLT stands out as an hybrid approach
that takes information from conventional frames and events. Being
based on the Lucas-Kanade tracker, two templates need to be
compared. The first is obtained by combining the x-wise and y-wise
gradients along the estimated flow angle v. The second is obtained
by temporal accumulation of the incoming events on a given patch.
In effect, the first template tries to predict the generated events over
the timestep, and the second template corresponds to the actual
accumulation of events over that timestep.

These templates are then matched using the cost function

min
p,v
‖ΔL (u) −ΔL̂ (u,p,v))‖2 (2)

Where ΔL denotes changes from events (second template), ΔL̂ denotes
gradients from frames (first template), and u denotes the image, p the
warp parameters, in particular the position of the feature, and v the
flow angle. p and v are used as the starting values for the optimizer
that minimizes the functional (2), and are output at the end of the
optimization process. The importance of these parameters is further
explained in Section 7.2.

The overview of the algorithm as described is shown in Figure 2.
While a new frame is not received, the corner is tracked in event space
and the local patch is being created for comparison with a frame patch
created from image gradients, as shown.

It is worth noting, however, that the dependence on corners can
present a problem for low-textured, or highly organic environments,

where high quality corners are not always present. Also worth
mentioning is the parameter v shown in Figure 2, which accounts for
the optical flow. Though inconspicuous at first glance, v is crucial for
the generation of the Predicted Brightness Increment, as it estimates
the flow angle (the direction objects in the image aremoving), which is
needed to predict the polarity of the events and generate the template
based on frames to compare against the real Brightness Increment
generated from events.

This parameter is estimated by one of the following methods.

5.1.1 Kanade-lucas-tomasi tracker (KLT) method
This approach uses the classic KLT algorithm (Lucas and Kanade,

1981) to estimate motion flow. The original algorithm estimates the
motion flow by comparing patches between consecutive image frames
(images I and T by means of the minimization of the photometric
error

min
p
‖(I◦W) (u) −T (u)‖2 (3)

Where W (u; p) denotes a warp that maps image I to
image T, and parameters p include the translation and
rotation of these patches. From this warp, flow can be
estimated.

We are already considering frame patches around features. This
approach takes this into account and compares consecutive patches to
estimate their motion, and estimate v.

5.1.2 Event method
A second approach for optical flow estimation of the patches is

based on the brightness constancy formulation (Zhang and Chanson,
2018), with a novel approach using events for the estimation of the

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2023.994488
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ribeiro-Gomes et al. 10.3389/frobt.2023.994488

derivatives with regard to time. However, an exact explanation is not
needed for this work, and a detailed description can be found on the
original work (Gehrig et al., 2020).

5.2 Event features and filtering

Since events do not naturally follow this organized and expectable
pattern of producing visual information at a constant interval (which
can be both advantageous and disadvantageous depending on the
situation), changes are needed to provide a batch of features to the
measurement model.

The proposed approach is that of accumulation of the
asynchronous features over a period of time, in order to simulate
frames being received. We call these accumulation of event features
over time pseudo-frames, and are usually of 5 ms or less, to take
advantage of the speed of events. Note these pseudo-frames only
contain feature position on frame, and should not be confused with
an event accumulation over a given period, much less an image
reconstruction from events.

Three strategies are proposed for the creation of the pseudo-
frames.

• Fixed interval integration Features are accumulated over a fixed
period of time before being fed into the system. This period of
time is defined at the beginning as is configurable by the user.
Typical values were under 5 ms.
• Fixed number of features update Features are accumulated

until a batch with a predetermined number of features is
achieved.
• Hybrid approach Features are accumulated until a fixed period

of time has passed, or until a predetermined batch of features is
achieved (whichever comes first), and is a combination of both
previous suggestions.

We found that a fixed interval integration was much more easily
manageable as it translates quite naturally to a conventional camera
producing features at a constant rate, albeit at a much faster rate.
Therefore we used the fixed interval integration when validating the
approach.

6 Pose estimator

In this section we explain our proposed approach for pose
estimation using event cameras, leveraging both visual and inertial
information provided by event cameras, based on the work from
(Brossard et al., 2017) and the proposed FUSION pose estimator. This
filter introduces several suggestions worth mentioning, such as 1) a
Lie group structure for the state space (resulting in a matrix state
space), 2) integration of the landmark position in the Lie group, and 3)
representation and computation of the uncertainty directly in the Lie
group (as opposed to outside of it, followed by a subsequent conversion
to the Lie group).

6.1 System and measurements model

6.1.1 State space
The state being estimated by the filter is given by the tuple (χ,b)

where χ is defined as

χ = [[

[

R v x p1⋯pp

0(p+2)×3 I(p+2)×(p+2)

]]

]

(4)

which incorporates the orientation R ∈ SO(3), velocity v ∈ ℝ3 and
position x ∈ ℝ3, as well as the 3D positions of the landmarks
p1,…,pp ∈ ℝ

3. The size of χ is (3+ 2+ p) × (3+ 2+ p). In addition, one
has the bias vector b ∈ ℝ6, defined as

b = [bTω bTa] (5)

containing the gyroscope and accelerometer biases bω and ba, which
is appended to the state, augmenting it.

6.1.2 Dynamics model
The system can be modelled by

body state
{{{
{{{
{

Ṙ = R(ω− bω + nω)×
v̇ = R(a− ba + na) − g

ẋ = v

(6)

IMUbiases {
̇bω = nbω
̇ba = nba

(7)

landmarks ̇pi = 0, i = 1,…,p (8)

where we have access to angular velocity ω and linear acceleration a
through the IMU mounted on the system. n represents the various
noise, defined as

n = [nTω nTa nTbω nTba]
T
∼N (0,Q) (9)

The notation (ω)× represents the skew symmetric matrix
associated with the cross product with vector ω ∈ ℝ3.

6.1.3 Measurement model
Visual information is also fed into the system by means of a

calibrated monocular event camera, in order to correct the predicted
state of the system. The camera observes and tracks p landmarks
through the standard pinhole model and corresponding projection
model:

yi =
[[

[

yiu

yiv

]]

]

+ niy (10)

where yi is the normalized pixel location of the landmark in the camera
frames, and ny ∼N (0,N) represents the pixel image noise.

