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Abstract
Background: As the use of Gentamicin became more widespread, the drug’s harmful effects, 
particularly nephrotoxicity, became increasingly well-known. Antibacterial and anti-
inflammatory properties have long been associated with Mirazid. The goal of this research 
was to find out more about frameworks for the protection of Mirazid against nephrotoxicity 
triggered by Gentamicin. 
Methods: Three groups of albino male rats were created; the normal group received only saline. 
In the second group, nephrotoxicity was produced for 10 days with Gentamicin (100 mg/kg; 
i.p.). In the third group; Mirazid (10 mg/kg; p.o.) was administered for 10 days before receiving 
Gentamicin. This was done to investigate the kidney/body weight index, serum creatinine, 
urea, lactate dehydrogenase (LDH), malondialdehyde (MDA), and Glutathione (GSH) levels. 
Moreover, immunohistochemical staining was done to study Jun N- terminal kinase 1 (JNK1), 
inducible nitric oxide synthase (iNOS), and caspase3 expressions along with histopathological 
changes. Additionally, a molecular docking study was performed for the seventeen isolated and 
identified compounds from myrrh, JNK1 is inhibited by an oleo-gum resin derived from the 
Commiphora species of plants (Burseraceae).
Results: The Gentamicin group showed an increase in kidney/ body weight index, 
serum creatinine, urea, LDH, and MDA, while decreasing GSH  levels. Furthermore, 
immunohistochemical staining revealed increased JNK1, iNOS, and caspase3 expressions along 
with histopathological changes. All of these indicators were significantly reduced by mirazid, 
which also restored oxidant/antioxidant hemostasis. Furthermore, the histological architecture 
of tissues has been significantly conserved. Concerning the docking study, the isolated compound 
(12) was found to be superior to the co-crystallized inhibitor (18) with a binding score of -7.19 
kcal/mol compared to -6.95, respectively. 
Conclusion: Mirazid was found to be a potential method for suppressing the nephrotoxicity 
caused by Gentamycin by inhibiting the JNK1/ iNOS pathways, therefore preserving kidney 
function. The antioxidant, anti-inflammatory, and anti-apoptotic properties of mirazid are 
thought to be responsible for its preventive efficacy. 
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Introduction
Aminoglycosides have long been linked to drug-induced 
nephrotoxicity, which is one of the most common 
side effects.1 Nephrotoxicity triggered by Gentamicin 
involves pathological conditions, such as altered 
intraglomerular hemodynamics, the toxicity of tubular 
cells, and inflammation.2 Due to the disruption of oxidant-
antioxidant systems, toxicity is induced by the generation 

of free radicals and protein oxidation.3,4 The production 
of reactive oxygen species (ROS), as well as the activation 
of a number of inflammatory mediators, have all been 
associated with gentamicin-induced nephrotoxicity.5 

Oxidative stress-induced by gentamicin plays a vital 
role in the activation of pro-inflammatory cytokines, 
including Jun  N-terminal  Kinase (JNK1) which leads to 
kidney damage. Free radicals stimulate glomerulus lipid 
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peroxidation and influence the normal physiological 
function of renal tissues, contributing to metabolic 
disorders.6 Renal inflammatory cascades, renal oxidative 
stress, and pathogenic signaling systems are all exacerbated 
in nephrotoxicity.7 Previous studies have indicated 
that medications with significant antioxidant and anti-
inflammatory cellular characteristics can be employed to 
combat Gentamicin’s nephrotoxicity.8-10 

As the inflammatory system becomes more activated, 
pro-inflammatory mediators such as chemokines and 
cytokines are released, resulting in inflammatory signals. 
These signals enable the body to recognize, destroy, and 
eliminate foreign objects, resulting in an effective acute 
inflammatory response.11 Immune suppression and the 
onset of chronic inflammatory diseases can be caused by 
the inappropriate production of pro- or anti-inflammatory 
mediators. Tissue injury and degeneration are connected 
to inflammation over time. This has been recognized as a 
necessary condition for the start of numerous neurological, 
autoimmune, and malignant diseases.12 Macrophages are 
crucial participants in the immune and inflammatory 
responses that occur during a host’s defense. Once 
activated, they start producing cytokines, oxygen, and 
nitrogen species. This stimulation causes cytokines to be 
released and enzymes like inducible nitric oxide synthase 
(iNOS)  to be produced.13 

