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Abstract

In this paper we present a hybrid optimization algorithm for solving constrained nonlinear
optimization problems. The hybrid algorithm is a combination between one of the intelligence
techniques (genetic algorithm) and chaos theory to enhance the performance and to reach the
optimal solution. The proposed algorithm is operates in two phases: in the first one, genetic
algorithm is implemented to solve nonlinear optimization problem. Then, in the second phase,
local search referred to chaos theory is introduced to improve the solution quality and find the
optimal solution. The results of numerical studies have been demonstrated the superiority of the
proposed approach to finding the global optimal solution.

Keywords: Constrained nonlinear optimization problems; optimization algorithm; genetic algorithm;
chaos theory.

1 Introduction

Optimization problems, especially constrained nonlinear optimization problems, are very important
and frequently appear in the real world, such as structural optimization, engineering design, very-
large-scale integration design, economics, allocation and location problems [1,2].
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Unfortunately, there is no known method of determining the global maximum (or minimum) to the
general constrained nonlinear optimization problem. The algorithms for constrained nonlinear
optimization problems are classified to an indirect and direct methods. All of these methods are
called traditional optimization techniques, which are local in scope, depending on the existence of
derivatives, and they are insufficiently robust in discontinuous, vast multimodal, and noisy search
spaces [3].

Some optimization methods that are conceptually different from the traditional techniques have
been appeared labeled as modern or non-traditional optimization techniques and are emerging as
popular methods for the solution of complex engineering problems. These methods are based on
certain characteristics and behavior of biological, molecular, swarm of insects, and neurobiological
systems. Furthermore, non-traditional optimization techniques overcome difficulties and limitations
of traditional techniques and are less susceptible to getting 'stuck’ at local optimal. In addition they
require fewer parameters without requiring the objective function to be derivable or even
continuous [4].

Among the existing non-traditional techniques, well-known algorithms are Genetic algorithms (GA)
[5,6], Simulated annealing (SA) [7,8], Particle swarm optimization (PSO) [9,10], Ant colony
optimization (ACO) [11-13], Fuzzy optimization [14,15] and Neural-network-based methods
[16,17], etc.

Genetic Algorithm (GA) is one of this non-traditional algorithms and is presented as an efficient
global method for constrained nonlinear optimization problems. GAs are well suited for solving
such problems and it enjoys an increasing interest in the optimization community and many
industrial applications. For instance, Elsayed et al. [18] presented a new genetic algorithm for
solving optimization problems, and successfully solving a set of constrained optimization problems.
Furthermore, genetic algorithms was applied for optimal design of a welded beam in [19]. In
addition, genetic algorithms concepts and design for optimization of process controllers is
proposed in [20].

The fundamental of genetic algorithms is based on ‘Random’. This randomness may make
premature convergence to reach to the global optimal solution taking a large number of iterations
to reach to it and the optimization may get stuck at a local optimum. New researchers introduced
improved methods based on the hybridizing algorithms with genetic algorithms to improve its
results trying to find global optimal solution. For instance, Tsoulos [21] introduced a heuristic
modified method based on the genetic algorithm for solving constrained optimization problems.
Juan and Ping [22] optimized the fuzzy rule base with combination of the GA and Ant Colony; their
results show that the hybrid method can be more useful than the basic GA. Additionally, Sun and
Tian [23] developed an efficient hybrid method for image classification with PSO and GA; where
the authors used features of fast convergence of PSO and diversity of GA to improve their method.

Chaos theory was initially described by Henon [24] and was summarized by Lorenz [25]. It is study
in mathematics that has applications in several discipline: meteorology, sociology, physics,
engineering, economics, biology, and philosophy. Chaos is a common non-linear phenomenon in
nature, which fully reflects the complexity of the system that will be useful in optimization. Chaotic
maps (including logistic maps) can easily be implemented and avoid entrapment in local optimal
[26-30]. The inherent characteristics of chaos can enhance genetic solution by enabling it to
escape from local solutions and increase the convergence to reach to the global solution.

