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ABSTRACT 
 

Lysimetric experiments were conducted in order to determine the groundwater contributions by 
Black cumin. The plants were grown in 27 columns, each with a diameter of 0.40 m and packed 
with Silty clay soil. The factorial experiments were carried out using three replicates with 
randomized complete block designs and different treatment combinations. Nine treatments were 
applied during each experiment by maintaining groundwater with an EC of 1, 2 and 4 dS/m at three 
different water table depths (0.6, 0.8 and 1.1m). The groundwater contributions and plant root 
depths were measured by taking daily readings of water levels in Mariotte tubes and minirhizotron 
respectively. The four input neurons were total water use evapotranspiration (ETo), plant root depth 
(Zr), groundwater salinity (GS) and groundwater depth (Z). The output neuron gives maximum 
water uptake rate (Smax). The results showed that for different treatments, the best neural network 
was determined to be Multilayer Perceptron network (MLP) and the artificial neural network was 
very successful in terms of the prediction of a target dependent on a number of variables. This 
study indicates that the ANN-MLP model can be used successfully to determine groundwater 
observation by plant roots. Sensitivity analysis was undertaken which confirmed that variations in 
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tide elevation are the most important factors in simulation of groundwater estimation in a semi-arid 
region. The results of this study showed that the estimation of plants groundwater contribution by 
ANN-MLP model is very useful for a quick decision on irrigation management to save a high 
volume of good surface water quality.  
 

 

Keywords: Artificial neural networks; black cumin; salinity; groundwater observation; lysimeter; 
minirhizotron. 

 

1. INTRODUCTION  
 

Iran is a country with an arid and semi-arid 
climate having an average rainfall of 252 mm. 
The scarcity of fresh water resources is the main 
obstacle on the agricultural and industrial 
development of the country. Almost 15.2% of the 
total area of the country (25 million hectares) are 
saline lands having been left untouched as a 
result of high salinity and alkalinity [1]. According 
to the United Nations Environment Program, by 
2025, Iran will be one of 100 countries in the 
world with low renewable fresh water per capita 
while the value of available water resources per 
capita will reach to approximately 816 m

3
 as the 

population grows to 120 million, which is almost 
20% less than the amount of water needed per 
capita (1000 m

3
). Iran will be one of the countries 

dealing with water scarcity problem in the near 
future. Therefore, in order to mitigate the adverse 
impacts of such severe shortage of the available 
water resources and also to meet the growing 
demands for food, the use of non-conventional 
water resources such as saline, brackish and 
treated sewerage and reused water should be 
given a greater attention [2].  
 

The water quantities taken by different crops that 
use shallow groundwater of varying salinities 
during the past 50 years have been reviewed [3]. 
They reported that most of the studies in 
literature had been conducted with non-saline 
groundwater while only a small number of 
studies had been performed under varying saline 
shallow groundwater conditions.  
 
Also, the variations in different parameters  
including crops, soil, water table depths, water 
table quality, climate and different irrigation 
scheduling makes it difficult to generalize the 
results of groundwater contribution by different 
plants [3]. 
 
Few researches have been conducted on the 
adoption of groundwater use by plants, 
especially in semi-arid regions of different 
provinces including Kermanshah, Lorestan, Ilam 
and Kurdistan in the west and northwest Iran, 
where the available shallow groundwater with 

different qualities can be used as a sub-irrigation 
scheme for different strategic crops or medicinal 
plants. Such schemes have been devised by the 
support of the state-run agricultural organizations 
for oil and medicine productions in recent years. 
The same schemes can be proposed in order to 
reduce the irrigation water requirements and 
maintain groundwater table at suitable depths 
during the growing season in semi-arid regions 
aforesaid where available surface water 
resources are scarce [2]. 
 

On the other hand, the ANNs are proven to be 
effective in modeling virtually any nonlinear 
function to an arbitrary degree of accuracy [4]. 
Artificial Neural Networks are now being 
increasingly used in the prediction and 
forecasting of variables involved in water 
resources [5-9].  
 

A feed-forward neural network coupled 
developed with GA (Genetic Algorithm) to 
simulate the rainfall field. The technique 
implemented to forecast rainfall for a number of 
times using hyetograph of recording rain gauges. 
The results showed that when FFN (Feed 
Forward Neural network) coupled with GA 
(Genetic Algorithm), the model performed better 
compared to similar work of using ANN (Artificial 
Neural Network) alone [10]. 
 

A few applications of the ANN approach in 
groundwater related problems can be found in 
the literature [11,12]. Groundwater levels have 
been forecasted in an individual well by 
monitoring continuously over a period of time 
using ANN [13]. In another study a developed 
ANN model was used to forecast groundwater 
levels in an urban coastal aquifer [14]. 
 
The performance of the artificial neural network 
(ANN) model, i.e. standard feed-forward neural 
network trained with Levenberg–Marquardt 
algorithm, was examined for forecasting 
groundwater level at Maheshwaram watershed, 
Hyderabad, India. The model provided the best 
fit and the predicted trend followed the observed 
data closely (RMSE = 4.50 and R2 = 0.93). Thus, 
for precise and accurate groundwater level 
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forecasting, ANN appears to be a promising tool 
[15]. 
 
