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Abstract

We propose that the solar cycle variability could be described in the framework of an external quasi-sinusoidal
influence on an oscillator with cubic nonlinearity and linear damping (Duffing oscillator). To demonstrate this, we
compare the empirical amplitude–frequency dependence with the theoretical one obtained by the Krylov–
Bogolyubov averaging method. The empirical data are a composite time series of 2.0 version of sunspot number
series, which starts in 1700, and the sunspot group number series by Svalgaard & Schatten, scaled to sunspot
number, for 1610–1699 interval. We find that while this interpretation of solar cycle is a mathematical
approximation, it explains several properties of solar cycle variability.

Unified Astronomy Thesaurus concepts: Solar cycle (1487); Maunder minimum (1015); Analytical mathe-
matics (38)

1. Introduction

Understanding the solar and stellar activity cycles remains
one of the fundamental questions of solar physics. In the
earliest attempts to predict the solar cycles (e.g., New-
comb 1901), one of the main approaches was multi-harmonic
analysis of past solar activity represented by sunspot number.
This approach would identify the spectrum of amplitude and
phase modulations, which then is used to predict the future
solar activity. In one of the most recent examples, Zharkova
et al. (2015) used the principle components analysis to infer the
probability of incoming Grand Maunder-like Minimum.

The multi-harmonic analysis approach in predicting future
solar activity is based on the assumption that solar activity is a
repetitive process. This may not be the correct representation,
as the solar activity has both periodic and stochastic
components. Thus, for example, recent studies suggest that
emergence of a large active region with peculiar orientation at
the “right” phase of solar cycle may disrupt the surface flux
transport and affect the strength of future cycles, including its
complete shutdown (Nagy et al. 2017). The presence of a
strong stochastic component in solar activity calls into question
our ability to make correct predictions of long-term activity on
the Sun, and whether the Sun (or a star) is entering or exiting a
period of a grand (Maunder-like) minimum.

Current modeling of solar cycle variability employs several
approaches, including direct numerical modeling (mean-field
dynamo, full magnetohydrodynamics/MHD simulations, e.g.,
Charbonneau 2010; Pipin 2013; Labonville et al. 2019) and
surface flux transport modeling (e.g., Upton & Hathaway 2018).
The numerical modeling uses the prescribed flow patterns and
their interaction with the magnetic field. The agreement with
the observed properties of solar activity is achieved by varying
several free parameters. Another strategy is to use the
parameterized oscillator models, which allows us to investigate
the effect of different parameters on properties of solar cycle. A
review of this approach can be found in Lopes et al. (2014).
The solar cycle exhibits several properties, which a good
oscillatory model needs to address.

1. Variable strength and length of solar cycle: solar activity
as measured by different proxies (sunspot or group
number, area of sunspots etc.) shows periodic variations
with quite different amplitude (e.g., sunspot number,
SN=81.2 for cycle 6 and SN=285.0 for cycle 19) and
period (P=9.0 yr for Cycle 2 and P=13.7 yr for Cycle
4 Takalo & Mursula 2018). There is a strong and
statistically significant correlation between length of
cycle n and amplitude of cycle n+1 (Solanki et al.
2002; Hazra & Nandy 2019). There is also weaker
negative correlation between the amplitude and the period
of the same cycle (Hathaway 2015).

2. Cycle asymmetry and amplitude: Waldmeier (1935)
found that solar cycles exhibit an asymmetry between
shorter duration rising phase (from sunspot minimum to
maximum) and longer declining phase (from maximum
to minimum). He also noticed a negative correlation
between the length of rising phase of cycle and its
amplitude: the shorter the ascending phase of cycle—the
higher its amplitude although the correlation is not strong
(Pearson correlation coefficient r=0.83, Nagovitsyn &
Kuleshova 2012).

3. “Lost cycle:” according to Gnevyshev & Ohl (1948, also
see Nagovitsyn et al. 2009) for even–odd cycle pairs,
areas under the cycle curve show statistically significant
correlation. In odd–even cycle pairs, such correlation is
not present. This led Gnevyshev & Ohl (1948) to
conclude that true solar cycle is 22 yr (not 11 yr)
especially, taking into account the reversal of leading
polarity fields in sunspots in sequential cycles (Hale
polarity rule, Hathaway 2015). Later, this led to
development of a concept of magnetic cycle (Brace-
well 1953). Gnevyshev & Ohl (1948) also noted that their
rule has an exception—cycles 4 and 5 pair. However, if
one assumes that between maxima of cycle 4 and cycle 5,
there is an additional (“lost”) cycle with small amplitude
(Usoskin et al. 2001), the Gnevyshev–Ohl rule is restored
for all sunspot number data set including 17th century
(Nagovitsyn et al. 2009). The “lost” cycle also appears in
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the time–latitude (butterfly) diagram of sunspots in the
declining phase of solar cycle 4 (Usoskin et al. 2009).

