
British Journal of Applied Science & Technology
7(1): 1-13, 2015, Article no.BJAST.2015.121

ISSN: 2231-0843

SCIENCEDOMAIN international
www.sciencedomain.org

On Some Generalizations via Multinomial Coefficients

Mahid M. Mangontarum1∗ and Najma B. Pendiaman1

1Department of Mathematics, Mindanao State University-Main Campus, Marawi City,
Philippines 9700, Philippines.

Authors’ contributions

This work was carried out in collaboration between all authors. Author MM designed the idea of the
study and managed the literature searches. Author NP obtained the results and wrote the first draft
of the manuscript. Author MM proof read and modified the manuscript. Authors MM and NP carried

out the revision of the manuscript and the additional literature searches. All authors read and
approved the final manuscript.

Article Information

DOI: 10.9734/BJAST/2015/15505
Editor(s):

(1) Qing-Wen Wang, Department of Mathematics, Shanghai University, P.R. China.
Reviewers:

(1) Anonymous, China.
(2) Anonymous, Finland.

Complete Peer review History:
http://www.sciencedomain.org/review-history.php?iid=770&id=5&aid=7693

Original Research Article

Received: 29 November 2014
Accepted: 30 December 2014

Published: 09 January 2015

Abstract
This paper gives a brief discussion on the Multinomial coefficients. Using this notion, we
obtain generalizations of the Vandermonde’s and the Chu Shih-Chieh’s identities for the Binomial
coefficients, respectively. This is done through the use of two known principles in Combinatorics,
namely, the Addition and the Multiplication principles. Some examples of generating functions of a
sequence involving the multinomial coefficients are also derived and presented.

Keywords: Binomial coefficients; Multinomial coefficients; Generating functions; q-analogues
2010 Mathematics Subject Classification: 05A10, 05A19, 05A15, 05A99

*Corresponding author: E-mail: mmangontarum@yahoo.com

www.sciencedomain.org


Mangontarum and Pendiaman; BJAST, 7(1), 1-13, 2015; Article no.BJAST.2015.121

1 Introduction
For a set A of n distinct objects, a combination of A is simply a subset of A. More precisely, for
0 ≤ r ≤ n, an r-combination of A is an r-element subset of A (see [1]). From here, the binomial
coefficients

(
n
r

)
, read as “n taken r”, is defined to be the number of r-combinations of the set A.

Appearently, the numbers
(
n
r

)
play an important role in enumerative combinatorics and other field of

discipline. One may see the books by Chen and Kho [1] and Comtet [2] for a more detailed discussion
on the binomial coefficients. We note that

(
n
r

)
can be expressed explicitly as(

n

r

)
=

n!

r!(n− r)! =
(n)r
r!

, (1.1)

where (n)r = n(n−1)(n−2) . . . (n− r+1) is the falling factorial of n of order r and r! = r(r−1)(r−
2) . . . (3)(2)(1). The term “binomial coefficients” comes from the fact that the numbers

(
n
r

)
appear as

coefficients in the expansion of the binomial expression (x+ y)n as seen in the well-known Binomial
theorem

(x+ y)n =

n∑
r=0

(
n

r

)
xryn−r. (1.2)

When y = 1, (1.2) becomes

(x+ 1)n =

n∑
r=0

(
n

r

)
xr, (1.3)

which is the ordinary generating function of the binomial coefficients. Other basic properties and
identities involving the binomial coefficients are the following:

• the triangular recurrence relation(
n+ 1

r

)
=

(
n

r

)
+

(
n

r − 1

)
; (1.4)

• the identities (
n

r

)
=

(
n

n− r

)
; (1.5)

and
n∑
r=0

(
n

r

)
= 2n. (1.6)

Combinatorially, the binomial coefficients
(
n
r

)
is interpreted as the number of ways to distribute r

identical objects into n distinct boxes such that each box can hold at most one object. In 1772, A. T.
Vandermonde obtained the next identity which is now popularly known as the Vandermonde’s identity
given by (

m+ n

r

)
=

r∑
i=0

(
m

i

)(
n

r − i

)
, (1.7)

where n, m, and r are positive integers. Other known results are the Chu Shih-Chieh’s identities(
n+ 1

r + 1

)
=

(
r

r

)
+

(
r + 1

r

)
+ . . .+

(
n

r

)
, (1.8)

for all positive integers r and n with n ≥ r; and(
r + k + 1

k

)
=

(
r

0

)
+

(
r + 1

1

)
+ . . .+

(
r + k

k

)
, (1.9)
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for all positive integers r and k, discovered by Chu Shih-Chieh in 1303. Equations (1.9) and (1.8) are
often referred to as the Hockey-Stick identities. The equations (1.7), (1.9) and (1.8) can be found in
[1].