Many researchers proposed a combination between chaos theory and optimization algorithms to
improve the solution quality. For instance, in [31] the authors presented hybrid chaos-particle
swarm optimization algorithm for the vehicle routing problem with time window. While, in [32]
chaotic genetic algorithm based on Lorenz Chaotic System for optimization problems is proposed.
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In this paper, we present a hybrid optimization algorithm for solving constrained nonlinear
optimization problems. The hybrid optimization algorithm is a combination between genetic
algorithm and chaos theory. The proposed algorithm is operates in two phases: in the first one,
genetic algorithm is implemented to solve constrained nonlinear optimization problem. Then, in the
second phase, local search referred to chaos theory is introduced to improve the solution quality
and find the optimal solution. The results of various numerical studies have been demonstrated the
superiority of the proposed approach to finding the global optimal solution [33].

The paper will be as follows. In section 2, we will define constrained nonlinear optimization
problems. In sections 3, genetic algorithm is briefly introduced. In section 4, chaotic maps is briefly

introduced. Proposed approach is proposed and explained in detail in section 5. Numerical studies
and discussions are presented in section 6. Finally, we conclude the paper in section 7.

2 Constrained Nonlinear Optimization Problems

Constrained nonlinear optimization problem can be formulated as follows [2]:

NLPP: Min £ (x),
s.t. g;(

x)
h(X)

IN

0, for j=12..,p
0, for i=12,...9;
. <X n=12..,N,

wheref,g1,...,gp,h1,...,hq are functions defined on R, X is a subset of R, and x represents a

n?

vector of decision variables which take real values, and each decision variable x, is constrained
by its lower and upper boundaries [xé,x”; N is the total number of decision variables x, . The

above problem must be solved for the values of the variables x,,...,x,, that satisfy the restrictions
and mean while minimize the function . The function f is usually called the objective function, or
the criterion function. Each of the constraints g, (X)SO for j =12,...,p is called an inequality

constraint, and each of the constraints h, (x) =0 for i =1,2,...,q is called an equality constrain. If

some of the constraints or the objective function is nonlinear, the optimization problem called
nonlinear optimization problem.

3 The Basics of Genetic Algorithm

The genetic algorithms were introduced by Holland in 1970s as optimization approaches to find a
global or near-global optimal solution [5]. Genetic algorithms start with a set of potential solutions
(chromosomes). Next, genetic search operators such as selection, mutation and crossover are
then applied one after another to obtain a new generation of chromosomes in which the expected
quality over all the chromosomes is better than that of the initial generation [20]. This process is
repeated until the termination criterion is met, and the best chromosome of the last generation is
reported as the final solution [34]. Fig. 1 shows the pseudo code of the general GA algorithm.
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Generate an initial population

Check chromosome in constrains and repair out constrain values
Evaluate chromosome in the objective function

Do:

Children population [Select parents from population and recombine parents (Crossover and

mutation operators)]

Evaluate children in the objective function

Construct best population of parents and children population
While satisfactory solution has been found

Fig. 1. The pseudo code of the general GA algorithm

4 Chaotic Maps

Chaos theory studies the behavior of systems that follow deterministic laws but appear random
and unpredictable. Chaos being radically different from statistical randomness, especially the
inherent ability to search the space of interest efficiently, could improve the performance of
optimization procedure. It could be introduced into the optimization strategy to accelerate the
optimum seeking operation and find the global optimal solution [35]. In this section, one
dimensional and non-invertible maps are used to build up chaotic sequences. Here we offer some
well-known chaotic maps found in the literature.

Chebyshev map
Chebyshev map is represented as [36]:

X, =cos(tcos™(x,));

Circle map
Circle map is defined as the following representative equation [37]:

X1 =X, +b —(a—-2x)sin(2zx,) mod(1);

where @ =0.5 gnd b =0.2

Gauss/mouse map
The Gauss map consists of two sequential parts defined as [38]:

0 if x, =0
Xpq = ;
“T|Yx,  else mod(1)
wherelmod(1) = l—{iJ
XI XI Xt

Intermittency map

The intermittency map [39] is formed with two iterative equations and represented as:

@)
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£+ X, +Cx/ O<x,<p
X, .4 = - 5
! X =P elseif p<x, <1 ®)
1-p
1-e-p .
where ¢ = —, N =2.0 and ¢ is very close to zero.
p

Iterative map

The iterative chaotic map with infinite collapses [40] is defined with the following as:

Xt+1 = Sln[a_ﬂ.]y (6)
Xt
where a €(0,1).
Liebovitch map
The proposed chaotic map [36] can be defined as:
e 0<x, <p,
Py — X, .
Xp = P <X, <P, ; @)
o Py =Py ! t =2
1-B(1-x,) p, <X, <1
1-(p, - —1)— _
where a = M and S = ((P2 ) P (pz p1)) '
o P, -1

Logistic map

Logistic map [41] demonstrates how complex behavior arises from a simple deterministic
system without the need of any random sequence. It is based on a simple polynomial equation
which describes the dynamics of biological population [42].