Additionally, a thorough review of literature by 
the authors have revealed that no researches 
have yet been done to determine the percentage 
of groundwater contributions under different 
salinity and groundwater depths by plants. The 
main objectives of the present study  is to 
estimate the soil water fluxes and the 
contribution of groundwater to the overall water 
requirements of Black cumin (EC 1, 2 and 4 
dS/m) at water table depths of 0.6, 0.80 and 1.10 
m and a comparison to Shallow saline 
groundwater estimation by Artificial Neural 
Networks Model. 
 

2. MATERIALS AND METHODS  
 
2.1 Experimental Site 
 
The experiments were performed in the Irrigation 
and Water Resources Engineering Research 
Lysimetric Station No. 1 (47°9' E and 34°21' N at 
an elevation of 1,319 m), part of the Compass of 
Agriculture and Natural Resources, Razi 
University of Kermanshah, Western Iran. The 
experiments were conducted during 2 years from 
year 2011 to 2012 from the month of March to 
the month of July inclusive [16].  
 

2.2 Climate, Irrigation Water and Soil 
Characteristics 

 
The region has a semi-arid climate with no 
rainfalls during summer. All daily meteorological 
and cumulative evaporation data from class A 

pan were obtained from the regional 
meteorological station 100 m off the research 
station. Table (1) shows the average monthly 
meteorological data during both years of the 
study. 
 
The study was performed using 27 lysimeters 
installed at the lysimetric station. The factorial 
experiments were carried out with three 
replicates based on a randomized complete 
block design. Nine treatments were applied in 
each experiment using groundwater with EC 1, 2 
and 4 dS/m to maintain groundwater depths of 
0.60, 0.80 and 1.10 m. The lysimeters were 
initially saturated from bottom for each treatment 
with water quality of (1, 2 and 4 dS/m) up to 
depths of 0.60, 0.80 and 1.10 m for 2 weeks. 
Then, the profile storage contribution was 
measured for each treatment separately using 
gravimetric method. The saline water with EC of 
1, 2 and 4 dS/m was produced by dissolving 
NaCl and CaCl2 (1:1 by mass). The 1.20 m high 
lysimeters were made of 0.40 m diameter 
polyethylene (PE) material pipes with a sealed 
bottom of polyethylene and fixed by special 
electrical equipment to prevent any possible 
water leaching. A 5-cm layer of gravel and a 5-
cm layer of sand were placed at the bottom of 
each lysimeter to promote unrestricted exchange 
with the groundwater supply. A Silty clay soil 
consisting of 54, 42.3 and 3.7% clay, silt and 
sand, respectively, was used in all the lysimeters 
[16]. The chemical components of the surface 
irrigation water, with the chemical and physical 
properties of the soil used in this study together 
are given in Tables (2) and (3). 

 
Table 1. Climate data during growing period 

 
Year Month Mean 

temperature (°c) 
Mean relative 
humidity (%) 

Mean wind 
speed (m/s) 

Mean monthly 
sunshine (hr) 

Total precipitation 
(mm) 

2011 March 11 43 10.7 10.3 0 
April 12.4 51 12.2 6.2 46.9 
May 16.5 62 10.2 5.8 119.7 
June 23.4 30 14 10.1 0 
July 28 18 21 10.7 0 

2012 March 10 45 11 9.5 0 
April 12.1 55 14 6.9 45.7 
May 18.4 40 24 8.3 17.9 
June 24 24 20 9.7 0 
July 26.5 20 15.4 10.2 0 

 

Table 2. Chemical properties of surface irrigation water [17] 
 

EC 
(dS/m)

TDS 
(Meq/l) 

PH 
CO32- 
(Meq/l) 

HCO3- 
(Meq/l) 

CL 
(Meq/l)

SO2- 
(Meq/l) 

Anions 
(Meq/l) 

Mg++ 
(Meq/l) 

Na+ 
(Meq/l) 

Ca2+ 
(Meq/l) 

Cations 
(Meq/l) 

0.5 390 7.1 0 6.15 1.9 1.25 9.3 3.1 1.15 5.05 9.3 
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Table 3. Physical and chemical properties of soil [17] 
 

Soil texture Clay 
(%) 

Silt 
(%) 

Sand 
(%) 

EC 
(dS/m) 

θ(fc) 
(%) 

θ(pwp) 
(%) 

PH Bulk density 
(g/cm

3
) 

Soil depth 
(cm) 

Silt clay 54 42.3 3.7 0.6 17.2 27.6 7.65 1.3 0-110 

 
The Silty clay soil used in the study was sieved 
using a conventional 2-mm mesh, and all the 
lysimeters were filled with air dried soil. The 
lysimeters were filled in 10-cm layers each soil 
layer was compacted manually to reach a bulk 
density of 1.30 g/cm3 (field soil bulk density) [18]. 
Soil field moisture characteristic curves (data not 
shown) were constructed [19]. In the 
experiments, Black cumin was used as crop 
material. Black cumin seeds were planted on 
March 27th, 2011 and March 27th, 2012 at depths 
of 2 cm with a seeding density of 40 per m

2
. The 

water table levels were controlled in all 
lysimeters at 0.60, 0.80 or 1.10 m below the soil 
surface. Before creating different groundwater 
depths, the seeds received 10 mm of surface 
water (EC 0.5 dS/m) in all treatments with 
supplementary irrigation during the experimental 
period. Further irrigation treatments were applied 
when 4 or 5 leaves were observed on each plant 
and at the 38th day after planting. The total water 
applied for each treatment consisted of surface 
irrigation water, groundwater contributions 
(GWC), rainfalls and profile storage 
contributions. The amount of groundwater 
moving into each lysimeter was measured by 
Mariotte tubes. 
 