On the otherhand, the Multinomial coefficients(
n

n1, n2, . . . , nm

)
(1.10)

is an identity which generalizes the binomial coefficients
(
n
r

)
. The multinomial coefficients count the

number of ways to distribute n distinct objects into m distinct boxes such that n1 of them are in box
1, n2 of them are in box 2, . . ., and nm of them are in box m, where n, m, ni, i = 1, 2, . . . ,m, are
non-negative integers such that n1 + n2 + . . .+ nm = n. Using this interpretation, it is easy to show
that the multinomial coefficients satisfy the explicit form(

n

n1, n2, . . . , nm

)
=

n!

n1!n2! . . . nm!
. (1.11)

Clearly, when m = 2 in (1.11),(
n

n1, n2

)
=

n!

n1!n2!
=

(
n

n1

)
, n2 = n− n1,

which is the binomial coefficients. The multinomial coefficients
(

n
n1,n2,...,nm

)
are known to have the

following combinatorial interpretations:
• the number of ways to partition an n-element set X into m parts P1, P2, . . . , Pm such that
|P1| = n1, |P2| = n2, . . . , |Pm| = nm with n1 + n2 + . . .+ nm; and

• the number of permutations of n objects (not necessarily distinct) taken all at a time. This is
equivalent to the number of ways to arrange n objects in a row.

The study of the binomial and the multinomial coefficients as well as their different extensions and
applications is popular among mathematicians (e.g. [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and
some of the references therein). Among the known properties of the multinomial coefficients are the
following:
• the Multinomial theorem

(x1 + x2 + . . .+ xm)n =
∑

0≤n1,n2,...,nm≤n

(
n

n1, n2, . . . , nm

)
xn1
1 xn2

2 . . . xnm
m , (1.12)

for positive integers n and m and
∑m
i=1 ni = n;

• the identities (
n

n1, n2, . . . , nm

)
=

(
n

nα(1), nα(2), . . . , nα(m)

)
, (1.13)

where {α(1), α(2), . . . , α(m)} = {1, 2, . . . ,m},(
n

n1, n2, . . . , nm

)
=

(
n− 1

n1 − 1, n2, . . . , nm

)
+

(
n− 1

n1, n2 − 1, . . . , nm

)

+ . . .+

(
n− 1

n1, n2, . . . , nm − 1

)
; (1.14)

and ∑
0≤n1,n2,...,nm≤n

(
n

n1, n2, . . . , nm

)
= mn. (1.15)
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Note that the binomial identities (1.2), (1.5), (1.4), and (1.6) can be obtained from the multinomial
identities (1.12), (1.13), (1.14), and (1.15), respectively when m = 2. This motivates us to establish
more properties and identities involving the multinomial coefficients that will generalize the results in
the binomial coefficients. In order to achieve some of the main results of this paper, we will make use
of the Addition and the Multiplication principles stated as follow:
• Addition Principle [1]. Assume that there are n1 ways for the event E1 to occur, n2 ways for

the event E2 to occur, ..., nk ways for the event Ek to occur, where k ≥ 1. If these ways for the
different events to occur are pairwise disjoint, then the number of ways for atleast one of these
events E1, E2, ..., or Ek to occur is

n1 + n2 + . . .+ nk =

k∑
i=1

ni.

• Multiplication Principle [1]. Assume that an event E can be decomposed into r ordered
events E1, E2, . . . , Er and that there are E1 to occur, n2 ways for the event E2 to occur, ..., nr
ways for the event Er to occur. Then the total number of ways for the event E to occur is given
by

n1 × n2 × . . .× nr =
r∏
i=1

ni.