Mirazid, a drug that has been on the Egyptian market for 
over a decade, is made from (Arabian or Somali) myrrh, 
an oleo-gum resin derived from plants of the Commiphora 
species (Burseraceae).14 Because of its antimicrobial activity, 
infections and inflammation are treated with Mirazid.15 
Also, it treated blood stagnation, inflammatory diseases, 
and reduced swelling and pain.16 In clinical trials, some 
myrrh-based recipes were utilized as anticancer medicines 
in the treatment of liver, pancreatic, and nasopharyngeal 
malignancies and have shown adequate curative efficacy17,18 
Extracts of these plants’ resinous exudates and/or their 
constituents showed analgesic19 anti-inflammatory,20 lipid-
lowering21 neuroprotective, and antibacterial properties.22 
Mirazid’s influence on mucus formation and up-regulation 
in sulfhydryl concentrations of nucleic acid, as well as 
its free radical-scavenging, thyroid-stimulating, and 
prostaglandin-inducing capabilities are hypothesized to 
play a role in the treatment of stomach ulcers.23

One of the most essential technologies for drug 
discovery is computational drug design and development 
is molecular docking.24-30 It helps scientists to design 
new drugs, repurpose existing candidates, or study their 
mechanisms of action.31-38 Molecular docking is a crucial 
tool in molecular biology and computer-aided drug 
design.39-44 Its main goal is to predict the most important 
binding mode(s) of a ligand with a protein of known 3D 
structure. Successful docking uses a scoring function that 
correctly ranks candidate dockings.45-49

The study of ways to reduce the toxicity of  
aminoglycosides continues to pique clinical interest. As 
a result, the goal of this study was to see how Mirazid  

affected oxidative stress, inflammation, and apoptotic 
pathways in Gentamicin-induced nephrotoxicity.

Materials and Methods
Experimental animals
In this investigation, twenty-four male rats (albino Wistar) 
weighing 190-220 g were employed. The rats were provided 
by the Modern Veterinary Office For Laboratory Animals 
(Cairo, Egypt). Rats were kept in a temperature-controlled 
environment (25°C) with a 12-hour light/dark cycle. Food 
and water were allowed ad libitum during the study period. 
Before the trial, the rats were given two weeks to acclimate 
in the laboratory. The protocol for the experiment was 
approved by the Research Ethics Committee, Faculty of 
Pharmacy, Delta University (FPD4 15/2018).

Drugs
Gentamicin (Gentamicin Sulphate) vials were purchased 
from Sigma company, U.S.A. Gentamicin sulfate is 80 
mg per ml in each vial. Mirazid capsules were purchased 
from the producing company Pharco Pharmaceuticals 
(Alexandria, Egypt).
 
Induction of nephrotoxicity
The intraperitoneal administration of  Gentamicin (100mg/
kg/ body weight) for 10 days resulted in nephrotoxicity.50 

Experimental protocols
Twenty-four rats were allocated into three groups at 
random (8 rats each). Control group, rats did not receive 
any drug or solvent, Gentamicin group; rats were injected 
with Gentamicin (100 mg/kg;i.p.) for 10 days and 
Mirazid prophylactic group; Mirazid (10mg/kg;p.o.) was 
administrated to rats starting 10 days before Gentamicin 
administration.50