2.3 Fertilization 
 
The total concentration of fertilizers used in the 
present study including N, P2O5 and K2O was 
120 kg/ha based on soil laboratory analysis for 
both experimental years. 
 
2.4 Irrigation Water Application 
 
The experiment was carried out for 100% ET of 
the cumulative evaporation from the Class A pan. 
The pan was located near the lysimetric 
experimental research station field with a 
moderate grass cover and 100 m off the 
research station. Daily evaporation values from 
Class A pan were used to determine the required 
irrigation water. The crop evapotranspiration 
value for each treatment was determined using 
the equation below: 
 

ppancc KEKET                     (1) 

 

Where ETc is crop evapotranspiration, Kc, Epan, 
Kp are crop coefficients, evaporation from Class 
A pan and pan coefficients, respectively. Kc 
coefficients used for initial, development, mid and 
end season stages of  Black cumin growth were 
0.59,0.91, 1.29 and 0.78 and the pan coefficients 
for March, April, May, June and July of  Black 
cumin planting period were 0.77, 0.77, 0.78, 0.77 
and 0.76, respectively [20]. The groundwater 
amounts used by plants in each lysimeter were 
determined by daily recording of groundwater 
levels in the related Mariotte tubes. The irrigation 
water requirements for each treatment were 
calculated at two-day intervals by subtracting ETc 
from measured groundwater contributions 
(GWC) and rainfalls. The actual drainage water 
was also measured for all treatments. Extra plant 
water requirements were applied by surface 
water with (EC = 0.5 dS/m).  
 

2.5 Electrical Conductivity Determination 
 

During the experiments, the electrical 
conductivity of the applied water was determined. 
For both years of the study, the electrical 
conductivity (EC) of 1:1 saturation extracts were 
determined by oven-dried samples at different 
lysimeters depths (0–20, 20–40 and 40–60 cm) 
at the end of growing season by a conductivity 
meter (Toldeo Mc226, Swiszerland). 
 

2.6 Plant Root Measurement 
 

In the experiments, the plant root depths during 
the growing season of the Black cumin (Nigella 
sativa L.) was measured by minirhizotron with 
0.50, 0.70 and 1 m depth (Fig. 1).  
 

2.7 Initial Data Processing  
 
To improve the training efficiency, the input data 
should be normal (standard). Entering crude data 
accuracy and processing speed of the network 
was reduced as below: 
 















minmax
5.05.0

XX

XmeanX
Xnormal     (2) 

 
Where Xnormal is the normal of data, Xmean is 
the groundwater observation means, Xmax and 
Xmin are the maximum and minimum 
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groundwater observations, respectively [21]. 
Daily groundwater uptakes by Black cumin roots 
were measured throughout 2011-2012 growing 
season and were compared to simulated values 
by Artificial Neural Networks data. The qualitative 
procedure consisted of visually comparing the 
predicted and measured groundwater uptakes 
over groundwater depths. The quantitative 
procedures involved the use of error statistics 
[22] calculated as below: 
 

 
m

MS
RMSE

m

i ii 


 1

2

                 (3) 

 

m

MS
MAE

m

i ii 


 1                        (4) 

 

 
m

MS
MBE

m

i ii 


 1                       (5) 

 

 
 

Fig. 1. A view of lysimeter with minirhizotron 
[19] 

 

Where RMSE is root mean square error (RMSE) 
between the measured and simulated daily 
groundwater uptakes, MAE is mean absolute 
error and MBE is mean bias error between 
measurement and simulation. Si is the value 
simulated by Artificial Neural Networks, Mi is the 
corresponding measured value and m is the 
number of data on which measurements were 
taken (m = 540 for Black cumin) [17]. RMSE 
indicates the discrepancies between the 
observed and calculated values. The lower 
RMSE, the more accurate is the prediction.  

3. RESULTS AND DISCUSSION 
 

Neural network design needs three sets of 
training, cross validation, and testing data. In the 
present study, 40 percent of data were used for 
education, 40 percent for cross validation and 20 
percent to test the network. Multilayer perceptron 
networks (MLP) can be most applied of artificial 
neural networks. In this study the multilayer 
perceptron network with error back propagation 
learning algorithm was used to predict the rate of 
water uptake by plant roots groundwater. 
Levenberg Marquardt, Momentum and Quick 
Prop learning rule were also used in the study. 
The selection of the appropriate number of 
neurons in the hidden layer and the optimal 
number of replications based on the indicators 
MSE and R2 were compared. 
 