The Addition and the Multiplication principles are two of the many fundamental tools used in proving
combinatorial identities. For a more detailed discussion on these principles, see [1].

The results of this paper are organized as follow: in section 2, a formula that will generalize the
Vandermonde’s identity in (1.7) is derived in terms of the multinomial coefficients; in section 3, some
identities that will generalize the Chu Shih-Chieh’s identities in (1.9) and (1.8) are presented; and in
section 4, the generating functions of a sequence involving the multinomial coefficients is examined.

2 Generalized Vandermonde’s Identity
In this section, we will derive a generalization of the Vandermonde’s identity in (1.7) in terms of the
multinomial coefficients. To achieve this, we first let E be the event of distributing n distinct objects to
k distinct boxes such that box 1 contains n1 objects, box 2 contains n2 objects, ..., and box k contains
nk objects so that

|E| =

(
n

n1, n2, . . . , nk

)
.

For a non-negative integer r, where r ≤ n, event E occurs if the two succeeding events E1 and E2

occur:
E1 := the event of distributing the first r objects to the k boxes so that box 1 contains at most n1

objects, box 2 contains at most n2 objects, ..., and box k contains at most nk objects. That is,
box 1 contains r1 objects, box 2 contains r2 objects, ..., and box k contains rk objects, where
ri ≤ ni for i = 1, 2, . . . k; and

E2 := the event of distributing the remaining n − r objects to the k boxes so that n1 − r1 objects
will be placed in box 1, n2 − r2 objects will be placed in box 2, ..., and nk − rk objects will be
placed in box k.

Now, given a k-ary sequence (r1, r2, . . . , rk) of non-negative integers with
∑k
j=1 rj = r, the event E1

occurs in
(

r
r1,r2,...,rk

)
ways while the event E2 occurs in

(
n−r

n1−r1,n2−r2,...,nk−rk

)
ways. Moreover, by

Multiplication principle, the two succeeding events occur in(
r

r1, r2, . . . , rk

)(
n− r

n1 − r1, n2 − r2, . . . , nk − rk

)
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ways. Note that event E occurs for any k-ary sequence (r1, r2, . . . , rk) of non-negative integers with∑k
j=1 rj = r. Hence, by Addition principle,

|E| =
∑

r1+r2+...+rk=r

(
r

r1, r2, . . . , rk

)(
n− r

n1 − r1, n2 − r2, . . . , nk − rk

)
. (2.1)

We will state this result in the following theorem.

Theorem 2.1. Let n and r be positive integers such that
∑k
j=1 nj = n. Then(

n

n1, n2, . . . , nk

)
=

∑
r1+r2+...+rk=r

(
r

r1, r2, . . . , rk

)(
n− r

n1 − r1, n2 − r2, . . . , nk − rk

)
, (2.2)

where the sum is taken over all k-ary sequences (r1, r2, . . . , rk) of non-negative integers, where∑k
j=1 rj = r.

Remark 2.1. When k = 2 in (2.2), we have(
n

n1

)
=

n1∑
r1=0

(
r

r1

)(
n− r
n1 − r1

)
.

This is exactly the Vandermonde’s identity in (1.7). Also, when n = r +m (m is a positive integer),
then (2.2) becomes(

r +m

n1, n2, . . . , nk

)
=

∑
r1+r2+...+rk=r

(
r

r1, r2, . . . , rk

)(
m

n1 − r1, n2 − r2, . . . , nk − rk

)
, (2.3)

where
∑k
j=1 nj = r + m. (2.3) is actually identical to the formula which was earlier considered by

Tauber [3] and Carlitz [4].
To illustrate (2.3), we consider the following basic problem in distribution.

Example 2.2. Suppose that a college professor wanted to form 3 teams from a group of 5 top female
and 2 top male students coming from different basic Math classes. In how many ways can this be
done if the said professor added a condition that the first team should have 2 members, the second
team should have 4 members and the third team should have 1 member only?