Sacrification and biological samples collection
Under light ether anesthesia, a clean sterile capillary tube 
was inserted in the inner canthus of the eye to collect 
blood samples from the orbital sinus (retro-orbital plexus). 
After allowing the blood to coagulate for 20 minutes, it 
was centrifuged for 15 minutes at 4000 rpm. The serum 
samples were then separated, collected in clean tubes, and 
maintained at -20 oC until they were used to determine 
serum creatinine, urea levels, and lactate dehydrogenase 
(LDH) levels using a colorimetric kit, as directed by the 
manufacturer. Rats were sedated with thiopental sodium 
(50 mg/kg) and killed by cervical dislocation at the end of 
the experiment. The kidneys were separated and rinsed in 
ice-cold phosphate-buffered saline (pH = 7.4). Body weights 
and kidney weights were measured for the calculation of 
kidney/body weight index. The right kidney was rinsed in 
ice-cold saline, sliced lengthwise, and preserved in 10% 
buffered formalin for histological investigation. The left 
kidney was submerged in liquid nitrogen and stored at 80 
°C for tissue homogenate preparation.
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Preparation of kidney homogenate
Kidney homogenate (10% w/v) was made using roughly 
2 cm of kidney tissue in ice-cold KCl (1.15 percent, pH 
7.4). The homogenate was centrifuged for 10 minutes at 
3000 rpm at 4 °C, and the supernatants were decanted and 
utilized to measure kidney GSH and MDA levels.

Determination of serum creatinine, urea, and lactate 
dehydrogenase (LDH)
The assay is based on Jaffe’s description of the reaction 
of creatinine with sodium picrate. Creatinine forms a 
crimson complex with alkaline picrate. Interferences 
from other serum constituents are avoided by the time 
interval used for measurements. The amount of colour 
generated is proportional to the amount of creatinine in 
the sample. Serum urea was determined enzymatically 
according to the previously described method of Kaplan 
and Kohn.51 The level of LDH in the serum was determined 
using a spectrophotometer and commercially available 
kits (Biomed Diagnostics test kits), as directed by the 
manufacturer (Egypt).

Determination of kidney GSH concentration and MDA 
content
GSH concentration and MDA content were determined 
according to the manufacturer’s instructions using a 
commercially available kit (Biodiagnostic, Giza, Egypt). 
According to a previously established approach, lipid 
peroxidation (LPO) was measured as thiobarbituric acid 
reactive substances (TBARS) in terms of generated MDA.52 
Glutathione (GSH) content was assessed according to a 
method illustrated earlier.53 

Histopathological examination                                                                                                              
For histological assessment, a 2 cm piece of the right kidney 
was removed, rinsed in cold saline, fixed in 10% buffered 
formalin solution, sliced transversely, paraffin-embedded, 
and 3m slices stained with hematoxylin and eosin (H&E). 
The tissues were evaluated using an Olympus CX21 
microscope in a random order, with the histopathologist 
blinded to the experimental groups. For image analysis, 
slides were taken using an Olympus® digital camera set 
on an Olympus® microscope with 1/2 X photo adapter 
and a 40 X objective utilizing a computer-assisted digital 
image analysis (Digital morphometric study). The photos 
were examined using Video Test Morphology® software 
(Russia) with a built-in process for stain quantification 
and automated object analysis on an Intel® Core I3® 
based computer. All measurements are validated against 
a micrometer slide that was photographed with the same 
instrument at the same magnification using the same 
technique. This allows measurements to be taken in um2 
rather than square pixels. SO for Hx, the change in the 
number of inflammatory cells (cells/μm2).

Immunohistochemical evaluation of JNK 1, iNOS and 
Csapase3
For antigen retrieval, kidney slices were dewaxed and 
submerged in a solution of 0.05 M citrate buffer, pH 6.8. 
After that, the sections were treated with 0.3 % hydrogen 
peroxide and protein block. The sections were then treated 
with anti-JNK1, anti-iNOS, and anti-caspase3 polyclonal 
antibodies (Santa Cruz, Cat# (F-6): sc-8008, 1:100 
dilution). After rinsing with phosphate-buffered saline, 
they were incubated for 30 minutes at room temperature 
with a goat anti-rabbit secondary antibody (Cat# K4003, 
EnVision+TM System Horseradish Peroxidase Labelled 
Polymer; Dako). Slides were visualized using a DAB kit 
before being counterstained with Mayer’s hematoxylin. 
In a total of 1000 cells per 8 HPF, the staining intensity 
was evaluated and expressed as a percentage of positive 
expression. All measurements are calibrated against a 
micrometer slide that was photographed with the same 
instrument at the same magnification using the same 
technique. This allows measurements to be taken in um2 
rather than square pixels. JNK 1, iNOS, and Caspase-3 are 
scored based on the change in staining intensity.