This location is then compared with the expected location
of the feature in camera space, obtained by projecting the

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2023.994488
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ribeiro-Gomes et al. 10.3389/frobt.2023.994488

estimated 3D position of the landmark into camera space
through

λ
[[[[[[

[

xiu

yiu

1

]]]]]]

]

= Π[RT
C (R

T (pi − x) − xc)] (11)

where Π denotes our camera matrix, RT
C our initial rotation of the

system, RT the current estimated rotation, pi the i− th landmark 3D
estimated position, x the estimated position of the system, and xc the
initial position of the system.

This visual information is provided by EKLT, as discussed in
Section 5.

6.1.4 Uncertainty on Lie groups
The usage of Lie groups to represent part of the state improves

accuracy and numeral consistency, but comes at the cost of a more
complex representation of noise. Since the state is not a vector
space, the usual approach of additive noise is not possible. Following
(Barfoot and Furgale, 2014), the probability distribution χ ∼NR (χ̄,P)
is defined by mapping the uncertainty ξ to our state by means of the
exponential map

χ = exp (ξ) χ̄,χ ∼N (0,P) . (12)

Theuncertainty ξ = [ξTRξ
T
v ξ

T
x ξ

T
p1
⋯ξTpp]

T
ismapped to the Lie algebra

through the transformation ξ↦ ξˆ defined as

ξ ̂ = [[

[

(ξR)×ξvξxξp1
⋯ξpp

02+p×5+p

]]

]

. (13)

6.1.5 Time discretization
In order to implement Eqs 6–8, a simple discretization using the

Euler method is used, with the exception of rotation. Considering a
small time step Δt, we have

R (t+Δt) = R (t)exp[(ω (t) − bω (t))Δt+Cov(nω)
1/2g√Δt]

×

v (t+Δt) = v (t) + (R (t) (a (t) − ba (t)) − g)Δt

x (t+Δt) = x (t) + v (t)Δt

bω (t+Δt) = bω (t)

ba (t+Δt) = ba (t)

pi (t+Δt) = pi (t)

(14)

6.1.6 Predict and update implementation
The various components of the system are described by

state
{{{{
{{{{
{

χn = exp (ξ) χ̄n
bn = b̄n + b̃

,
[[[[

[

ξ

b̃

]]]]

]

∼N (0,Pn) (15)

dynamics {χn,bn = f (χn−1,un − bn−1,nn) (16)

observations
{{
{{
{

Yn = [yT1⋯y
T
p
]
T
≔ Y(χn,wn)

yi given by (11), i = 1,…,p
(17)

where (χ̄, b̄n) represents the mean estimate of the state at time n,
Pn ∈ ℝ(15+3p)×(15+3p) is the covariance matrix that defines uncertainties
(ξ, b̃), and the vector Yn contains the observations of the p landmarks
with associated Gaussian noise wn ∼N (0,W).

These components are implemented into the filter, with the usual
steps of propagation (based on the motion model with input from
the accelerometer and the gyroscope) and update (based on the
observation model and the visual information).

7 System overview and feedback loop

This chapter explains the approach to the pose estimation problem
using event cameras, and (as designed) is only applicable to event
cameras (though the idea can be converted to conventional cameras).
It consists of creating a sort of “closed loop”1 between the filter,
estimating the pose, and the tracker, tracking and providing visual
features.

Two problems identified with a “clean” EKLT were as follows: the
number of features is limited; and sometimes features are lost, only to
be found a few moments later, but with a different ID (which is not
necessarily bad, but then the filter treats this feature as a new one, and
all previous sightings are discarded, which means some matching and
filtering is needed). The first problem is of difficult resolution without
major changes in the approach, as it is based on corner detection,
which are common in images, but still limited. The second problem,
however, implies improving the tracking of features so that they are
kept alive for longer. As such, we set out to improve EKLT tracking
performance.

Revisiting EKLT, at first glance it may seem like a simple
implementation ofKLT,where thematching patches are obtained from
frames and events (as opposed to the normal strategy of both patches
coming from frames), and, to a certain extent, this is true. But there is
more to be said about the generation of these templates.

In Figure 2 we can see that the x-wise and y-wise image gradients
are generated, and (after being subject to a warp) aremerged bymeans
of a dot product with the flow angle.This parameter of the flow angle v
is critical in the generation of the template, and our experiments have
verified empirically this parameter to be one of the main reasons for
tracking loss. It can be interpreted as aweight in the linear combination
of the x-wise and y-wise gradients of the image. If the camera is
moving horizontally, then the accumulation of events is mainly on the
horizontal direction, and v reflects this by placingmore importance on
the x-wise derivative. Movements in other directions have respective
flow angle values that reflect this movement.

Furthermore, the flow angle v also allows to infer the direction of
movement, as moving from left to right produces a different polarity
of events to amovement from right to left.The template obtained from
frames needs to take this into account to be able to be compared against
the event template. Overall, this parameter is responsible for creating
the global appearance of one of the templates to bematched. As such, it

1 Not to be confused with loop closure, as is common in SLAM formulations,
but more like a control theory approach of open vs closed loop control.

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2023.994488
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ribeiro-Gomes et al. 10.3389/frobt.2023.994488

should now be clearer that this parameter is of paramount importance
in the tracker.

Lastly, another parameter to be optimized is the initial location of
the feature, which corresponds to the expected position of the feature,
and is fed into the optimizer as a starting value. This parameter is also
important, but since features are updated very frequently (sometimes
around 1 ms, in very fast paced scenes) it is not as critical as the flow
angle [though it also plays an important role, in particular when a
feature is lost (Section 7.3)].