To solve this, note that from (2.3), we have(
5 + 2

2, 4, 1

)
=

∑
r1+r2+r3=5

(
5

r1, r2, r3

)(
2

2− r1, 4− r2, 1− r3

)
. (2.4)

Observe that in order for the coefficient
(

2
2−r1,4−r2,1−r3

)
to exist, we must have r1 ≤ 2, r2 ≤ 4, r3 ≤ 1.

Hence, the possible values of r1, r2, r3 for which
(

5
r1,r2,r3

)
is conformable with

(
2

2−r1,4−r2,1−r3

)
are

the following: (
5

2, 2, 1

)
,

(
5

2, 3, 0

)
,

(
5

1, 4, 0

)
,

(
5

1, 3, 1

)
,

(
5

0, 4, 1

)
.

Furthermore, we have(
5 + 2

2, 4, 1

)
=

(
5

2, 2, 1

)(
2

0, 2, 0

)
+

(
5

2, 3, 0

)(
2

0, 1, 1

)
+

(
5

1, 4, 0

)(
2

1, 0, 1

)

+

(
5

1, 3, 1

)(
2

1, 1, 0

)
+

(
5

0, 4, 1

)(
2

2, 0, 0

)
= 30 + 20 + 10 + 40 + 5

= 105.

Thus, there are 105 ways.
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3 Generalized Chu Shih-Chieh’s Identities

The theorems in this section contain a generalized version of the Chu Shih-Chieh’s identities in (1.9)
and (1.8) in terms of the multinomial coefficients.

Theorem 3.1. Let r and m be non-negative integers. For any k-ary sequence (r1, r2, . . . , rk) of
non-negative integers with

∑k
j=1 rj = r,(

r +m+ 1

r1, r2, . . . , rk,m+ 1

)
=

r∑
i=0

∑(
i

i1, i2, . . . , ik, 0

)(
r +m− i

r1 − i1, r2 − i2, . . . , rk − ik,m

)
, (3.1)

where the inner sum is taken over all k-ary sequences (i1, i2, . . . , ik) of non-negative integers with∑k
j=1 ij = i and ij ≤ rj for j = 1, 2, . . . k.

Remark 3.1. When k = 1, (3.1) becomes(
r +m+ 1

r

)
=

r∑
i=0

(
r +m− i
r − i

)
.

This is identical to the first Chu Shih-Chieh’s identity in (1.9).

Proof of Theorem 3.1. Let S = {1, 2, . . . , r +m+ 1} with |S| = r +m + 1 and let E be the event of
distributing the elements of S to k + 1 disjoint subsets S1, S2, . . . , Sk+1 of S so that |S1| = r1, |S2| =
r2, . . . , |Sk| = rk and |Sk+1| = m+ 1. Hence

|E| =

(
r +m+ 1

r1, r2, . . . , rk,m+ 1

)
.

We may also count |E| as follows.
Note that event E occurs if any of the r + 1 disjoint events E0, E1, E2, . . . , Er occur, where

Ei := the event of distributing the elements of S to k + 1 disjoint subsets as stated in E, where
1, 2, . . . , i /∈ Sk+1 and i+ 1 ∈ Sk+1 for i = 0, 1, 2, . . . , r.

Now, consider a k-ary sequence (i1, i2, . . . , ik) of non-negative integers with
∑k
j=1 ij = i and ij ≤ rj

for j = 1, 2, . . . k, we may decompose each of the events Ei’s into the following events:

Ei1 := the event of distributing the elements 1, 2, . . . , i to the k + 1 subsets so that i1 of them is
placed in S1, i2 of them are placed in S2, ..., ik of them are placed in Sk, and none is placed
in Sk+1 so that

|Ei1 | =

(
i

i1, i2, . . . , ik, 0

)
.

Ei2 := the event of placing the element i+ 1 in Sk+1 so that |Ei2 | = 1.

Ei3 := the event of filling up the subsets with the remaining elements i + 2, i + 3, . . . , r + m + 1
so that |S1| = r1, |S2| = r2, . . . , |Sk| = rk and |Sk+1| = m + 1. That is, from the remaining
r+m− i elements, we place r1− i1 elements in S1, r2− i2 elements in S2, ..., rk− ik elements
in Sk, and m elements in Sk+1. Thus,

|Ei3 | =

(
r +m− i

r1 − i1, r2 − i2, . . . , rk − ik,m

)
.