Xiq =CX; (1_Xt);

8)

where x, (0, 1), x, £{0.0, 0.25, 0.50, 0.75, 1.0} and when ¢ =4.0 a chaotic sequence is

generated by the Logistic map.

Piecewise map
Piecewise map [40] can be formulated as follows:
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t+1

where p €(0,0.5) and x €(0,1).

Sine map

Sine map [43] can be described as:

a_.
X, = Zsm(;rx, );

where 0<a <4.

Singer map

O<x,<p
p<x,<05
05<x,<1-p

1-p <x, <1

One dimensional chaotic Singer map [44] is formulated as:

X, = 1(7.86x, —23.31x? +28.75x, —13.302875x;' );

where 1 €(0.9,1.08).

Sinusoidal map

Sinusoidal map [42] is generated as the following equation:

X, =ax/sin(zx,);

where a =2.3.

Tent map

Tent map [45] is defined by the following iterative equation:

x, 10.07

Xt+1 = 10

?(1.0—x,)

5 The Proposed Algorithm

x, <0.7
x, 20.7

(10)

(1)

(12)

In this section, we describe the proposed approach which is a combination between GA and chaos
theory for solving constrained nonlinear optimization problems. The proposed algorithm is
operates in two phases: in the first one, genetic algorithm is implemented to solve nonlinear
optimization problem. Then, in the second phase, local search referred to chaos theory is
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introduced to improve the solution quality and find the optimal solution. The details of the proposed
algorithm is described as follows:

Phase I: GA

Step 1. Initial Population: The population vectors in the first generation are initialized randomly
satisfying the search space S (the lower and upper bounds for each variable), using the following
equation.

Each individual position| =L +(U—-L)xrand; (14)

where i = LeesN pps and N, is the size of the population; L is the lower bound; U is the upper

bound, and rand is random numbers uniformly distributed within the range [0,1].

Step 2. Initial reference point: The algorithm needs at least one feasible reference point (i.e.,
feasible point) to enter the evolution process (i.e., complete the algorithm procedure), the reader is
referred to Osman et al. [46].

Step 3. Repairing: Repair the infeasible individuals of the population to be feasible. The idea of
this technique is to separate any feasible individuals in a population from those that are infeasible
by repairing infeasible individuals. This approach co-evolves the population of infeasible
individuals until they become feasible, the reader is referred to [34].

Step 4. Evaluation: Evaluate the desired optimization fitness function in n variables for each
individual.

Step 5. Create a new population: Creating a new population from the current generation by using
the three operators (Ranking, selection, crossover, and mutation).

e Ranking: Ranks individuals according to their fitness value, and returns a column vector
containing the corresponding individual fitness value, in order to establish later the
probabilities of survival that are necessary for the selection process [20].

e Selection: There are several techniques of selection. The commonly used techniques for
selection of individuals are roulette wheel selection, rank selection, steady state selection,
stochastic universal sampling, etc.. Here we will use Stochastic Universal Sampling (SUS)
[47] where, the most important concern in a stochastic selection is to prevent loss of
population diversity due to its stochastic aspect.

e Crossover: In GAs, crossover is used to vary individuals from one generation to the next;
where it combines two individuals (parents) to produce a new individuals (offspring) with
probability (Pc). There are several techniques of crossover, one-point crossover, two-point
crossover, cut and splice, uniform crossover and half uniform crossover, etc. [34,48]. Here
we will use One-point crossover involving splitting two individuals and then combining one
part of one with the other pair. This method performs recombination between pairs of
individuals and returns the new individuals after mating, and gives offspring the best
possible combination of the characteristics of their parents.

e Mutation: Premature convergence is a critical problem in most optimization techniques,
which occurs when highly fit parent individuals in the population breed many similar
offspring in early evolution time. Mutation is used to maintain genetic diversity from one
generation of a population to the next. In addition, Mutation is an operator to change
elements in a string which is generated after crossover operator [48]. In this study, we will
use real valued mutation; which means that randomly created values are added to the
variables with a low probability (Pm).
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Step 6. Migration: In this step, a migration of the new offspring with the old population to create
the new population by taking the best individuals of parents and offspring population [48,49].