4. Rapid transitions from high to low amplitude cycles and
the periods with suppressed amplitude of cycles:
examples of such transition can be seeing between cycles
4 and 5, cycles 9 and 10, and cycles 19 and 20. The
pattern implies that there are periods when the amplitude
of cycle steadily increases, and then decreases in a jump-
like transition. Over the last 400 yr, there were two
periods, the Maunder and Dalton minima, when the
amplitudes of solar cycles were suppressed.

The asymmetry between ascending and descending phases of
solar cycle and negative correlation between length of
ascending phase and cycle amplitude suggest that the solar
cycle is a nonlinear oscillatory system. Linear oscillatory
systems do not show a correlation between amplitude and
frequency of oscillations. For example, in mechanical linear
oscillatory systems, the amplitude of oscillations depends on
initial conditions, while the frequency is determined by a
system’s elasticity. One of the nonlinear oscillators extensively
applied in nonlinear dynamics is a Duffing oscillator with
external forcing:

w n+ + + =x x bx cx E tsin . 12 3̈ ( )

Within the framework of mechanical analogy, the term
ω2x+bx3 in Equation (1) describes nonlinear restoring force
(per unit of mass), cx is linear damping, and nE tsin is external
quasi-periodic perturbation. ω2x and bx3 are the first and third
terms of Maclaurin expansion for the nonlinear restoring force.
The absence of a term with x2 implies that the restoring force is
symmetrical. Fundamental oscillations of a system described
by Equation (1) occur on frequencies of external excitation,
which, in our case, defines the range of periodicity of solar
cycles. The system can also give rise to subharmonic
oscillations (e.g., Panovko 1980). With cubic nonlinearity,
such as that in the Equation (1), the subharmonic oscillations
will occur with the tripled basic frequency (with the quadratic
nonlinearity, the basic frequency would double).

In some circumstances, a dynamical system represented by
the Duffing equation may exhibit both cyclic and non-cyclic
(chaotic) behavior (e.g., Cai et al. 2014; Li et al. 2019), which
could be appropriate for modeling transitional states of solar
cycle activity. Furthermore, the equation of the Duffing
oscillator can be derived from the dynamo equations by their
truncation (Lopes et al. 2014).

Restricting the restoring force expansion to the third-order
terms corresponds to an oscillating system of weakly nonlinear-
type. As the Equation (1) does not have the analytical solution,
traditionally, the asymptotic techniques have been used. In
general, the solutions of Equation (1) can be represented by the
amplitude–frequency response curve, which is essentially a
“portrait” of the system within the accepted approximation.
Figure 1 provides a textbook example of amplitude–frequency
response curve for Duffing oscillator as derived by Bogoljubov
& Mitropolskij (1961, see also Mickens 1981). The portions
marked by letters MAB and DCN on the response curve
correspond to stable oscillations. The transitions BC and and
DA are where the oscillations are unstable. These transitions
occur in points B and D, where the response curve has vertical
tangents. As the frequency of oscillations increases from point
M to point B (Figure 1), the amplitude of oscillations also
increases. The amplitude at its highest value (a peak just before

point B) corresponds to resonance oscillations. At point B, the
system becomes unstable, and the amplitude jumps to point C.
If the frequency continues increasing, the amplitude will
decrease toward point N, but if the frequency starts decreasing,
the amplitude will increase along segment CD. Reaching point
D would result in a similar jump in amplitude of oscillations
from point D to point A. The fact that BC and DA transitions
do not coincide with each other is due to a hysteresis in the
oscillator system. Depending on frequency changes, after the
DA jump, the system may evolve either toward point M or
toward point B (Figure 1). Without external forcing, the
amplitude of oscillations increases with frequency along the
dashed–dotted line shown in Figure 1. This amplitude–
frequency dependence cannot explain the existence of two
distinct oscillatory regimes on the Sun: regular cycles and
periods of Grand minima, which, according to Usoskin et al.
(2007), occurred 27 times over the last 12,000 yr. One should
note that the alternative solution to the Duffing oscillator with
external excitation could be an Van der Pol oscillator with
stochastic parameters (Mininni et al. 2000; Lopes et al. 2014),
which does not require an external excitation. However, to
achieve the agreement with the observed properties of solar
cycles, the Van der Pol–Duffing oscillator requires best-fit
parameters of oscillator for each cycle (but see Mininni et al.
2000).
Here we use new sunspot data to investigate how well the