As such, parameter p guarantees that the patches are aligned, and
parameter v guarantees there is a similarity between patches, hence
its greater importance that we verified empirically. With this in mind,
we propose an approach where the current estimated pose is fed back
into EKLT to help with the tracking of features. This approach creates
a sort of closed loop, where position from the pose estimator is fed
into EKLT, which then provides information for the pose estimator, as
shown in Figure 3. To the best of our knowledge, despite finding loop
closing from motion to feature tracking in works as (Vidal et al., 2018
and Zihao Zhu et al., 2017), the loop closing is still an uncommon and
innovative approach, specially when leveraging the filtered pose and
optical flow prediction, together with combining with the EKLT.

This approach also tries to turn EKLT into a more robust
alternative for feature tracking using event cameras that can only
capture either frames or events at any given time, but can switch
between these two modes, even though this switch may take some
time. This is because, when features are inevitably lost, there is a
period where no new information is provided, as no new frames are
received for feature extraction, which reduces the contribution of the
visual component. Therefore, by improving the tracking of features,
this approach can also be beneficial to these cameras, as features are
lost less, and their need to be replaced (and, therefore, of full frames),
is reduced. Ideally, with perfect matching, only the initial frame would
be needed. However, obviously, this is never the case, so a switch to
frames (and then to events) is necessary to ensure tracking for these
cameras.

7.1 Ego motion and optical flow

The movement of the features being captured by the camera are
influenced by its motion (Heeger and Jepson, 1992), following

[[[[

[

ẋ

ẏ

]]]]

]

=
f
Z

[[[[[

[

−Tx +
x
f Tz

−Ty +
y
f Tz

]]]]]

]

+
[[[[[

[

ωx
xy
f −ωy(f +

x2

f)+ωzy

ωx(f +
y2
f)−ωy

xy
f −ωzx

]]]]]

]

(18)

where ẋ and ẏ represent the flow in x and y-axes, respectively, x and
y represent the feature in the image frame, f the focal length of the
camera, T(.) the translations of the camera, and ω(.) the rotation of the
camera.

Though such knowledge is obvious in the field of Computer
Vision, given its relevance in this work, let us explore (18) in more
detail. In particular, let us analyse the influence of each motion in
the evolution of the movement of the features. The equation has
been grouped in a translation component on the left, and a rotation
component on the right. In total, there are 6 basic types of movement
possible, corresponding to an isolated rotation or translation in the x,
y, and z-axes.

Exciting a single axis at a time produces the patterns presented
in Figure 4, which show the position of each feature over time,
accumulated on a single frame. Notice the similarities in pattern
between rotation in the y-axis and translation in the x-axis, both of
which produce mostly horizontal patterns, as well as rotation in the
x-axis and translation in the y-axis, both of which produce mostly
vertical patterns. These similarities also speak to the limitations of a
purely visual odometry approach, as inertial measurement can help
disambiguate between such motions. Only z-axis rotation and z-axis
translation produce more distinctive patterns, the former producing
concentric circles, and the latter producing lines moving into or away
from the centre of the image.

Since we can predict the evolution of the position of the feature
over time, it is possible to estimate the flow angle. However, it is very
important to take into account that these predictions work for the
immediate proximity of the feature, i.e., this assumption onlyworks for
small timestep. If the timestep is bigger, the predicted movement will
not match the real position of the feature (see Figure 4, where features
initiating at the same position eventually drift away and up at different
positions).

7.2 Features tracking complemented by the
pose filter state

Our objective is to improve the feature tracking from EKLT by
feeding it information from the current pose estimation, which, in
turn, will benefit from a greater number of features.

As already explained, the most critical (or, at least, the component
that contributes most from loss of features) is the generation
of the template to match from frames, which depends on two
main components: the initial position location and the flow angle.
Their importance (and relative importance) have already been
mentioned (Section 5). We hypothesise the pose estimator can (either
directly or indirectly) help the tracker with regards to these two
components.

7.2.1 Flow angle
Starting with the flow angle v, we propose the use of (18) to

determine v bymeans of v = atan2(ẏ
ẋ
)where ẋ and ẏ are given by (18).

We reiterate the importance of a small timestep, and synchronisation
between the current estimate and EKLT, as disparities become more
detrimental than beneficial. To tackle this problem, all timesteps are
kept to a minimum, and are usually of about 1 ms. This ensures the
assumptions for (18) are valid (according to our testing).

In terms of the estimations being used for motion, the angular
velocity comes directly from the last measurement of the gyroscope
(or some sort of mean or median of the last measurements, if readings
are too contaminated by noise). The linear velocity, on the other hand,
comes from the state, that estimates the filter velocity (along with
system rotation and position, landmark position, and sensor bias).
However, it is important to remember the relevant frames of reference
(see Figure 1). The velocity being estimated is in the world frame W ,
meaning it needs to be first converted to the correct frame of reference
(the camera’s) before being applied to (18). Luckily, since the rotation
of the camera R is one of the variables being estimated in the state,
the conversion of velocity to the camera frame is given by vC = RTvW
where vC and vW denote the velocity v being referenced in the world
frame W , and the camera frame C.

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2023.994488
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ribeiro-Gomes et al. 10.3389/frobt.2023.994488

FIGURE 3
Overview of the proposed approach.

FIGURE 4
Evolution of features’ position over time due to ego-motion. (A–C) show translations in x, y, and z-axis, respectively, and (D–F) show rotations in x, y, and
z-axis, respectively. Notice the similarities between (A,E), and (B,D). (G) shows drift in expected feature position from bigger timestep.

7.2.2 Feature position
Moving on to the initial feature position, our proposed filter

structure keeps the estimated 3D position of landmarks in the state,
which can be projected into camera space to obtain the estimated
position of the features by means of the projection equation

λ
[[[[[[

[

xiu

yiu

1

]]]]]]

]

= Π[RT
C (R

T (pi − x) − xc)] (19)

where Π denotes our camera matrix, RT
C our initial rotation of the

system, RT the current estimated rotation, pi the i− th landmark 3D
estimated position, x the estimated position of the system, and xc the
initial position of the system.

This way, the tracker benefits from having an additional
information of the features being tracked by adding the depth factor.