3.1 Topology of ANN 
 
The procedural steps in building ANN model 
were applied in order to create new ANN model 
to enable it for prediction of groundwater 
contribution by input variables [23]. A number of 
trials were applied to get the best performance. 
The initial modeling trials were made using all 
input variables. From created ANN models, the 
importance and effect of each variable was 
studied and represented; also, the sensitivity 
analysis was applied [24]. The predicted values 
of final groundwater observation were compared 
to the observed values of groundwater 
absorption. Several ANN models were created 
and tested by varying the neural networks type. 
After a number of trials, the best neural network 
was determined to be Multilayer Perceptron 
network (MLP) with four layers: an input layer of 
4 neurons, one hidden layer with 4 neurons and 
the output layer with 1 neuron as shown in Fig. 
(2). The four input neurons were: total water use 
evapotranspiration (ETo), root depth (Zr), 
groundwater salinity (GS) and groundwater depth 
(Z). The output neuron gives the final 
groundwater observation (Smax). Fig. (2) 
presents the topology of the ANN model. 
 

3.2 Total Water Use and Groundwater 
Contributions 

 
A summarized results of the total water used for 
all nine treatments during the first and second 
year of the study and those of the related 
Duncan test classes are given in Table (4). In the 
first year of the study (2011), the total water use 
was 650 mm consisting of 167 mm of rainfall, 
profile storage and 10 mm surface water to help 
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seedling. The lowest and highest surface water 
quantities were used for treatments T1 with (0.6, 
1 dS/m) and T9 with (1.10, 4 dS/m), respectively. 
The results of all treatments in the second year 
of the study (2012) were similar to those in the 
first year of the study (2011). Because of warmer 
climate conditions during the early months of the 
growing season during the second year of study, 
the total water use for all treatments including 64 
mm (rain, profile storage and 10 mm surface 
water to help seedling) was 708.4 mm. The 
results in Table (4) show that the lowest and 
highest surface water amounts used were for 
treatments T1 (0.60, 1 dS/m) and T9 (1.10, 4 
dS/m) [16].  

 
3.3 The Number of Initial Replication 

Selection 
 
The hypothetical characteristics in Table (5) were 
used to determine the number of initial 
replications. 1000 occurrences were 
appropriated for network architecture. 
 
3.4 The Number of Hidden Layers and 

Number of Neurons 
 
The next challenge due to size constraints of the 
eventual model was to determine the total 
amount of neurons required per layer [25]. After 
selecting hypothetical network, the network was 

trained for different number of iterations values 
and mse values were calculated for replication at 
each stage. Error values and the determination 
coefficient of the network, with different number 
of neurons are shown in the Table (6). 
 

 
 

Fig. 2. Topology of the ANN model 
 

It was expected that a steady increase in 
neurons per layer would result in the increase of 
resolution of the fitting pattern of neural network 
data to the actual observed values. At 8 neurons 
per layer the data had a sufficiently good fit with 
an increase of neurons above this level having 
no real effect on the prediction anymore (see 
Table 6). After determining the number of 
occurrences, the number of hidden layer neurons 
was determined. If the number of hidden layer 
neurons was to be eight, the minimum error 
verified and maximum correlation value were 
obtained [25]. 

  
Table 4. Summary of total water, surface, ground water use and groundwater contribution 

 
Groundwater 
contribution 
(%) 

Total 
water 
use 
(mm) 

Rain + profile 
storage  
+ seedling 
(mm) 

Total 
ground 
water use 
(mm) 

Total 
surface 
water  
use (mm) 

Groundwater 
depth (m) 

Salinity 
(dS/m) 

Year 

68 a 650 167 440 a 43.4 0.60 (T1) 1 2011 
57 b 370 ab 113 80 (T2).0 

47 c 304 c 179 1.10 (T3) 
61.5 ab 400 a 83 0.60 (T4) 2 

51 bc 329 c 154 80 (T5).0 
42 d 273.5 d 210 1.10 (T6) 

54 c 350 b 133 0.60 (T7) 4 
44 d 283.5 d 200 80 (T8).0 

36 e 234 e 250 1.10 (T9) 

66.5 a 708.4 64 470 a 175 0.60 (T1) 1 2012 

53 ab 374 b 271 80 (T2).0 
44.5 c 315.5 c 330 1.10 (T3) 

60 a 425 ab 220 0.60 (T4) 2 
49 b 347.5 c 297 80 (T5).0 

41 d 288 e 357 1.10 (T6) 

54.5 b 386 b 259 0.60 (T7) 4 
43 c 305.5 d 339 80 (T8).0 
36 e 257 e 388 1.10 (T9) 

Different letters indicate significant differences at (P<0.01) using Duncan’s multiple range test 



3.5 The Transfer Function Selection
 
A variety of transfer functions exist which can be 
used to construct an artificial neural network 
neuron. In many software packages, the transfer 
functions are already built-in. The software 
package used in the current investigation was 
Matlab with the Neural Network Toolbox enabled 
[26]. The number of layers and neurons in 
layers was used for the transfer functions in 
network architecture. The values of cross 
validation error and determination coefficient are 
shown in Table (7). The results showed that the 
Function Tanh Axon had the lowest 
measurement accuracy error while it had the 
highest determination coefficient for the hidden 
layer and output layer than any other functions.
 