Step 7. Termination test: The algorithm is terminated either when the maximum number of
generations is achieved, or when the individuals of the population coverages, convergence occur
when all individuals positions in the population are identical. In this case, crossover will have no
further effect. otherwise, return to step 3.

Phase 2: Chaos search

Step 1. Determine variance range of chaos search boundary: The range of chaotic local
search [a,b] is determined by x, —¢<a,, X, +&>b,; where X; :(x1x2xn) is the genetic
result, and ¢ is specified radius of chaos search.

Step 2. Generate chaos variables: In this step, a chaotic random numbers z* is generated by
the Logistic map (Equation 8) which is used extensively by using the following equation.

z¥" = uz* (1-2%), 2° €(0,1), z° ¢{0.0, 0.25, 0.50, 0.75, 1.0}, k =12,....  (15)

Step 3. Mapping chaos variable into the variance range: Chaos variable z* is mapped into the
variance range of optimization valuable [a,b] by:

X, =X, —e+2ez" Vi=1..,n (16)

Step 4. Update the best value: Set -chaotic iteration number as k=1— Do

XK =x-e+2cz Vi=1..,n.

If f(x")<f(x*) then set x " = x*.
Else if (Xk ) >f (x) then give up the kth iterated.

Result x .
Loop runs until f (x) is not improved after k searches.

Step 5. Update the boundary value: Choose the boundary value [a,b] of the new optimal point

x; as the new chaos search range. Chaos variable is mapped into the new search range by (16),
then go to step 2.

Step 6. Stopping Chaos search: If f (x) is not improved for all k searches, stop Chaos search

process and put out x " as the best solution. The flow chart of the proposed algorithm showing in
Fig. 2.
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[ Initial Population ]
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[ Initial reference point ]

The algorithm
is terminated?
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>i—>[ Genetic result ]

Determine variance range of
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[ Repairing

Generate chaos variables using
chaos mapping

Next

generation Evaluation

1

[ Create a new population ]

Update the best value

A,

Update the boundary value
—{ Migration ]

Stopping No
Chaos search?

Yes

The best solution

Fig. 2. The flow chart of the proposed algorithm
6 Numerical Studies

For evaluating the performance for global optimization, the proposed algorithm is tested by a set of
constrained benchmark problems taken from the literature [33]. Table 1 lists the variable bounds,
objective function and constraints for all these problems [33]. Our study consists of the comparison
of performance with other optimization algorithms to demonstrate the efficiency and robustness of
the proposed algorithm.

The proposed algorithm is coded in MATLAB 6.0 and the simulations have been executed on an
Intel core (TM)i7-4500cpu 1.8GHZ 2.4 GHz processor. As any non-traditional optimization
algorithms, the proposed algorithm, involves a number of parameters that affect the performance
of algorithm. The parameters adopted in the implementation of the proposed algorithm are listed in
Table 2.
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6.1 The Results

The proposed algorithm and augmented Lagrange particle swarm optimization (ALPSO) [33] are
applied to the set of Constrained benchmark problems. In [33] Sedlaczek and Eberhard applied
their method making 30 independent runs. Table 3 illustrates the comparison between the optimal
solution, the proposed algorithm result, and the best value obtained by ALPSO [33].

As a result from Table 3, for the problems (P1, P2, P3, P5 and P6), the proposed algorithm is
found the optimal solution and near to the optimal solution for the problem P4. On the other hand,
ALPSO is found the optimal solution for the problems (P3, P5 and P6), near to the optimal solution
for the problems (P1 and P2) and smaller than the optimal solution for the problem P3. So, the
proposed algorithm more converges to the optimal solution and exhibits a superior performance in
comparison to ALPSO (i.e. the proposed algorithm found the better solutions than ALPSO on
average).