7.2.3 Desired effect
In effect, by “helping” the tracker with the starting values, what

is being done is placing the initial estimate inside the region of
convergence, and closer to the global minimum, as the rest of the
matching is still performed by the optimizer, that tries to match both

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2023.994488
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ribeiro-Gomes et al. 10.3389/frobt.2023.994488

templates, and estimate the current position of the feature (and its
flow) in the process.

The analysis of this region would be interesting, i.e., to say that
convergence is guaranteed whenever the initial flow angle is less than
5°, or when the initial position is not further than 3 pixels. However,
such an analysis is not trivial, as there are many factors that come into
play. To name a few, the speed and overall motion of the scene are
critical and produce different scenarios.

A slowly moving, poorly distinctive feature produces less events
(as the changes in brightness are fewer), and therefore take longer
to create a patch, which means a greater displacement is produced,
and without outside help of the closed loop the initial position
is farther away from the minimum, perhaps outside the region of
convergence. Not only this, but the patch that is created itself is usually
not as distinctive, which result in suboptimal solutions to the flow
estimation that result in suboptimal patches for comparison, and a
poorer tracking of position overall.

From our experiments, the importance of the flow angle is
much greater than the initial feature location. This is because the
neighbourhood of the feature is really small (the displacement
between initial location and final location is typically around 2-3
pixels diagonally), whereas flow angle could have deviated significantly
from the last optimization (imagine a rotation in the z-axis of
the camera, where features on the borders of the camera move
faster than those on the inside), and influences the next matching
negatively.

7.3 Set of backup features

The representation and management of features and landmarks is
nothing new, and is a point wheremuch effort is placed. Referring back
to ORB-SLAM (Mur-Artal et al., 2015), for instance, the local map
being generated is constantly being updated and corrected bymeans of
local bundle adjustment, so that when new features are detected, they
can be compared against the local map, which consists of a 3D point
cloud (with additional parameters that simplify matching but are not
particularly relevant in this case).

Based on this idea of using the map created over time to help with
localisation, we try to take advantage of the location of features over
time to help with localisation.

The implementation of the proposed closed loop approach also has
other benefits. Tracking features in EKLT is costly (computation-wise).
As such, when features are lost (either because their tracking quality
decreasing under a certain threshold, or because theymove outside the
FOV of the camera), they are dropped.

In our case, the pose estimator, on the other hand, is capable of
storing features and landmarks over time (in effect, creating a sort of
map, as per a SLAM formulation) and keeping these lost and discarded
features in a sort of zombie or dormant state.

Since we can project their predicted location onto camera space
by means of (19), it is possible to awaken these features when they
enter the FOV again, for example. This means that these features
(that would eventually be detected again, but would be given a
new ID, which would not benefit from using past sightings of these
features), are able to be re-identified as used in the filter with the same
ID.

Thismethod also allows for bigger jumps in feature tracking, as the
initial feature position can be set to a place that is far away from the

previous estimated position (imagine a situation where this landmark
becomes occluded, and therefore disappears, but is kept inmemory by
the pose estimator; when the landmark is no longer occluded, since the
pose estimation kept running, the expected position based on current
pose can be used).

Internally, this structure corresponds to a table that keeps track
of all the sightings of a specific feature across time (based on its
ID), in particular its x and y position in camera space, as well as the
estimated camera pose (position and rotation) at that instant.Through
the multiple points of view, associated with the feature position and
camera pose, it is possible to triangulate the position of the landmark
in 3D space, in the world frame (using epipolar geometry constraint).

Since the 3D position is being estimated, it is possible to project it
into the camera frame at current time, and feed it into EKLT when it
re-enters the camera FOV.

An interesting side effect of such an approach is that it is possible
to rank features based on how distinct and/or observable they are,
as features that are detected more, have more entries in the table,
and therefore are probably the ones we want to use, as they are more
robust.

7.4 Filter initialisation

The initialisation of the filter should be carefully considered. The
“ideal” initialisation would be to provide the correct values of all
variables in the state, i.e., set the correct values of pose and the location
of the landmarks, in particular. However, not only is such an approach
not always possible or realistic (testing on a new, uncontrolled
environment for the first time), it also defeats the purpose of a system
that is placed in an unknown environment andmust be robust enough
to eventually converge to the correct values.

This problem is not exclusive to our approach, and some
suggestions have been made elsewhere. Taking (Qin et al., 2018), for
example, a suggestion where a dataset is captured, and a first pass on
the first moments of the dataset is performed, so that the first few
values for the landmark location can be estimated (as multiple points
of view allow for triangulation of features into 3D landmarks). After
these values are obtained, the system starts again, initialisedwith them.

However, this solution only works offline, i.e., the system first
captures a trajectory, and estimation is performed afterwards. Though
perfectly legitimate, we preferred to strive for an approach where the
system is able to run online, meaning it can estimate its location at
the same time it is exploring the world, without the need for the first
initialisation pass.

For the initialisation of the position, orientation, and velocity of
the system, no prior information is given, and the filter starts with all
values at 0. From our perspective, not only is this approach fair in the
sense that the filter must be robust enough to be able to survive the
first instants and quickly obtain these values, it also allows for quick
testing in different environments, as no prior estimation is needed.
Furthermore, this implementation assumes the starting pose to be the
base frame, meaning all future pose estimations are given in relation
to this frame, which we consider to be aligned with the world frame.
If there are other components in the system, and we know this not to
be true, a simple rigid motion transformation for a coordinate change
can be performed. Also, if some information of the initial state of the
filter is available, it can also be used for the initialisation, but it is not
needed.

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2023.994488
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ribeiro-Gomes et al. 10.3389/frobt.2023.994488

The landmarks, however, are a different story, and two distinctions
for the initialisation are made: initialisation for the start of the system,
and for the replacement of features. For the former,we place landmarks
in the world by following the projection line of the corresponding
features, which allows for estimation of the X and Y coordinates, but
depth is trickier, as a single point of view is not enough for depth
estimation (and for that matter, neither is rotation-only movement).
In this regard, we assign a distance value d that reflects the average
distance of the landmarks in the world, to have a notion of scale.
As such, every landmark in the world follows |X,Y,Z| = d (which in
practice means they are all in the same sphere of radius d). Another
approach that was used for planar scenes was to consider the same
Z for all features (they are all on the same plane at distance Z from
the camera). Regardless, since the depth value is not trustworthy, a
high variance is assigned to the start, which decreases as the system
evolves.