solar cyclic activity may be described in the framework of a
weakly nonlinear oscillatory system with an external periodic
driver (i.e., Duffing equation). In a previous attempt to use the
Duffing equation for interpreting solar cycle activity (Nago-
vitsyn 1997), the sunspot data were insufficient for representing
a complete spectrum of solar cycle variations. Moreover, the
level of solar activity for the 17th century based on Schove
(1955) was overestimated. Here we use the most recent sunspot
number time series to show that the observed sunspot number
time series fits the amplitude–frequency dependence of such an
oscillatory system well. While this approach is an approx-
imation, if successful, it could provide a path for developing a
better understanding of jump-like transitions between high- and

Figure 1. Amplitude–frequency response curve for Equation (1). The letters
mark ranges of different regimes. The dotted–dashed line corresponds to the
so-called “skeleton” curve, which corresponds to nonlinear free oscillations
without external excitation. The solid line corresponds to stable solutions. The
dotted line shows unstable solutions, and the dashed lines show jumps between
stable solutions. The small arrows depict the evolution of a system along the
response curve with increasing (arrows above solid curve)/decreasing (allows
below the curve) frequency. In this example, bending to the right corresponds
to b>0 (see Equation (1)). The figure is a modified version of Figure 80 from
the original monograph published in Russian in 1958; for an English translation
see Bogoljubov & Mitropolskij (1961)
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low-amplitude cycles, and identifying the incoming transition
from a repetitive state (regular solar cycles) to activity during
Maunder-type minima (e.g., cycles with extremely low
amplitude, as recently discussed by Muñoz-Jaramillo 2019).

2. Data and Data Analysis

For the interval 1700–2017, we employ the annual values of
2.0 SN version from Clette et al. (2014). For the 1610–1699
interval, we adopt the Group Number (GN) series from
Svalgaard & Schatten (2016). The two time series were
combined using the relation SN=18.3GN derived based on
the period of overlap between the two data sets. During that
period, annual SN and GN values show strong correlation
(Pearson correlation coefficient ρ=0.94), which permits
combining two data sets into a single one. In accordance with
previous studies (see Section 1), on the declining branch of the
fourth cycle we added a supplementary weak cycle with
SN=27. Instead of traditional unsigned series of sunspot
numbers, we formed a time series with alternating signs. A
signed time series has certain advantages for statistical analysis
(e.g., zero mean), and it also takes into account the presence of
the magnetic cycle. Figure 2(a) provides an example of the final
time series used by us. Based on a visual analysis, it appears
that the amplitude, which we selected to represent the “lost”
cycle on the declining phase of the fourth cycle, fits the average
maximum values of SN and GN during the Maunder minimum.

In order to estimate the frequency and amplitude of different
components of the oscillations, we use the method proposed by
Nagovitsyn (1997). The method is similar to empirical mode
decomposition (Huang et al. 1998). To calculate frequencies
and amplitudes for individual cycles (e.g., jth cycle), we use the
time moments Tj of cycles’ maxima and minima and sunspot
number (Wolf number, Wj) for these moments. Since our time
series is represented by a signed SN, here “maxima” and
“minima” refer to maxima of solar cycles in a traditional time
series (Figure 2(a)). Then, we estimate the frequencies as

n =
-+ -T T

100
2j

j j1 1
( )

and amplitudes as

= - + -- +a W W W W
1

4
. 3j j j j j1 1(∣ ∣ ∣ ∣) ( )

In our formalism, νj and aj computed this way represent the
“base” (or prime) component, which corresponds to an
approximately 22 yr solar cycle periodicity.
For longer periods (longer than a solar cycle), we form a

slow-varying additive component
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Next, we smooth Wj
1( ) and Tj

1( ) by a cubic interpolation

spline and use the resulting series to derive Wj
1˜ ( ) and Tj

1˜ ( ) using
time moments of maxima and the corresponding SN the same
way as in Equations (4) and (5).
In our formalism, νj and aj computed using original Wj and

Tj (and Equations (2)–(3)) represent the “base” (or prime)
component. Frequencies and amplitudes derived usingWj

1˜ ( ) and

Tj
1˜ ( ) are the “first” component. The “second” components Wj

2˜ ( )

and Tj
2˜ ( ) are derived in a similar fashion as the “first”

components but using time series of the “first” component.
Figures 2(b)–(c) show “first” and “second” components of the
original signed sunspot number time series (Figure 2(a)).