6
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Hence, by Multiplication principle, the number of ways of distributing the elements of S to the k + 1
subsets so that |S1| = r1, |S2| = r2, . . . , |Sk| = rk and |Sk+1| = m + 1, where 1, 2, . . . , i /∈ Sk+1 and
i + 1 ∈ Sk+1 for the k-ary sequence (i1, i2, . . . , ik) of non-negative integers with

∑k
j=1 ij = i and

ij ≤ rj for j = 1, 2, . . . k is
3∏
j=1

|Eij | =

(
i

i1, i2, . . . , ik, 0

)(
r +m− i

r1 − i1, r2 − i2, . . . , rk − ik,m

)
.

Now, considering all k-ary sequences (i1, i2, . . . , ik) of non-negative integers with
∑k
j=1 ij = i and

ij ≤ rj for j = 1, 2, . . . k, by Addition principle,

|Ei| =
∑

i1+i2+...+ik=i

(
i

i1, i2, . . . , ik, 0

)(
r +m− i

r1 − i1, r2 − i2, . . . , rk − ik,m

)
.

Applying the Addition principle,

|E| =
r∑
i=0

|Ei|.

Hence, the proof is done.

If S = {1, 2, . . . , r +m+ 1} is a set with |S| = r +m + 1 and E is the event of distributing the
elements of S to k+1 disjoint subsets S1, S2, . . . , Sk+1 of S so that |S1| = r1, |S2| = r2, . . . , |Sk| = rk
and |Sk+1| = m+ 1, that is,

|E| =

(
r +m+ 1

r1, r2, . . . , rk,m+ 1

)
,

then may also count |E| in the following manner:
Note that E occurs if any of the m+ 2 disjoint events E0, E1, E2, . . . , Em+1 occur,

Ei := the event of distributing the elements of S to k + 1 disjoint subsets as stated in E, where
1, 2, . . . , i ∈ Sk+1 and i+ 1 /∈ Sk+1 for i = 0, 1, 2, . . . ,m+ 1.

It can be observed that each event Ei occurs if any of the k disjoint events Ei1, Ei2, . . . , Eik occur
where
Eij := the event of distributing the elements of S to the k + 1 disjoint subsets as stated in E, where

1, 2, . . . , i ∈ Sk+1 and i+ 1 ∈ Sj for j = 1, 2, . . . , k so that

|Eij | =

(
r +m− i

r1, r2, . . . , rj−1, . . . , rk,m− i+ 1

)
.

Hence, by Addition principle,

|Ei| =

k∑
j=1

|Eij |

=

(
r +m− i

r1 − 1, r2, . . . , rk,m− i+ 1

)
+

(
r +m− i

r1, r2 − 1, . . . , rk,m− i+ 1

)

+ . . .+

(
r +m− i

r1, r2, . . . , rk − 1,m− i+ 1

)
.

Moreover, we have

|E| =
r∑
i=0

|Ei|.

This result is embedded in the next theorem.

7
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Theorem 3.2. For non-negative integers r and m, and for a k-ary sequence (r1, r2, . . . , rk) of non-
negative integers with

∑k
j=1 rj = r,(

r +m+ 1

r1, r2, . . . , rk,m+ 1

)
=

m+1∑
i=0

[(
r + i− 1

r1 − 1, r2, . . . , rk, i

)
+

(
r + i− 1

r1, r2 − 1, . . . , rk, i

)

+ . . .+

(
r + i− 1

r1, r2, . . . , rk − 1, i

)]
. (3.2)

Remark 3.2. Clearly, it can be verified that when k = 1 in (3.2), we recover the second Chu Shih-
Chieh’s identity in (1.8).