For the latter (feature replacement), since information of past
states of the filter are available (in particular, we keep the previous
sightings of every feature), we can introduce a new landmark by
triangulating the past sightings into the world, thus creating a much
more reliable 3D position of the landmark that is introduced in the
filter state.

7.5 Implementation

The block diagram of the implementation is shown in Figure 3.
In this sketch, x represents the state, composed of the presented
tuple (χ,b). ̂(x) represents the estimate, (x̂)− is the estimate before
measurement update, and (x̂)+ represents the same estimate
after update. z represents the observations (features) fed into the
measurement update. Furthermore, the motion estimation that is
being performed in the filter is being fed back into EKLT, and helps
better keep track of the features by leveraging the predictable ego-
motion effect on features, as well as the creation of backup features,
that not only helps keep track of the features, but also re-identify them
later.

We can consider there are two main components at work–EKLT
for feature extraction, and the UKF for pose estimation–which work
synergically. EKLT leverages themost recent pose estimation to obtain
an estimate of the feature position using (19). Furthermore, the flow
angle v is also estimated through (18) by using the angular velocity
reading from the IMU that is fed into the UKF, and supplying that, or
a filtered version of that reading, to EKLT. UKF, in turn, benefits from
an improved quality of the feature being used as input. Algorithms 1
and Algorithms 2 reflect this explanation.

One possible comment is that v can be inferred from the derivative
of p, which is true. However, given the low resolution of event
cameras, the discretization error we get by computing the difference
between consecutive positions may not be negligible. In addition,
the errors in position contribute to an erroneous estimate of v.
Furthermore, we estimate thewholemovement of the system, and feed
this information in the feedback, which is helpful to clear ambiguities
due to the aperture problem. As such, both parameters are estimated
separately.

In terms of computational cost, the closed loop is similar to
the open loop implementation, as the computations of p and v are
straightforward, see (19) and (18).

Require: Event stream, pose estimation, landmark

location, angular velocity

 Accumulate events

 If Enough events accumulated then

  Generate event patch

  If Frame received then

   Update frame patch

  end if

  Use (18) to obtain v initial estimate

  Use (19) to obtain p initial estimate

  Estimate feature position p using (2)

 end if

 Output: feature location

Algorithm 1. EKLT adapted for closed loop

Require: Set of features (pseudo-frame), IMU

values

 Initialize filter

 χ,b← 0

 while there are IMU values do

  χ,b← PropagationStep

  If Pseudo-frame received then

   χ,b← UpdateStep

  end if

 end while

 Output: χ,ω, landmark location

Algorithm 2. Pose estimator with closed loop

8 Experiments and results

In order to validate the proposed approaches, simulation and
real data was used. Simulated data was generated using ESIM
((Rebecq et al., 2018), an event camera simulator), and real data used
datasets available online that use real event cameras 2, as well as
recordings we performed using the Kinova robot arm to generate
trajectories.

Given our group’s interest in the visual and vestibular system, the
focus of this work, and therefore of the experiments presented, are
directed towards rotational movements. Note that, despite our focus
on estimating rotation, our methods allow estimating also translation.
This is to account for real setups and datasets which do not perfectly
realize rotations, i.e., rotation motions are contaminated with small
translations.

2 http://rpg.ifi.uzh.ch/davis_data.html

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2023.994488
http://rpg.ifi.uzh.ch/davis_data.html
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ribeiro-Gomes et al. 10.3389/frobt.2023.994488

FIGURE 5
(A–C) show the evolution of the rotation along time, with rotation movement towards both sides on the z-axis. (D–F) show the same instants, but with the
generated events superimposed. This input was generated using ESIM. (G) shows a comparison between the groundtruth (blue), the conventional approach
(orange), and the event approach, open loop (yellow). (H) shows the comparison of the groundtruth (blue) with the closed loop approach (orange). (I)
shows the evolution of the number of features for each approach used. Baseline (frames + IMU) is shown in blue. Event approaches, using events, frames,
and IMU, are represented using red (open loop) and orange (closed loop).

8.1 Experiment 1, integrated experiment on
simulation

To validate the approaches proposed, we generated a synthetic
dataset based on ESIM, simulating a DAVIS240 event camera,
with access to both frames and events simultaneously. The
images produced have some distortion parameters, and some
noise, but have no motion blur when simulating conventional
frames, which would (in principle) give the upper hand to event
cameras.

We generated simple rotations along each axis, with an amplitude
of 18 deg for each side, inverting the direction of rotation when said
angle was reached. This generated trajectory is simple, but the abrupt
change in direction generated is a challenge for event cameras in
general, as these correspond to instantswith no events being produced,
andEKLT in particular, as the estimated flow angle changes completely
and instantly. Speed was 18 deg/s, so that the whole movement took

about 4 s. A DAVIS240 camera was simulated, with both access to
frames and events simultaneously.

The inputs to the system are shown in Figure 5, where we show
3 illustrative frames on the rotation movement, and superimpose the
events on frames, making evident their relation with the edges and
corners of objects in the image.

8.1.1 Open loop approach
We start by the conventional approach, without using the feedback

loop, as a baseline. In this case, we also performed a comparison with
a conventional camera approach. The conventional camera approach
is as described in the original proposed method in Brossard et al.
(2017), and corresponds to a UKF with IMU, with visual features
being extracted from a conventional camera. This comparison allows
assessing whether event data can help improving VIO accuracy.

The results of this comparison are presented in Table 1. We
observe that the approachwith events outperforms the approach using

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2023.994488
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ribeiro-Gomes et al. 10.3389/frobt.2023.994488

TABLE 1 Results for conventional vs. event-based (open loop) approaches,
when performing a rotation on the z-axis.