3. The Amplitude–Frequency Dependence

Using these three components of the original SN time series,
we can now construct the amplitude–frequency dependence of
the SN time series for different temporal shifts between
frequency and amplitude. We find that the smallest scatter of
points in an amplitude–frequency diagram can be achieved by
the forward shift of frequencies, so the amplitude variations lag
behind the variations of frequency by half of the 22 yr magnetic
cycle. The amplitude–frequency dependence for such a forward
shift is shown in Figure 3. There is a striking similarity between
amplitude–frequency dependence derived from the observa-
tions and the response curve of the Duffing oscillator (compare
Figures 1 and 3).
The amplitude–frequency dependence shown in Figure 3

implies that variations with shorter periods are followed by
those with higher amplitudes. This is in agreement with Solanki
et al. (2002), who found that the variations in length of solar
cycle precede the changes in cycle amplitude. This behavior
could be explained if we take into account that the damping
term in Equation (1) that is the response to an external
perturbation in dynamo process is transferred to the system for
the time of the order of the 11 yr cycle rather than
instantaneously. A corresponding rate of perturbation transfer
can be estimated as = -k 10 km 11 yr 0.3 k m s5 1· · [ ]. If
we evaluate the spatial scale of the cycle from the limits in
which latitude drift of the spots occurs, 0.7Re , then the
corresponding rate will be around 1.5 m s−1; evaluation from
the width of the convective zone yields 0.5 m s−1. Thereby the
rate with which an external perturbation transfers its action to
the oscillatory dynamo system lies between 0.5 and 1.5 m s−1.
For comparison, the amplitude of meridional flow typically

Figure 2. (a) Sign-alternating composite SN and GN time series (the time
series used in this paper), and its first (b) and second (c) slow-varying
components as derived in Section 2, Equations (4)–(5).
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used in surface flux transport simulations is about 11 m s−1

(Virtanen et al. 2017).
In Figure 3, open circles and arrows point out a Dalton

minimum episode (end of 18th to start of 19th century), from
cycle 2 to cycle 7. The far right point corresponds to the “lost”
minor cycle on the branch of cycle 4. This behavior is close to
the “breakdown” of the amplitude seen in Figure 1, when the
amplitude reaches high values on the basic branch of
amplitude–frequency relation of the Duffing equation with a
further increase in external frequency. Note here that the
extreme values for the “amplitude breakdown” are ν0=5.8
and A=240–250. The first value yields the upper limit for the
frequency of cycles on the basic branch (Figure 1, reference
point B), while the second restricts the amplitude of the cycles.
The conclusions are as follows: first, that the amplitude of the
cycles cannot be arbitrarily large, and second: when the
frequency of the outer action exceeds, the dependence
corresponds to the lower branch (D-N in Figure 1), that is, to
global minima. In total, the experimental amplitude–frequency
dependence of the solar cycle variability, derived from the
alternating series SN, version 2.0, is close to theoretical for the
Equation (1), and the solar variability may be represented as an
oscillator (for example, traditional solar dynamo), excited by an
outer quasi-sinusoidal force.

4. Discussion and Conclusions

Using the first and second components of a composite (SN
and GN) time series, we reconstructed the amplitude–frequency
dependence of solar cycle variability. We show that it is similar
in appearance to a weakly nonlinear Duffing oscillator. A
derivation of the relationship between the dynamo equations
and the equation for Duffing oscillator can be found in Lopes
et al. (2014). Without going into the details, the left part of
Equation (1) can be explained on the following grounds. The
solar activity (x) shows a quasi-periodic behavior, which can be
represented by =x F x x,̈ ( ) model. The asymmetry between
the ascending and descending phases of the solar cycle and
negative correlation between lengths of ascending phase and

cycle amplitude (e.g., Solanki et al. 2002) suggests that the
solar cycle is a nonlinear oscillatory system. To represent this
nonlinearity we can use the first and third terms of the
Maclaurin expansion of function F. When limiting the
expansion to the first and third terms, we assume that the
system will have symmetric oscillations only. The historical
records of sunspot activity do not show any indication of
unlimited growth of amplitude of the solar cycle, which
indicates that the oscillatory system should have a damping
term. In the simplified case of a system with one degree of
freedom, the damping force is µx.
Past mathematical studies of the Duffing oscillator (e.g.,