Fig. 3 shows the convergence rate of the proposed approach on the several constrained
benchmark problems. From these figures we can see that the proposed algorithm converge more
quickly to the optimal solution in particular, in the early generation (iteration).
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Fig. 3. The convergence rate of the proposed approach on different constrained benchmark
problems
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Table 1. Constrained benchmark problems

Problem  Variable Objective function f (x) and constraints C (x)
bounds
P1 x]e[—IO,IO] fl(x):x21+x22
x, €[-10,10] Ci(x)=x,-3=0
C,(x)=2-x,<0
P2 x, €[-10,10 1 2 x x
x]z e[[—IO,IO]] fl(x):m(xl“rxzz) —cos(T‘l)cos(T;)Jrl
Ci(x)=x,-3=0
C,(x)=2-x,<0
P3 x, €[0.1,10] £i(x)= —sin(27fx])3 sin(27zx ,)
x,€[0,10] X )
Cl(x)=x12 -x,+1<0
C2x)=1-x,+(x, -4’ <0
P4 x, €[13,100] fi(x) =@, =10 +(x, —20)°
x, €[0,100] Cy(x)=—(x, =57 —(x, =5 +100<0
C2(x)=(x,—6)+(x,—5) —82.81<0
P5 x e[-11] f1(x)=53578547x 2 +0.835689 Lx ,x ; +37.293239x, —40792.141
x,e[-11] C,(x ) = 85.334407 +0.0056858x ,x ; +0.006262x x, —0.0022053x x ; ~92 <0
C,(x) = —85.334407 — 0.0056858x ,x s —0.006262x x , +0.0022053x ,x ; < 0
C4(x)=80.51249+0.0071317x ,x s +0.0029955x x , +0.0021813x 2 =110 < 0
C,(x)=-80.51249-0.0071317x ,x ; —0.0029955x x, —0.0021813x > +90 < 0
C4(x) =9.300961+0.0047026x ,x ; + 0 —0012547x .x , +0.0019085x x , —25<0
C(x)=-9.300961-0.0047026x ,x ; —0.0012547x x ; —0.0019085x ,x , + 20 <0
P6 x, €[78,100] f1(x)=53578547x 2 +0.835689 Lx ,x ; +37.293239x , — 40792.141
x, €[33,45] C,(x ) =85.334407 + 0.0056858x ,x 5 +0.006262x .x , —0.0022053x ,x ; —92 <0
x, €[27,45] C,(x) =—-85.334407 — 0.0056858x ,x s — 0.006262x x , +0.0022053x ,x ; <0
x, €[27,43] C,(x)=80.51249+0.0071317x ,x . +0.0029955x .x , +0.0021813x > 110 < 0
¥, €[27,45] C,(x)=-80.51249—0.0071317x ,x ; —0.0029955x x , —0.0021813x 2 +90 < 0

C.(x) =9.300961 +0.0047026x 1x s + 0 — 0012547x x , +0.0019085x 1 , —25< 0
Co(x) =-9.300961—0.0047026x ,x ; —0.0012547x .x ; —0.0019085x ;x , +20 <0

Table 2. The proposed algorithm parameters

Generation gap 0.9

Crossover rate 0.9

Mutation rate 0.7

Selection operator Stochastic universal sampling
Crossover operator Single point

Mutation operator Real-value

GA generation 500-1000

Chaos generation 10000

Specified neighborhood radius 1E-6
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Table 3. The comparison between the optimal solution, the best value of ALPSO, and the
proposed algorithm result

Problem Optimal solution Best value of ALPSO The proposed algorithm result
P1 13.0000 12.9995 13.0000

P2 0.01721 0.01719 0.01721

P3 -0.09583 -0.09583 -0.09583

P4 -6961.81 -6963.57 -6961.804

P5 0.75000 0.75000 0.750000

P6 -30665.5 -30665.5 -30665.5

7 Conclusion

In this paper we present a hybrid optimization algorithm for solving constrained nonlinear
optimization problems. The proposed algorithm is a combination between one of the intelligence
techniques (genetic algorithm) and chaos theory and it is operates in two phases: In the first one,
genetic algorithm is implemented to solve constrained nonlinear optimization problems. Then, in
the second phase, local search referred to chaos theory is introduced to find the optimal solution.
The results of various numerical studies have been demonstrated the superiority of the proposed
approach to finding the optimal solution.

A careful observation will reveal the following benefits of the proposed optimization algorithm:

1. It integrates the powerful global searching capability of the GA with the powerful local
searching capability of the Chaos search.

2. Unlike classical techniques, the proposed algorithm search from a population of points, not
single point. Therefore, it can provide a globally optimal solution.

3. It uses only the objective function information, not derivatives or other auxiliary knowledge.
Therefore it can deal with the non-smooth, non-continues and non-differentiable functions
which are actually existed in practical optimization problems.

4. It found better solutions than the other methods that reported in the literature.

5. It was demonstrated to be extremely effective and efficient at locating optimal solutions.

6. Due to simplicity of the proposed algorithm procedures, it can using to handle complex
problems of realistic dimensions.