Setup Mean error [deg] Max error [deg]

Image + IMU 1.05 4.41

Image + Events + IMU 0.85 3.05

Bold corresponds to the best results.

frames, both in terms of the mean error, and the max error. This has to
do with two factors: the more frequent updates that events allow mean
that the filter can be updated with visual information more frequently;
the features, being tracked with events, are tracked better (which can
be debatable as it has their own problems, as lack of good descriptors,
and being limited to corner features). We repeated this same setup, in
the same scene, but with other motions, in particular rotations in the
other axes. The results are summarised in Table 2.

Overall, the results validate the use of event cameras, even if with
a simulator, and outperform the conventional camera approach in all
cases (even though sometimes a change in the settings for the filter or
the tracker is needed).

8.1.2 Closed loop approach
After testing the first proposed approach (conventional approach

without feedback loop), we present the result for the second proposed
approach (feedback/closed loop) using the same scene and setup.

This approach adds some challenges, the most relevant of which
is the need for a more careful choice of parameters for the filter. The
estimation of the pose is now more closely coupled with the feature
tracking. In otherwords, good pose estimations lead to better tracking,
which leads to better estimation. A good starting estimation is critical
to feature tracking.

The accuracies of pose estimation experiments are presented in
Table 2. In the case of x and y-axis rotations, the former has biases
that degrade the performance of the filter, resulting in a rotation that
lesser accurate than the one estimated in open loop, however the latter
performedmuch better. In a global view, these results corroborate that
the closed loop approach does improve feature tracking, which, in
turn, improves the estimation quality.

8.1.3 Comparison of both approaches
The filter and IMU information is the same for all cases, which

means that the differences in results are related to the visual features
being fed into the filter. An evolution of the features over time
is presented in Figure 5, where we can see the features for each
case–traditional visual approach, open loop event-based approach,
and the improved closed loop approach.

The first detail is the evolution of feature themselves, depending
on the approach. The conventional camera approach is able to keep
the number of features more or less constant, regardless of the time of
movement being performed (though no motion blur was simulated).
This is not the casewith events, as they are dependent onmovement for
event generation and consequent feature tracking. Both event-based
approaches have an evolution of features dependent on movement. In
particular, there is a significant decrease of features at t = 1 s and at
t = 3 s. These instants correspond to the change in direction on the
movement, where flow angle changes instantly and no features are
available for template creation.

The second detail worth mentioning is the number of features
extracted from events is a magnitude of order lower than
the features extracted and tracked from conventional frames.
Nevertheless, this is not a problem, as the features tracked from
events are more distinctive, and therefore more precisely placed
in the world, and thus able for an overall better result on the
tracking.

Furthermore, it is also worth comparing the number of features
between open and closed loop approaches. The latter consistently
tracks more features, corroborating the synergy proposed in the
approach, which further improves performance.

Nevertheless, the closed loop approach helps keeping more
features alive, for longer, as the number of features is consistently
higher than the open loop approach. Furthermore, the recovery after
the change is direction is also shorter.

Interestingly, results in y-axis closed loop in Table 2 are an order
of magnitude lower then other cases. A combination of factors
contributed to this result. In our dataset, the upper and lower part
of the scenarios correspond to the ceiling and floor, which have a
poor texture content. Thus, when the camera moves up or down,
most of the image is occupied by regions with poor texture, which
are lost frequently and must be re-identified. In particular, in the x-
axis rotation, a total of 661 features were extracted from the scene, as
opposed to 325 total features in the y-axis.This process results in a loss
of accuracy.

Additionally, for the case of rotations along the z-axis, many
features in the periphery go out of the field of view and thus have a
lower lifespan. The most persistent features are located in the center,
but have low signal to noise ratio.These problems are not so significant
in the case of y-axis rotations and the accuracy is higher in general.

In the closed loop case, as the feature tracking is of overall higher
quality, its effect on accuracy is even more noticeable, producing this
particularly good result.

All in all, the proposed approach is able to better track features,
keep them alive for longer, and recover faster after a major loss on the
number of features.

TABLE 2 Open and closed loop results on simulation data.

Open loop Closed loop

Axis of rotation Mean error [deg] Max error [deg] Mean error [deg] Max error [deg]

Rotation x-axis 18 deg 1.66 5.04 1.73 5.89

Rotation y-axis 18 deg 0.65 2.43 0.049 0.12

Rotation z-axis 18 deg 0.85 3.05 0.80 4.23

Bold corresponds to the best results.

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2023.994488
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ribeiro-Gomes et al. 10.3389/frobt.2023.994488

TABLE 3 Open loop on shapes scene.

Axes Mean error [deg] Max error [deg] RMSE [deg]

x-axis −30.49 −58.04 34.48

y-axis −8.14 −45.70 17.35

z-axis −7.03 −32.46 9.66

TABLE 4 Open loop on boxes scene.

Axes Mean error [deg] Max error [deg] RMSE [deg]

x-axis −20.40 −50.10 30.88

y-axis 3.63 −10.25 6.13

z-axis 5.96 −12.27 8.80

8.2 Experiment 2, integrated experiment
with a DAVIS camera dataset

To test the proposed approaches, we tested the performance on the
datasets available online, which consist of a series of movements of the
camera onmultiple scenes. In particular, we tested the approach on the
shapes and boxes datasets, as the former has clear contrast between
background and shapes, and the latter has a much more textured
environment.

8.2.1 Open loop approach
We start with the first proposed approach. The results running

this approach are presented in Table 3. We have decided to isolate
each axis estimation for the sake of a less cluttered analysis, as well
as to interpret the evolution of each axis independently. It is possible
to observe that the obtained results are not satisfactory. First, there is
an obvious drift in the x-axis that was not able to be compensated. We
believe this drift is because of an uncompensated bias in the gyroscope,
as this axis more easily loses features by moving out of the FOV, which
means that the local map may itself drift overtime, and not correct
sensor bias.