Bogoljubov & Mitropolskij 1961; Panovko 1980) have
demonstrated that without external excitation, the oscillator
equation will show only one branch in the amplitude–
frequency plot (the dashed–dotted line in Figure 1). The cyclic
behavior during grand minima (dotted line in Figure 3) shows a
change in amplitude–frequency behavior. In principle, such a
change could be fitted without external forcing, but the fitting
would depend on properties of each grand minima, and is likely
to require different fitting parameters in Equation (1). Using
external forcing (sin term in Equation (1)) allows creation of a
unified fitting with only a single parameter, variable frequency.
While the identification of “forces” (or mechanisms) on the

Sun, which could be associated with different terms of Duffing
equation is outside the scope of current paper, we can provide
some speculations in that respect.
The right side of Equation (1) describes an external

disturbing force. One possible source of such external force
might be planetary influence, such as, for example, the orbital
period of planet Jupiter (P=11.86 yr). Earth, Venus, and
Jupiter alignments occur with a periodicity of 11.07 yr. Such
closeness of planetary orbital periodicities to a period of a mean
solar cycle was first noted by Wolf (1859). Recently, the effect
of planetary orbital motions on the solar cycle was a subject of
extensive discussions (see, for example, Abreu et al. 2012;
Okhlopkov 2016; Stefani et al. 2019, and references therein).
However, the interpretation of observations in the framework
of planetary influence on solar cycles was criticized by
Poluianov & Usoskin (2014) and Holm (2015). Another
possibility is that 22 yr variations in the polar field can serve
such a role. One basis for such speculation is that a forward
shift of about a half of the 11 yr cycle produces a similar
amplitude–frequency dependence, as shown in Figure 3, albeit
with slightly larger scatter as the 11 yr forward shift. However,
half of the 11 yr cycle shift produces a much better defined
transition between points B and C. The evolution of polar field
may also provide an at least quantitative explanation for
amplitude–frequency dependence (Figure 1). Naively, longer
solar cycles may help with building stronger polar flux, which
in turn would result in a subsequent solar cycle with higher
amplitude (e.g., Pesnell 2008, 2016). This is, of course, is a
gross simplification, as the strength of polar flux would depend
on several other parameters, including the strength of the
meridional flow, the flux emergence of active regions in mid-
latitudes, and the strength of polar flux from the prior cycle.
Nevertheless, whether the planetary orbital or the polar field

serves as an external perturbing force or there is another source
requires additional investigation. The Duffing oscillator has one
property that, perhaps, could be exploited in future studies, i.e.,
on the left side of the B–C jump, the external perturbation is in

Figure 3. Empirical amplitude–frequency dependence for the sign-alternating
SN time series (circles). The dashed line corresponds to MAB and NCD
branches in Figure 1. The dotted line and opened circles indicate activity during
the Dalton minimum episode. Arrows mark the transitions, which appear
similar to the BC and DA transitions in Figure 1.
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phase with system oscillations, while on the right ride of the
jump, they are in anti-phase.

The nonlinear oscillator model explains several key proper-
ties of solar cycles (see, Section 1), including the variable
amplitude and the length of the solar cycle, the asymmetry
between ascending and descending phases of solar cycle, and
negative correlation between length of ascending phase and
cycle amplitude. The addition of the “lost” cycle of a very
small amplitude to the declining branch of cycle 4 (Usoskin
et al. 2001; Nagovitsyn et al. 2009) improves the appearance of
a “breakdown” of the amplitude of oscillations from the high to
low branch (D to C transition) characteristic of the Duffing
oscillator (compare Figures 1 and 3). A reverse transition from
periods of low Grand minima-type activity to regular cyclic
variability also occurs in a jump-like fashion, albeit to the
cycles with more moderate amplitude (D to A, Figure 1). The
presence of jump-like transitions from a high to low amplitude
cycle suggests that the maximum amplitude of solar cycles is
limited. Once the system reaches that amplitude and frequency
continues to increase, it transitions to a low-activity state,
which may correspond to the grand (Maunder-like) minima.
The existence of an upper amplitude limit for solar cycles is in
agreement with the findings of Nagovitsyn et al. (2015). For a
signed annual sunspot number time series, the amplitude of
sunspot cycles is limited to about 240–250 SSN.

The purpose of this article is to demonstrate that mathema-
tically, long-term variations in solar activity can be described in
the framework of a nonlinear Duffing oscillator with external
forcing. The authors recognize that the representation of solar
activity in the framework of a Duffing oscillator is a
simplification. However, we think, it could provide a path for
developing a better understanding of jump-like transitions
between high and low amplitude cycles.
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