It was observed that the best model for learning 
rule Levenberg-Marquardt and the network 

 
Table 6. Cross validation error network with different neurons

Cross 
valid 3 2 1 

0.00172 0.00198 0.00206 MSE 
0.9265 0.9173 0.9124 R

2
 

 
Table 7. Cross validation error and determination coefficient for different transfer 

Transfer function 
Tanh Axon 
Sigmoid Axon 
Linear Tanh 
Linear Sigmoid 
Linear Axon 
Axon 

Fig. 3. Comparison between observed and simulated ground
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3.5 The Transfer Function Selection 

A variety of transfer functions exist which can be 
n artificial neural network 

neuron. In many software packages, the transfer 
in. The software 

package used in the current investigation was 
Matlab with the Neural Network Toolbox enabled 

]. The number of layers and neurons in each 
layers was used for the transfer functions in 
network architecture. The values of cross 
validation error and determination coefficient are 
shown in Table (7). The results showed that the 
Function Tanh Axon had the lowest 

le it had the 
highest determination coefficient for the hidden 
layer and output layer than any other functions. 

It was observed that the best model for learning 
Marquardt and the network 

training in order to learn the accuracy error and 
determination coefficient were 0.00153 and 
0.935, respectively. This results found here are in 
agreement with those results which have been 
reported by other researchers [12
other purposes.  
 
Fig. (3) presents a comparison between the 
predicted groundwater observation using ANN 
and the groundwater observation. As shown in 
Fig. (3), a high correlation between observed and 
predicted values of groundwater was obtained. 
 

Table 5. Default network characteristics to 
determine the number of initial rep

 
Number of hidden layer 1
Number of neuron 2
Transfer function Tanh Axon
Replication 1000

Table 6. Cross validation error network with different neurons  
 

Number of neuron 
9 8 7 6 5 4 
0.001700.00153 0.00177 0.00169 0.00166 0.00159  
0.92830.9352 0.9246 0.9279 0.9306 0.9316 

Table 7. Cross validation error and determination coefficient for different transfer 
 

R
2 
(Cross MSE (Cross validation) 

0.9352 0.00153 
0.9281 0.00168 
0.9212 0.00196 
0.9092 0.00221 
0.8152 0.00432 
0.7454 0.01046 

 

 
Comparison between observed and simulated groundwater contribution data

 
 
 
 

, 2015; Article no.JSRR.2015.217 
 
 

training in order to learn the accuracy error and 
ermination coefficient were 0.00153 and 

0.935, respectively. This results found here are in 
agreement with those results which have been 
reported by other researchers [12,13,27,28] for 

Fig. (3) presents a comparison between the 
groundwater observation using ANN 

and the groundwater observation. As shown in 
Fig. (3), a high correlation between observed and 
predicted values of groundwater was obtained.  

Table 5. Default network characteristics to 
determine the number of initial replications 

1 
2 
Tanh Axon 
1000 

 
10 
0.00167 0.00170 
0.9304 0.9283 

Table 7. Cross validation error and determination coefficient for different transfer functions 

(Cross validation) 

 

water contribution data 
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The determination coefficient (R
2
) between the 

predicted and observed output values of the ANN 
model was obtained as 0.912. The network 
architecture with Levenberg-Marquardt, 
Momentum and Quick Prop rules is shown in 
Table (8). 

 

Table 8. Network architecture with levenberg-
marquardt, momentum and quick prop rules 

 

Levenberg-
marquardt 

Learning rule 

1 Number of hidden layers 
8 Number of neurons 
Tanh Axon Transfer Function 
1000 Replication 
0.00153 MSE 
0.935 R2 
Momentum Learning rule 
1 Number of hidden layers 
8 Number of neurons 
Tanh Axon Transfer Function 
1000 Replication 
0.00225 MSE 
0.912 R2 
Quick Prop Learning rule 
1 Number of hidden layers 
8 Number of neurons 
Tanh Axon Transfer Function 
1000 Replication 
0.00343 MSE 
0.854 R2 

 

The high value of determination coefficient (R
2
) 

shows that the predicted groundwater 

observation values using the ANN model are in 
good agreement with the groundwater 
observation. This gives initial impression that the 
ANN model is useful and applicable. The 
comparisons made between simulated 
groundwater observation using ANN and the 
groundwater observation are presented in        
Fig. (4). 

 
The design of neural network has a few stages to 
undergo before it can be implemented. One of 
the first steps is the determination of the 
seasonality of the data to be fitted Fig. (4).  
 
Similar to the statistical approach used in the 
previous section, the neural networks can also 
be trained to increase its efficiency. Once an 
optimal training stage was reached, the model 
was used to simulate the extended data set. In 
the following sections a graphical representation 
of each of the individual scenarios is given. The 
initial network configuration used was an 8 point 
moving average smoothing of the data points. 
Each layer of hidden layer neural network 
contains eight neurons [26,29,30,31,32].  