The results of running the open loop approach on the boxes scene
are presented in Table 4. This experiment still produces some clear
deviations on the true values. However, these results are slightly better
than the ones presented previously, as not only are the errors smaller
(with the exception of the x-axis rotation), as the overall profile of the
estimation more closely follows the true values, which is positive.

8.2.2 Closed loop approach
We tested the closed loop approach on the boxes scenario. The

results running this approach are presented inTable 5. It is possible to
see that the proposed approach does help with tracking, as the results
show an improvement over the previous approach.

8.2.3 Comparison of both approaches
Once again, it is interesting to analyse these results further and

compare the open and closed loop appraoches. In particular, we
choose to isolate the analysis of the x-axis, as this is the one with the
highest error in both cases, and also the onewhere differences aremore
obvious.

TABLE 5 Closed loop on boxes sscene.

Axes Mean error [deg] Max error [deg] RMSE [deg]

x-axis 4.35 23.51 6.66

y-axis −1.53 −10.77 5.11

z-axis 1.05 14.90 5.39

FIGURE 6
Comparison of the groundtruth (black) against the estimation of the
open loop (orange) and closed loop (blue) approaches.

Figure 6 shows the plot of the estimation vs. groundtruth for both
approaches. It is clear the bias from the IMU is not corrected by the
visual component, and remains throughout the experiment. This is
not the case for the closed loop approach, which is able to correctly
estimate and cancel this bias, thus providing a much closer estimation
to the groundtruth.

It should be noted, however, that the robustness of the closed loop
is lower than the lower loop. The results are generally better, but the
initial steps of estimating biases are critical, as an incorrect estimation
can injure the tracker, because of the feedback from the state into the
tracker, and the closed loop turns into a vicious cycle where estimation
is not close to groundtruth.

8.3 Experiment 3, using the DVS camera
mounted on the Kinova arm

In this experiment, multiple rotation-focused movements were
performed by means of a Kinova robot arm, with the hope of
mimicking the eye saccadic movement, and being able to track it
along time. This mimicking was mostly in terms of the velocity
and acceleration profiles, not necessarily what is humanly possible
(we consider torsional movements, which do not occur in the
eyes, for example). The setup used for this experiment is shown in
Figure 7.

Since the DVS camera is the camera considered for this
experiment, either frames or events may be recorded at each time

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2023.994488
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ribeiro-Gomes et al. 10.3389/frobt.2023.994488

FIGURE 7
Setup for dataset recording in (B,C), showing the Kinova robot arm (A) for trajectory generation and groundtruth recording, and surrounding motion
capture system (D) for groundtruth recording. The DVS240 camera is coupled at the end of the arm, shown in (B,D).

FIGURE 8
(A–C) show samples from the scene recorded for the experimnent using the Kinova robot arm. (D) and (E) compare the groundtruth (orange) with the
estimation (blue) from the case where no prior is given (D) and when some information from the biases is used for initialization (E).

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2023.994488
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ribeiro-Gomes et al. 10.3389/frobt.2023.994488

(exclusive or). The data recording encompasses two parts i) image
frames when the camera is still, and ii) events when the camera is
moving. The commutation from frames to events is not automatic, is
placed in the script of the data acquisition. IMU is always recording.

After feeding this recording into EKLT it was verified that frames
based features are effectively tracked, however the event based features
are lost between tens to hundreds of milliseconds after detection,
resulting in a drift in estimation. In a second experiment, we have
calibrated the IMU and initialized the pose estimation method with
estimated biases of the IMU. Under these conditions, though not
perfect, the estimated rotation much closely follows the real value.
Figure 8 shows the evolution of the estimation for these two cases.

In a third experiment, we took an hybrid approach leveraging the
start of the recording, where the camera stays static until around 10 s,
and therefore IMU output is mostly noise (and gravity). As such, we
start by running the filter considering frames, as if we were using a
conventional setup, in order to estimate bias, obtaining a RMSE of
0.3635 deg on the axis ofmovement, which is actually quite promising,
though results mostly from a good estimation of the biases from the
initial estimation from frames.

9 Conclusion and future work

In this work we developed a system for pose estimation based
on event cameras. Two approaches were developed to tackle this
problem. A first, which combined an Unscented Kalman Filter
developed around a Lie group structure, with a feature detector and
tracker based around events, which performed well under simulated
environments, but ultimately under-performed in the real system.
The second approach has shown promising results on simulation. In
real environments, the initialisation of the filter is critical, as poor
estimations lead to poor tracking. However, when the initialisation is
carefully performed, the filter performed more accurately than using
the first (open loop) approach.

Both proposed methods introduced new concepts that can be
further improved. Interesting results were obtained and serve as a basis
to understand the current status of event cameras, their limitations and
advantages.

As future work, following machine learning approaches for pose
estimation may be interesting. Depending on the type of data being

used, for example if direct events are to be used, work on Spiking
Neural Networks (SNN) may be used, as the asynchronous nature of
events is best captured by the asynchronous nature of SNN.

Data availability statement

The raw data supporting the conclusion of this article will be made
available by the authors, without undue reservation.

Author contributions

JR-G is responsible for the experiments presented in this work,
under the supervision of JG and AB.

Funding

This work was supported by FCT with the LARSyS-FCT Project
UIDB/50009/2020, the national project VOAMAIS (PTDC/EEI-
AUT/31172/2017, 02/SAICT/2017/31172), the FCT FIREFRONT
project (PCIF/SSI/0096/2017), and the European Commission project
ORIENT (ERC/2016/693400).

Conflict of interest

Theauthors declare that the researchwas conducted in the absence
of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the reviewers.
Any product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by the
publisher.

References

Akolkar, H., Ieng, S., and Benosman, R. (2018). Real-time high speed motion
prediction using fast aperture-robust event-driven visual flow. arXiv preprint
arXiv:1811.11135.