In our future works, the following will be researched:

a) Solving larger scale examples to demonstrate the efficiency of the proposed algorithm.
b) Updating the proposed algorithm to solve the multi-objective optimization problems.

Using another chaotic maps to accelerate the convergence property of the proposed algorithm and
improve the solution quality.

Competing Interests

Authors have declared that no competing interests exist.

References

[11 Michae BB. Nonlinear optimization with engineering applications. Springer Optimization and
Its Applications. 2008;19.

477



Nasr et al.; BIMCS, 7(6): 466-480, 2015, Article no.BJMCS.2015.139

(2]
(3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Rao SS. Engineering Optimization: Theory and Practice, 3%ed., Wiley, NY, USA, 2009.

Michalewicz Z. Evolutionary computation techniques for nonlinear programming problems.
International Transactions in Operational Research. 1994;1(2):223-240.

Onwubolu GC, Babu BV. New optimization techniques in engineering. Springer Science &
Business Media. 2004;141.

Gallagher K, Sambridge M. Genetic algorithms: A powerful tool for large-scale nonlinear
optimization problems. Compute and Geosciences. 1994;20(7\8):1229-1236. Geosciences.

Neves N, Nguyen AT, Torres EL. A study of nonlinear optimization problems using a
distributed genetic algorithm. Proceedings of the 1996 International Conference onon
Parallel Processing. 1996;2:29-36.

Alrefaei MH, Diabat AH. A simulated annealing technique for multi-objective simulation
optimization. Applied Mathematics and Computation. 2009;215:3029-3035.

Brooks SP, Morgan BJT. Optimization using simulated annealing. The Statistician.
1995;44(2):241-257.

Mousa AA, EI-Shorbagy MA, Abd-ElI-Wahed WF. Local search based hybrid particle swarm
optimization algorithm for multiobjective optimization. Swarm and Evolutionary Computation.
2012;3:1-14.

Yang X, Yuan J, Mao H. A modified particle swarm optimizer with dynamic adaptation.
Applied Mathematics and Computation. 2007;189:1205-1213.

Mousa AA, AbdEI-Wahed WF, Rizk-Allah RM. A hybrid ant colony optimization approach
based local search scheme for multiobjective design optimizations, Electric Power Systems
Research. 2011;81:1014-1023,.

Dréo J, Siarry P. An ant colony algorithm aimed at dynamic continuous optimization. Appl.
Math. Comput. 2006;181(1):457-467.

Dorigo M, Stitzle T. Ant Colony Optimization, MIT Press, London; 2004.

Oltean G. Fuzzy Techniques in Optimization-Based Analog Design, 9" WSEAS International
Conference on fuzzy systems (FS’08) which was held in Sofia, Bulgaria. 2008;178-191.

Fares M, Kaminska B. A Fuzzy Nonlinear Programming Approach to Analog Circuit Design.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
1995;14(17):785-793.

Hopfield JJ, Tank DW. “Neural” computation of decisions in optimization problem. Biological
Cybernetics. 1985;52:141-152.

Zhou A. A Genetic-Algorithm-based neural network approach for short-term traffic flow
forecasting. Advances in Neural Networks. 2005;3498:965-969.

Elsayed SM, Sarker RA, Essam DL. A new genetic algorithm for solving optimization
problems. Engineering Applications of Artificial Intelligence. 2014;27:57-69.

478



Nasr et al.; BIMCS, 7(6): 466-480, 2015, Article no.BJMCS.2015.139

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Deb K. Optimal design of a welded beam via genetic algorithms, AIAA Journal.
1991;29(11):2013-2015.

Malhotra R, Singh N, Singh Y. Genetic algorithms: Concepts, design for optimization of
process controllers. Computer and Information Science. 2011;4(2):39-54.

Tsoulosl G. Solving constrained optimization problems using a novel genetic algorithm.
Applied Mathematics and Computation. 2009;208(1):273-283.

Juan W, Ping W. Optimization of Fuzzy rule based on adaptive genetic algorithm and ant
colony algorithm. International Conference on Computational and Information Sciences
(ICCIS). 2010;359-362.

Sun Fj, Tian Y. Transmission line image segmentation based GA and PSO Hybrid Algorithm,
2010 International Conference on Computational and Information Sciences (ICCIS).
2010;677-680.

Hénon M. A two-dimensional mapping with a strange attractor, Commun. Math. Phys.
1976;50:69-77.