 

3.6 Regression Statistics of ANN Model 
 
In regression, the purpose of the neural network 
is to learn a mapping from the input variables to 
a continuous output variable. A network is 
successful at regression if it makes predictions 
with accepted accuracy [20]. 

 

 

 
 

Fig. 4. Simulated groundwater using ANN and the observed data 
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Groundwater observation automatically 
calculates the mean and standard deviation of 
the training and other subsets, when the entire 
data set was run. It also calculates the mean and 
standard deviations of the prediction errors. The 
error ratio of the prediction to data standard 
deviations was displayed (Multilayer Perceptron 
network (MLP)). If it was 1.0, then the network 
performance was bad. A lower ratio indicates a 
better estimate [20]. 
 
In addition, SNN displays determination 
coefficient (R

2
) between the actual and predicted 

outputs. A perfect prediction will have a 
determination coefficient of 1.0. A correlation of 
1.0 does not necessarily indicate a perfect 
prediction (only a prediction which is perfectly 
linearly correlated with the actual outputs); 
although in practice the determination coefficient 
is a good indicator of performance. It also 
provides a simple and familiar way to compare 
the performance of neural networks with 
standard least squares linear fitting procedures 

[20]. The degree of predictive accuracy needed 
varies for each application. Regression statistics 
was presented as Table (9).  
 

3.7 Response Presentations 
 
Response presentations of initial ANN model 
shows the effect on the output variable prediction 
of adjusting input (independent) variables. The 
ANN model was utilized to study of the influence 
of the input variables on output variable which 
was groundwater observation [20].  
 

Fig. (5) to (8) show the input variables of ANN 
model. Figs. (5) and (6) indicate that the 
groundwater observation (Smax) increases 
nonlinearly as total water use evapotranspiration 
(ETo) and root depth (Zr) increase. Fig. (7) 
indicated that the groundwater observation 
decreases nonlinearly as and groundwater 
depths (Z) increase. Fig. (8) indicated that the 
groundwater observation increases nonlinearly 
as and groundwater salinity (GS) increases. 

 

 
 

Fig. 5. Response of total water use (ETo) 
 

Table 9. The values of regression statistics for the ANN model 
 

Regression statistics All model data Training data test Validation data set Test data set 
Data mean 354.5 495 355.4 325.9 
Data S.D. 198.6 189.6 196.6 210.7 
Error mean 0.935 0.0 1.24 7.32 
Error S.D. 75.2 62.5 96.6 70.8 
Abs E. mean 41.0 29.3 55.0 43.2 
S.D. Ratio 0.167 0.163 0.35 0.275 
Correlation (R2) 0.960 0.954 0.933 0.975 

Data Mean: Average value of the target output variable; Data S.D: Standard deviation of the target output variable; Error Mean: 
Average error (residual between target and actual output values) of the output variable; Abs. E. Mean: Average absolute error 

(difference between target and actual output values) of the output variable; Error S.D: Standard deviation of errors for the 
output variable; S.D. Ratio: The error/data standard deviation ratio; Correlation: The determination coefficient (R

2
) between the 

predicted and observed outputs 
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Fig. 6. Response to root depth (Zr) 
 

 
 

Fig. 7. Response to groundwater depth (Z) 
 

 
 

Fig. 8. Response to groundwater salinity (GS) 



3.8 Sensitivity Analysis 
 
SNN conducts a sensitivity analysis on the input 
data to a neural network. This indicates that input 
variables are of outmost importance t
particular neural network Fig. (9). Sensitivity 
analysis can be used purely for informative 
purposes and can give important insights into the 
usefulness of individual variables. It often 
identifies variables that can be safely ignored in 
subsequent analyses, and key variables that 
must always be retained [20]. However, it must 
be deployed with some care because input 
variables are not, in general, independent; as 
there are interdependencies between variables. 
The most important parameter for simulati
groundwater observation by the neural network 
was root depth (Zr). 

Fig. 9

Fig. 10. Predicted and observed water absorbed by the roots plants
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SNN conducts a sensitivity analysis on the input 
data to a neural network. This indicates that input 
variables are of outmost importance to this 
particular neural network Fig. (9). Sensitivity 
analysis can be used purely for informative 
purposes and can give important insights into the 
usefulness of individual variables. It often 
identifies variables that can be safely ignored in 

analyses, and key variables that 
must always be retained [20]. However, it must 
be deployed with some care because input 
variables are not, in general, independent; as 
there are interdependencies between variables. 
The most important parameter for simulation of 
groundwater observation by the neural network 

The water uptakes by plant roots and predicted 
groundwater observations by the model selective 
artificial neural network during the test are given 
Fig. (10). The statistical parameter
proposed model and other models of water 
uptakes by plant roots are presented in Table 
(10). The result shows that neural network model 
is a good estimation as compared to the 
observational data. 
 