Docking studies
Using GC–MS, and ICP–MS separation techniques, we 
previously identified seventeen chemicals from myrrh 
resin54 that were subjected to molecular docking studies 
using MOE 2019.012 suite55,56 to propose its mechanism 
of action as a promising JNK-1 inhibitor. JNK-1 inhibition 
is responsible for stopping both the apoptotic and iNOS 
pathways which are proposed to be the main mechanism 
of action responsible for the anti-inflammatory effects of 
myrrh. Also, thiophenecarboxamide urea (TCU) native 
co-crystallized inhibitor was used as a reference standard. 
         
Preparation of the myrrh resin extract
The seventeen isolated and identified compounds from 
myrrh resin were downloaded from the PubChem database 
website. They were inserted into MOE and prepared for 
docking by applying the previously described steps.57-59 
Then, they were imported together with the co-crystallized 
JNK-inhibitor (TCU) in a single database file and saved as 
an MDB file to be ready for the docking process.    
     
Preparation of the target JNK-1 pocket
The JNK-1 X-ray structure (code: 3PZE)60 was downloaded 
from the Protein Data Bank and the full preparation steps 
for its preparation were applied as before.61-64 

Docking of myrrh isolated compounds to the binding pocket 
of JNK-1   
The prepared database containing the isolated identified 
compounds was inserted in a general docking process 
and all the default methodology steps were performed 
as described earlier.65-68 By the end, we filtered the best 
poses according to their scores, RMSD, and amino acid 
interactions for all the examined compounds. Moreover, a 
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process of redocking for the co-crystallized ligand inside 
the binding pocket of the JNK-1 receptor was applied to 
validate the MOE program. The validation was confirmed 
by obtaining low RMSD values (< 1) between the docked 
and native ligands.69-72 

Statistical analysis
For statistical comparison between parametric and 
nonparametric data, one-way analysis of variance 
(ANOVA) followed by Tukey–Kramer multiple comparison 
tests and Kruskal-Wallis test followed by Dunn’s Multiple 
Comparison tests were employed, respectively. A P-value < 
0.05 was the established level of significance.

Results
Effect of prophylactic Mirazid on Gentamicin triggered a 
modification in the serum level of creatinine, urea levels, 
and LDH
When compared to the control group, serum creatinine and 
urea levels were considerably (P ˂ 0.05) higher following 
Gentamicin administration. Prophylactic daily oral Mirazid 
(10 mg/kg) for 10 days resulted in a substantial (P ˂ 0.05) 
decrease in serum creatinine and BUN as compared to 
the Gentamicin group. The nephrotoxicity marker LDH is 
used to diagnose renal impairment. Gentamicin treatment 
greatly deteriorated kidney functions contrasted to the 
control group. Serum LDH levels increased significantly 
(P< 0.05). Prophylactic daily oral Mirazid (10 mg/kg) 
for 10 days resulted in a substantial (P˂ 0.05) decrease in 
serum LDH as compared to the Gentamicin group (Table 
1). 

Effect of prophylactic Mirazid on Gentamicin triggered 
a modification in oxidants/antioxidant stress markers in 
the kidney; MDA content and decreased GSH 
The administration of gentamicin elevated MDA levels 
while lowering GSH levels significantly. Concurrent 
administration of Mirazid (10 mg/kg, orally) significantly 
(P<0.05) ameliorated Gentamicin-induced kidney 
damage. As MDA content was reduced and GSH activity 
was restored. Mirazid significantly preserved kidney GSH 
activity when contrasted to the Gentamicin group and 
significantly decreased kidney MDA activity in rats in 

Table 1. Effect of Mirazid (10mg/kg;p.o) on Gentamycin (100 mg/
kg; i.p.)  triggered a modification in serum creatinine, BUN, and 
LDH.