Note that the famous Pascal’s Triangle in Figure 1 can be expressed via multinomial coefficients
as seen in Figure 2. (

0
0

)(
1
0

) (
1
1

)(
2
0

) (
2
1

) (
2
2

)(
3
0

) (
3
1

) (
3
2

) (
3
3

)(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)(
5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)
Figure 1: Pascal’s Triangle

(
0
0,0

)(
1
0,1

) (
1
1,0

)(
2
0,2

) (
2
1,1

) (
2
2,0

)(
3
0,3

) (
3
1,2

) (
3
2,1

) (
3
3,0

)(
4
0,4

) (
4
1,3

) (
4
2,2

) (
4
3,1

) (
4
4,0

)(
5
0,5

) (
5
1,4

) (
5
2,3

) (
5
3,2

) (
5
4,1

) (
5
5,0

)
Figure 2: Pascal’s Triangle (in multinomial coefficients)

Notice that Figure 3 gives a simple illustration of (3.2) since(
5

2, 3

)
=

(
1

1, 0

)
+

(
2

1, 1

)
+

(
3

1, 2

)
+

(
4

1, 3

)

is the case when r = 2, m = 2 and k = 1. Similarly, it can be seen in Figure 4 that(
5

4, 1

)
=

(
4

4, 0

)
+

(
3

3, 0

)
+

(
2

2, 0

)
+

(
1

1, 0

)
+

(
0

0, 0

)
,

which is precisely (3.1), where r = 4, m = 0 and k = 1.

8
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Figure 3: Illustration of (3.2)

Figure 4: Illustration of (3.1)

4 Generating Functions
Let (ar) = (a0, a1, . . . , ar, . . .) be a sequence of numbers. The (ordinary) generating function for the
sequence (ar) is defined to be the power series

A(x) =
∑
r≥0

arx
r. (4.1)

For instance, the generating function for the sequence((
n

0

)
,

(
n

1

)
,

(
n

2

)
, . . . ,

(
n

n

)
, 0, 0, . . .

)
,

where n is a non-negative integer is (1 + x)n. This is obtained throught the use of the Binomial
theorem which is the case y = 1 in (1.2) given by

(1 + x)n =
∑
r≥0

(
n

r

)
xr.

Note that this coincides with (1.3). On the otherhand, the exponential generating function for the
sequence (ar) is defined to be the power series

a0 + a1
x

1!
+ a2

x2

2!
+ . . .+ ar

xr

r!
+ . . . =

∑
r≥0

ar
xr

r!
. (4.2)
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Now, combining (1.1) and (1.3), we have

(1 + x)n =
∑
r≥0

(n)r
r!

xr.

This means that (1 + x)n is the exponential generating function for the sequence

((n)0, (n)1, (n)2, . . . , (n)n, 0, 0, . . .) .

Theorem 4.1. The exponential generating function for the sequence (ar), where

ar =
∑

0≤r1,r2,...,rn≤r

(
r

r1, r2, . . . , rn

)

is a sum taken over all n-ary sequences (r1, r2, . . . , rn) of non-negative integers with
∑n
j=1 rj = r, is(

1 + x+
x2

2!
+
x3

3!
. . .

)n
= exn. (4.3)

Remark 4.1. It is easy to verify that when n = 1 in (4.3), we get the exponential generating function
of the sequence (1, 1, 1, . . . , 1, . . .) which is ex.

Proof of Theorem 4.1. Clearly, we have

exn = ex · ex · . . . · ex

=

∑
r1≥0

xr1

r1!

∑
r2≥0

xr2

r2!

 . . .

∑
rn≥0

xrn

rn!


=

∑
r≥0

 ∑
0≤r1,r2,...,rn≤r

xr1

r1!
· x

r2

r2!

xr3

r3!
. . . · x

rn

rn!


=

∑
r≥0

 ∑
0≤r1,r2,...,rn≤r

(
1

r1!
· 1

r2!

1

r3!
. . . · 1

rn!

)
xr

 ,

where the sum is taken over all n-ary sequences (r1, r2, . . . , rn) of non-negative integers, where∑n
j=1 rj = r. Now,

exn =
∑
r≥0

 ∑
0≤r1,r2,...,rn≤r

r!

r1!, r2!, . . . , rn!

xr

r!


=

∑
r≥0

 ∑
0≤r1,r2,...,rn≤r

(
r

r1, r2, . . . , rn

)
xr

r!

 .

Thus, the proof is done.

Remark 4.2. We can also prove Theorem 4.1 using the identity in (1.15). That is, by multiplying both
sides of (1.15) with xn

n!
and summing up to infinity yields

∑
n≥0

(mx)n

n!
=
∑
n≥0

 ∑
0≤n1,n2,...,nm≤n

(
n

n1, n2, . . . , nm

)
xn

n!