Table 10. The values of statistical parameters 

of the proposed neural network model
 

RMSE MAE MBE Determination
0.127 0.218 0.098 0.935

 
 

 

 

Fig. 9. The mean sensitivity analysis 
 

 
Predicted and observed water absorbed by the roots plants
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The water uptakes by plant roots and predicted 
groundwater observations by the model selective 
artificial neural network during the test are given 
Fig. (10). The statistical parameters of the 
proposed model and other models of water 
uptakes by plant roots are presented in Table 
(10). The result shows that neural network model 
is a good estimation as compared to the 

of statistical parameters 
f the proposed neural network model 

Determination 
0.935 
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According to the results, the best learning rule 
was Levenberg Marquardt and the proposed 
model with Levenberg Marquardt was verified as 
the lowest learning error with the highest 
correlation. The results of the sensitivity analysis 
was performed for root depths and groundwater 
salinity, and the maximum and minimum impact 
on the accuracy of the neural network models 
was predicted. 

 
4. CONCLUSION 
 
A brief summary of the historical context of the 
development of artificial neural networks was 
reported. The mathematical concepts and 
implementation procedures in artificial neural 
networks were presented, which allowed the use 
of those networks in complicated real world 
problems. The estimation of computational power 
and capacity of neural networks to solve 
problems were briefly described. Also, the 
problem of convergence and over-fitting was 
discussed with likely solutions to the dilemma. 
The generalization and confidence values in 
artificial neural networks were highlighted with a 
focus on statistical methods. The development of 
an interaction model between groundwater 
salinity, groundwater depths and groundwater 
observation was given as a part of the total 
hydrological cycle. 

 
The use of artificial neural networks to patch data 
(groundwater depth, salinity etc.) was reported. 
The results showed that for different treatments, 
the best neural network was Multilayer 
Perceptron network (MLP) and the artificial 
neural network was very successful in terms of 
the prediction of a target that was dependent on 
a number of variables. This study indicates that 
the ANN-MLP model can be used successfully to 
determine groundwater contribution by Black 
cumin roots. The results of this study suggest 
that in different area with high water table level, 
the estimation of plants groundwater contribution 
by ANN-MLP model is very useful for a quick 
decision on irrigation and agricultural water 
management and huge volume of high quality 
surface water saving. With those surface high 
quality saving water more agricultural and also 
aquaculture jobs creation will be possible. 

 
COMPETING INTERESTS 
 
Authors have declared that no competing 
interests exist. 
 

REFERENCES 
 

1. Jaffari M. Broadcasting of salinity and 
salinity in Iran. Journal of Construction 
Jihad. Research Institute of Forests and 
Rangelands; 1995. 

2. Ghamarnia H, Gholamian M, Sepehri S, 
Arji I, Rezvani V. Groundwater contribution 
by Safflower (Carthamus tinctorius L.) 
under high salinity, different water table 
levels, with and without irrigation . Journal 
of Irrigation and Drainage Engineering; 
2012. 

3. Ayars JE, Christen EW, Hornbuckle JW. 
Controlled drainage for improved water 
management in arid regions irrigated 
agriculture. Agricultural Water 
Management. 2006;86:128–139. 

4. Jalalkamali A, Jalalkamali N. Groundwater 
modeling using hybrid of artificial neural 
network with genetic algorithm. African 
Journal of Agricultural Research. 2011: 
6(26):5775-5784. 

5. Nash JE, Sutcliffe JV. River flow 
forecasting through conceptual models, 
part I, A discussion of Principles. Journal 
of Hydrology. 1970;10(3):282-290.  

6. French MN, Krajewski WF, Cuykendall 
RR. Rainfall forecasting in space and time 
using a neural network. Jornal of Hydrol. 
1992;137:1–31. 

7. Zhu ML, Fujita M. Comparison between 
fuzzy reasoning and neural networks 
methods to forecast runoff discharge. 
Journal of Hydro science and Hydraulic 
Engineering. 1994;12(2):131-141. 

8. Dawson CW, Wilby RL. Hydrological 
modeling using artificial neural networks. 
Progress in Physical Geography Arnold; 
2001. 

9. Yi-Ming K, Chen-W L, Kao-Hung L. 
Evaluation of the ability of an artificial 
neural network model to assess the 
variation of groundwater quality in an area 
of blackfoot disease in Taiwan. Water 
Research. ELSEVIER; 2003. 

10. Nasseri M, Asghari K, Abedini MJ. 
Optimized scenario of rainfall forecasting 
using genetic algorithms and artifitial 
neural networks. Expert Syst. Appl. 2008; 
35(3):1415-1421. 

11. Coppola E, Anthony JR, Poulton M, 
Szidarovszky F, Vincent W. A neural 
network model for predicting aquifer water 



 
 
 
 

Ghamarnia and Jalili; JSRR, 7(5): 359-372, 2015; Article no.JSRR.2015.217 
 
 

 
371 

 

levels elevations groundwater. 2005;43(2): 
231-241. 

12. Lallahem S, Maniaa J, Hani A. On the use 
of neural networks to evaluate ground 
water levels in fractured media. Journal of 
Hydrology. 2005;307(1-4):92–111.  

13. Daliakopoulos I, Coulibaly P, Tsanis I. 
Groundwater level forecasting using 
artificial neural networks. Journal of 
Hydrology.  2005;309(1-4):229–240. 