Treatment 
group

Creatinine
(mg/dl)

BUN
(mmol/l)

LDH
(U/L)

Control 0.32±0.02 36.75±1.8 1350±19.5
Gentamicin 
group 0.74±0.01* 114.60±3.1* 4409±10.9*

Mirazid prophy-
lactic group 0.41±0.01# 41.33±2.3# 1675±11.94#

Results are expressed as mean± S.E.M, n = 8. Statistical analysis 
was performed using One-Way ANOVA followed by Tukey-Kramer 
multiple comparisons test at P<0.05. *P< 0.05 concerning the 
control group, #P< 0.05 concerning the Gentamicin group.

comparison with the disease group. On the other hand, 
Gentamicin administration showed a significant (P<0.05) 
up-regulation in MDA activity when contrasted to the 
control group (Table 2).

Effect of prophylactic Mirazid on Gentamicin triggered a 
modification in kidney/body weight index
When compared to the control group, the kidney/body 
weight ratio of the Gentamicin group was considerably 
higher (P ˂0.05). The Mirazid prophylactic group, on 
the other hand, saw a significant (P ˂0.05) reduction in 
kidney weight when compared to the Gentamicin group. 
According to Mirazid prophylactic group, there was a 
significant improvement in modifying kidney/body weight 
index. However, the kidney/ body weight index of Mirazid 
prophylactic group is still significantly increasing in 
comparison to the control group; it could not reach normal 
weight (Figure 1).

Table 2. Effect of Mirazid (10 mg/kg;p.o) on Gentamycin (100 mg/
kg; i.p.)  triggered a modify in kidney homogenate GSH and MDA 
concentration.

Groups GSH
(μmol/g tissue)

MDA
(nmol/g tissue)

Control 0.71±0.02 33.75±1.8
Gentamicin group 0.32±0.01* 111.10±3.3*
Mirazid prophylactic 
group 0.69±0.04# 48.33±2.3#

Results are expressed as mean± S.E.M, n = 8. Statistical analysis 
was performed using One-Way ANOVA followed by Tukey-Kramer 
multiple comparisons test at P<0.05. *P< 0.05 concerning the 
control group, #P< 0.05 concerning the Gentamicin group.

Figure 1. Effect of Mirazid (10mg/kg) orally for 7days on Genta-
mycin (100 mg/kg; I.P)- induced changes in kidney /body weight 
index. Results are expressed as mean± S.E.M, n = 8. Statisti-
cal analysis was performed using One-Way ANOVA followed by 
Tukey-Kramer multiple comparisons test at P < 0.05. *P < 0.05 
concerning the control group, #P < 0.05 concerning the Gentamicin 
group.
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Effect of prophylactic Mirazid on hematoxylin and 
eosin-stained kidney specimens, gentamicin caused 
histopathological changes
As illustrated in Figure 2 and reported results 
in Table 3, kidney tissue photomicrographs  
of A, control animal showing normal glomeruli with an 
intact bowman’s capsule (arrow); B, sections of animals 
treated with gentamycin showing glomerular congestion 
(arrow), inflammatory cell infiltration (filled arrowhead), 
and necrosis (open arrowhead); C, sections of animals 

Figure 2.  Representative photomicrographs for sections from renal tissue of rats stained with H&E stain. Scale bar = 20 µm. A : control 
group , B: gentamicin group and C: Mirazid prophylactic group.

Table 3. Effect of Mirazid on Gentamycin (100 mg/kg; I.P)- 
triggered a modification in inflammatory cells count for H&E.

Groups Inflammatory cells
(cells/μm2)

Control group 20.50±1.11
Gentamicin group 177.3±6.33*
Mirazid prophylactic group 120.7±5.01*#

Results are expressed as mean± S.E.M, n = 8. Statistical analysis 
was performed using One-Way ANOVA followed by Tukey-Kramer 
multiple comparisons test at P<0.05. *P< 0.05 concerning the 
control group, #P< 0.05 concerning the Gentamicin group.