Bai, J., Gao, J., Lin, Y., Liu, Z., Lian, S., and Liu, D. (2019). A novel feedback
mechanism-based stereo visual-inertial slam. IEEE Access 7, 147721–147731.
doi:10.1109/access.2019.2946352

Barfoot, T. D., and Furgale, P. T. (2014). Associating uncertainty with three-
dimensional poses for use in estimation problems. IEEE Trans. Robotics 30, 679–693.
doi:10.1109/tro.2014.2298059

Brossard, M., Bonnabel, S., and Barrau, A. (2017). “Unscented Kalman filtering on Lie
groups for fusion of IMUandmonocular vision,” inProc. Int. Conf. Robot. Automat.(ICRA)
(Madrid, Spain: IEEE).

Chen, S.,Wen, C. Y., Zou, Y., andChen,W. (2020). Stereo visual inertial pose estimation
based on feedforward-feedback loops. arXiv preprint arXiv:2007.02250.

Clady, X., Ieng, S. H., and Benosman, R. (2015). Asynchronous event-based corner
detection and matching. Neural Netw. 66, 91–106. doi:10.1016/j.neunet.2015.02.013

Gallego, G., Delbruck, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A., et al. (2019).
Event-based vision: A survey. arXiv preprint arXiv:1904.08405.

Gehrig, D., Rebecq, H., Gallego, G., and Scaramuzza, D. (2020). Eklt: Asynchronous
photometric feature tracking using events and frames. Int. J. Comput. Vis. 128, 601–618.
doi:10.1007/s11263-019-01209-w

Heeger, D. J., and Jepson, A. D. (1992). Subspace methods for recovering rigid motion
i: Algorithm and implementation. Int. J. Comput. Vis. 7, 95–117. doi:10.1007/bf00128130

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128× 128 120 db 15μ s latency
asynchronous temporal contrast vision sensor. IEEE J. solid-state circuits 43, 566–576.
doi:10.1109/jssc.2007.914337

Lucas, B. D., and Kanade, T. (1981). An iterative image registration technique with an
application to stereo vision. Vancouver: British Columbia.

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2023.994488
https://doi.org/10.1109/access.2019.2946352
https://doi.org/10.1109/tro.2014.2298059
https://doi.org/10.1016/j.neunet.2015.02.013
https://doi.org/10.1007/s11263-019-01209-w
https://doi.org/10.1007/bf00128130
https://doi.org/10.1109/jssc.2007.914337
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ribeiro-Gomes et al. 10.3389/frobt.2023.994488

Luo, L. (2015). Principles of neurobiology. New York, NY: Garland Science.

Mueggler, E., Bartolozzi, C., and Scaramuzza, D. (2017). “Fast event-based corner
detection,” in British machine vision conference (London, United Kingdom: BMVA Press).

Mueggler, E., Huber, B., and Scaramuzza, D. (2014). “Event-based, 6-dof pose tracking
for high-speed maneuvers,” in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Chicago, IL, USA, 14-18 September 2014 (IEEE), 2761–2768.

Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015). Orb-slam: A
versatile and accurate monocular slam system. IEEE Trans. robotics 31, 1147–1163.
doi:10.1109/tro.2015.2463671

Mur-Artal, R., and Tardós, J. D. (2017). Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras. IEEE Trans. robotics 33, 1255–1262.
doi:10.1109/tro.2017.2705103

Oberweger,M.,Wohlhart, P., and Lepetit, V. (2015). “Training a feedback loop for hand
pose estimation,” in Proceedings of the IEEE international conference on computer vision
(Santiago, Chile: IEEE), 3316–3324.

Qin, T., Li, P., and Shen, S. (2018). Vins-mono: A robust and versatilemonocular visual-
inertial state estimator. IEEETrans. Robotics 34, 1004–1020. doi:10.1109/tro.2018.2853729

Rebecq, H., Gehrig, D., and Scaramuzza, D. (2018). “Esim: An open event camera
simulator,” in Conference on robot learning (Zürich, Switzerland: PMLR), 969–982.

Rebecq, H., Ranftl, R., Koltun, V., and Scaramuzza, D. (2019). High speed and high
dynamic range video with an event camera. arXiv.

Reinbacher, C., Munda, G., and Pock, T. (2017). “Real-time panoramic tracking for
event cameras,” in In 2017 IEEE International Conference onComputational Photography
(ICCP) (IEEE), Stanford, United States, 12 May 2017-14 May 2017 (IEEE).

Vasco, V., Glover, A., and Bartolozzi, C. (2016). “Fast event-based harris corner
detection exploiting the advantages of event-driven cameras,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea
(South), 09-14 October 2016 (IEEE), 4144–4149.

Vidal, A. R., Rebecq, H., Horstschaefer, T., and Scaramuzza, D. (2018). Ultimate
slam? Combining events, images, and imu for robust visual slam in hdr and high-speed
scenarios. IEEE Robotics Automation Lett. 3, 994–1001. doi:10.1109/lra.2018.2793357

Weikersdorfer, D., and Conradt, J. (2012). “Event-based particle filtering for robot
self-localization,” in 2012 IEEE International Conference on Robotics and Biomimetics
(ROBIO), Guangzhou, China, 11-14 December 2012 (IEEE), 866–870.

Zhang, G., and Chanson, H. (2018). Application of local optical flow methods to high-
velocity free-surface flows: Validation and application to stepped chutes. Exp.Therm. Fluid
Sci. 90, 186–199. doi:10.1016/j.expthermflusci.2017.09.010

Zhu, A. Z., Atanasov, N., and Daniilidis, K. (2017). “Event-based feature tracking with
probabilistic data association,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), Singapore, 29 May 2017 - 03 June 2017 (IEEE), 4465–4470.

Zihao Zhu, A., Atanasov, N., and Daniilidis, K. (2017). “Event-based visual inertial
odometry,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Honolulu, HI, USA, 21-26 July 2017 (IEEE), 5391–5399.

Frontiers in Robotics and AI 17 frontiersin.org

https://doi.org/10.3389/frobt.2023.994488
https://doi.org/10.1109/tro.2015.2463671
https://doi.org/10.1109/tro.2017.2705103
https://doi.org/10.1109/tro.2018.2853729
https://doi.org/10.1109/lra.2018.2793357
https://doi.org/10.1016/j.expthermflusci.2017.09.010
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