 .

This is precisely the result in Theorem 4.1.
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The next theorem is deduced from Theorem 4.1.

Theorem 4.2. The ordinary generating function for the sequence (ar), where

ar =
∑

0≤r1,r2,...,rn≤r

1

r1!r2! . . . rn!

is a sum taken over all n-ary sequences (r1, r2, . . . , rn) of non-negative integers with
∑n
j=1 rj = r, is(

1 + x+
x2

2!
+
x3

3!
. . .

)n
= exn. (4.4)

5 Conclusion
In this study, we have obtained generalizations for some classical identities involving the Binomial
coefficients via Multinomial coefficients. The identity obtained in Theorem 2.1 is a generalization of
the known Vandermonde’s identity since the latter is a particular case when the integer k = 2 in
equation (2.2) of Theorem 2.1. Also, the Chu Shih-Chieh’s identities in (1.8) and (1.9) appears to be
particular cases of the results stated in Theorem 3.2 and Theorem 3.1, respectively. Some generating
functions of sequences involving the Multinomial coefficients were also investigated and presented.

6 Recommendations
The authors recommend the following for further research:

1. The binomial coefficient satisfies the orthogonality relation
n∑
j=i

(−1)n−j
(
n

j

)(
j

i

)
=

n∑
j=i

(−1)j−i
(
n

j

)(
j

i

)
= δni, (6.1)

where δni =
{

0, n 6= i
1, n = i

is called kronecker delta. (6.1) can be obtained using the generating

function in (1.3). Making use of (6.1), the inverse relation

fn =

n∑
r=0

(
n

r

)
gr ⇔ gn =

n∑
r=0

(−1)n−r
(
n

r

)
fr, (6.2)

can be obtained. It would be compelling to establish the orthogonality and inverse relations for
the multinomial coefficients.

2. A q-analogue of the multinomial coefficient is often defined as[
n

n1, n2, . . . , nm

]
q

=
[n]q!

[n1]q![n2]q! . . . [nm]q!
, (6.3)

where [n]q! =
∏n
i=1[i]q is the q-factorial of n, [n]q = qn−1

q−1
is the q-integer n,[

n

n1, n2

]
q

=

[
n

n1

]
q

=
[n]q!

[n1]q![n− n1]q!
(6.4)

is the q-binomial coefficients and

lim
q→1

[
n

n1, n2, . . . , nm

]
q

=

(
n

n1, n2, . . . , nm

)
.
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(6.3) is called as q-multinomial coefficients (see Vinroot [15] and Warnaar [9]). It is known that
the q-binomial coefficients

[
n
k

]
q

satisfy the q-binomial inversion formula

fn =

n∑
k=0

[
n

k

]
q

gk ⇔ gn =

n∑
k=0

(−1)n−kq(
n−k

2 )

[
n

k

]
q

fk (6.5)

seen in [2] and the q-binomial Vandermonde convolution[
m+ n

k

]
q

=

k∑
r=0

qr(m−k+r)
[
m

r

]
q

[
n

k − r

]
q

(6.6)

which was introduced by Bender [5] and further studied by Evans [6] and Sulanke [7]. One
may investigate the possibility of establishing a q-multinomial version of (6.5) and (6.6) as well
as the q-analogues of (3.1) and (3.2).

3. Corcino [13] defined the p, q-binomial coefficients as[
n

k

]
pq

=

k∏
i=1

pn−i+1 − qn−i+1

pi − qi , (6.7)

where p 6= q, and obtained its fundamental properties. It is easy to verify that (6.7) satisfies[
n

k

]
pq

=
[n]pq!

[k]pq![n− k]pq!
, (6.8)

where [n]pq =
pn−qn
p−q and [n]pq! =

∏n
j=1[j]pq. Moreover, Lundow and Rosengren [14] used the

p, q-binomial coefficients in (6.7) to describe the magnetization distribution of the Ising Model.
It would be compelling to define a p, q-analogue of the multinomial coefficients and study its
properties and possible applications.
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