Lorenz E. The essence of chaos. University of Washington Press; 1996.

Liu B, Wang L, Jin YH, Tang F, Huang DX. Improved particle swarm optimization combined
with chaos, Chaos, Solitons and Fractals. 2005;25:1261-1271.

Xiang T, Liao X, Wong KW. An improved particle swarm optimization algorithm combined
with piecewise linear chaotic map. Applied Mathematics and Computation. 2007;190:1637—
1645.

Wang L, Zheng DZ, Lin QS. Survey on chaotic optimization methods. Computing
Technology and Automation. 2001;20(1):1-5.

Coelho LS, Mariani VC. A novel chaotic particle swarm optimization approach using Hénon
map and implicit filtering local search for economic load dispatch, Chaos, Solitons and
Fractals. 2009;39(2):510-518.

Chuanwen J, Bompard E. A self-adaptive chaotic particle swarm algorithm for short term
hydroelectric system scheduling in deregulated environment. Energy Conversion and
Management. 2005;46:2689-2696.

Hu W, Liang H, Peng C, Du B, Hu Q. Hybrid Chaos-Particle Swarm Optimization Algorithm
for the Vehicle Routing Problem with Time Window, Entropy. 2013;15:1247-1270.

Jampour M. Chaotic genetic algorithm based on Lorenz Chaotic system for optimization
problems. Intelligent Systems and Applications. 2013;5(5):19-24.

Sedlaczek K, Eberhard P. Constrained particle Swarm optimization of mechanical systems,
6™ World Congresses of Structural and Multidisciplinary Optimization; 2005.

Abd-El-Wahed WF, Mousa AA, El-Shorbagy MA. Integrating particle swarm optimization

with genetic algorithms for solving nonlinear optimization problems. Journal of
Computational and Applied Mathematics. 2011;235:1446-1453.

479



Nasr et al.; BIMCS, 7(6): 466-480, 2015, Article no.BJMCS.2015.139

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Ammaruekarat P, Meesad P. A chaos search for multi-objective memetic algorithm.
International Conference on Information and Electronics Engineering. 2011;6:140-144.

Tavazoei MS, Haeri M. Comparison of different one-dimensional maps as chaotic search
pattern in chaos optimization algorithms. Appl. Math. Comput. 2007;187(10):76-85.

Hilborn RC. Chaos and nonlinear dynamics: An introduction for scientists and engineers,
second ed., Oxford Univ. Press, New York; 2004.

He D, He C, Jiang L, Zhu H, Hu G. Chaotic characteristic of a one dimensional iterative map
with infinite collapses. IEEE Trans. Circuits Syst. 2001;48(7):900—906.

Erramilli A, Singh RP, Pruthi P. Modeling packet traffic with chaotic maps, Royal Institute of
Technology, Stockholm-Kista, Sweden; 1994.

May RM. Simple mathematical models with very complicated dynamics, Nature.
1976;261(4):59-67.

Arora JS, Elwakeil OA, Chahande Al, Hsieh CC. Global optimization methods for
engineering application: A review, Struct. Optim. 1995;9:137-159.

Li Y, Deng S, Xiao D. A novel Hash algorithm construction based on chaotic neural network,
Neural Comput. Appl. 2011;20:133-141.

Devaney RL. An Introduction to Chaotic Dynamical Systems, Addison-Wesley; 1987.

Peitgen H, Jurgen H, Saupe D. Chaos and Fractals, Springer-Verlag, Berlin, Germany;
1992.

Ott E. Chaos in dynamical systems, Cambridge University Press, UK, Cambridge; 2002.

Osman MS, Abo-Sinna MA, Mousa AA. A solution to the optimal power flow using genetic
algorithm. Applied Mathematics and Computation. 2004;155:391-405.

Baker JE. Reducing bias and inefficiency in the selection algorithm, proceedings of the
second international conference on genetic algorithms. Morgan Kaufmann Publishers, Inc.,
San Mateo, CA. 1987;14-21.

Popov A. Genetic algorithm for optimization, TU-Sofia; 2003.

Neves N, Nguyen AT, Torres EL. A study of nonlinear optimization problem using a
distributed genetic algorithm, 25" International Conference on Parallel Processing; 1996.

© 2015 Nasr et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medijum,
provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)

www.sciencedomain.org/review-history.php?iid=937&id=6&aid=8332

480