14. Krishna B, Satyaji Rao YR, Vijaya T. 
Modeling groundwater levels in an urban 
coastal aquifer using artificial neural 
networks. Hydrol. Process. 2008;22:1180-
1188. 

15. Sreekanth PD, Geethanjali N, Sreedevi 
PD, Ahmed SH, Ravi Kumar N, Kamala 
Jayanthi PD. Forecasting groundwater 
level using artificial neural networks. 
Journal of Current Science. 2009;96(7): 
933-939. 

16. Ghamarnia H, Jalili Z. Shallow saline 
groundwater use by Black cumin (Nigella 
sativa L.) in the presence of surface water 
in a semi-arid region. Journal of 
Agricultural Water Management. 2014: 
(132):89-100. 

17. Ghamarnia H, Jalili Z. An empirical root 
water uptake model under Shallow saline 
groundwater conditions. Technical Journal 
of Engineering and Applied Sciences. 
2013:3(22):3107-3118. 

18. Oliviera IB, Demond AH, Salehzadeh A. 
Packing of Sands for production of 
homogeneous Porous Media. Soil Sci. 
SOC. AM. J. 1996;49-53. 

19. Klute A. Methods of soil analysis. Part 1. 
Physical and mineralogical methods. 2nd 
edn. American Society of Agronomy, Soil 
Science Society of America, Madison. 
1998;635–653. 

20. Ghamarnia H, Khosravy H, Sepehri S. 
Yield and water use efficiency of (Nigella 
sativa L.) under different irrigation 
treatments in a semi-arid region in the 
West of Iran. Journal of Medicinal Plants 
Research. 2011;4(16):1612-1616. 

21. Montazer A, Azadegan B, Shahraki M. The 
efficiency evaluation of artificial neural 
network models in the calculation of yield 
and water productivity of wheat based on 
climatic factors, water and nitrogen 
fertilizer Consumption. Journal of Water 
Research in Iran. 2009;3(5):17-29. 

22. Ambrose Jr, Roesch SE. Dynamic estuary 
model performance. Jornal of Environ Eng. 
Div ASCE. 1982;108:51–57. 

23. Steyl G. Application of artificial neural 
networks in the field of geohydrology, a 
dissertation submitted to meet the 
requirements for the degree of Magister 
Scientiae in the Institute of Groundwater 
Studies Faculty of Natural- and Agricultural 
Sciences at the University of the Free 
State South Africa; 2009. 

24. Seyam M. Groundwater salinity modeling 
using artificial neural networks gaza strip 
case study. A Thesis Submitted in Partial 
Fulfillment of the Requirement for the 
Degree of Master of Science in Civil / 
Water Resources Engineering; 2009. 

25. Steyl G. Application of artificial neural 
networks in the field of geohydrology, a 
dissertation submitted to meet the 
requirements for the degree of magister 
scientiae in the institute of groundwater 
studies faculty of natural- and agricultural 
sciences at the University of the Free State 
South Africa; 2009. 

26. Paul A, Conrads, Edwin A, Roehl. 
Estimating water depths using artificial 
neural networks. In Seventh International 
Conference on Hydro Informatics, Nice, 
France; 2006.  

Available:http://www.arc.sci.eg/NARIMS_u
pload/CLAESFILES/3739.pdf  

27. Joorabchi A, Zhang H, Blumenstein M. 
Application of Artificial neural network to 
groundwater dynamics in coastal aquifer. 
Journal of coastal research. 2009;966-970. 

28. Feng Sh, Kang Sh, Huo Z, Chen Sh, Mao 
X. Neural networks to simulate regional 
ground water levels affected by human 
activities. Groundwater Journal. 2008;80-
90. 

29. Holger R, Maier, Graeme C, Dandy. 
Neural networks for the prediction and 
forecasting of water resources variables: A 
review of modeling issues and 
applications. Journal of Environ Model 
Software. 2000;15:101–124. 

30. Coulibaly P, Anctil F, Aravena R, Bobee B. 
Artificial neural network modeling of water 
table depth fluctuations. Journal of Water 
Resour Res. 2001;37:885–896. 

31. Mohammadi K, Eslami HR, Qaderi K. 
Water table estimation using Modflow and 
artificial neural network. Journal of 
Geophys Res. Abstr. 2005;7:751. 



 
 
 
 

Ghamarnia and Jalili; JSRR, 7(5): 359-372, 2015; Article no.JSRR.2015.217 
 
 

 
372 

 

32. Emery Coppola Jr, Szidarovszky F, 
Poulton M, Charles E. Artificial neural 
network approach for predicting transient 
water levels in a multilayered groundwater 

system under variable state. Pumping and 
climate conditions. Journal of Hydrol Eng 
ASCE. 2003;348–360. 

_________________________________________________________________________________ 
© 2015 Ghamarnia and Jalili; This is an Open Access article distributed under the terms of the Creative Commons Attribution 
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited. 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here: 

http://www.sciencedomain.org/review-history.php?iid=1129&id=22&aid=9391 
 