Figure 3. A) Microscopic pictures of immune-stained renal sections against Caspase3. IHC counterstained with Mayer’s hematoxylin. 
Black arrows point to positive tubules. Low magnification X:100 bar 100 and high magnification X:400 bar 50 B). Effect of Mirazid (10 mg/
kg) orally for 7days on Gentamycin (100 mg/kg; I.P)-induced change in inflammatory cells to count for H&E. Results are expressed as 
mean± S.E.M, n = 8. Statistical analysis was performed using One-Way ANOVA followed by Tukey-Kramer multiple comparisons test at 
P<0.05. *P< 0.05 concerning the control group, #P< 0.05 concerning the Gentamicin group.
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exposed to gentamycin and treated with mirazid 
showed isolated mild tubular damage in the form of 
tubular dilatation with an irregular contour and tubular 
vacuolization (filled arrowhead), but no glomerular 
abnormalities or neutrophil infiltration were observed 
(arrow). Scale bar = 20 µm.

Effect of prophylactic Mirazid on Gentamicin triggered 
activation of renal apoptosis; immunohistochemical 
analysis of caspase-3 expression
As an apoptotic marker, the expression of caspase 3 stained 
cells in tissue was evaluated. Caspase-3 immunostaining 
was negative in the control group. On the contrary, the 
Gentamicin group showed strong immunostaining for 
caspase-3 indicating the existence of apoptotic activity in 
kidney tissue contrasted to the control group. Caspase-3 
expression was downregulated in the prophylactic daily 
oral Mirazid (10 mg/kg) contrasted to the Gentamicin 
group (Figure 3).

Effect of prophylactic Mirazid on Gentamicin triggered 
activation of renal inflammation; immunohistochemical 
analysis of i-NOS and JNK1 expressions
Expressions of i-NOS and JNK1 stained cells were 
evaluated as a marker of inflammation. The Control 
group revealed negative immunostaining for i-NOS 
(Figure 4) and JNK1 (Figure 5). The Gentamicin group 
showed strong immunostaining for i-NOS and JNK1 
expressions contrasted to the control group. On the other 
hand, Prophylactic daily oral Mirazid (10 mg/kg) dose 
downregulated i-NOS and JNK1 expressions contrasted 
to Gentamicin group, yet this decrease failed to reach a 
normal level. 

Docking studies
Through the creation of five H-bonds with Met108, 
Glu109, and Met111amino acids, the x-ray structure of 
JNK revealed the fitting of its co-crystallized inhibitor 
(TCU) inside its binding pocket. Also, it formed two 
extra H-bonds with Gln117 amino acid through an 

Figure 4. A) Microscopic pictures of immune-stained renal sections against iNOS. IHC counterstained with Mayer’s hematoxylin. Black 
arrows point to positive tubules. Low magnification X:100 bar 100 and high magnification X:400 bar 50. B) Effect of Mirazid (10 mg/kg) 
orally for 7dayson Gentamycin (100 mg/kg; I.P)-induced change in inflammatory cells to count for H&E. Results are expressed as mean± 
S.E.M, n = 8. Statistical analysis was performed using One-Way ANOVA followed by Tukey-Kramer multiple comparisons test at P<0.05. 
*P< 0.05 concerning the control group, #P< 0.05 concerning the Gentamicin group.
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Figure 5. A) Microscopic pictures of immune-stained renal sections against JNK. IHC counterstained with Mayer’s hematoxylin. Black 
arrows point to positive tubules. Low magnification X:100 bar 100 and high magnification X:400 bar 50. B) Effect of Mirazid (10 mg/kg) 
orally for 7days on Gentamycin (100 mg/kg; I.P)-induced change in inflammatory cells to count for H&E. Results are expressed as mean± 
S.E.M, n = 8. Statistical analysis was performed using One-Way ANOVA followed by Tukey-Kramer multiple comparisons test at P<0.05. 
*P< 0.05 concerning the control group, #P< 0.05 concerning the Gentamicin group.

intermediate bridging H2O515 molecule. Molecular 
docking of the previously isolated compounds from myrrh 
resin compared to the docked co-crystallized inhibitor 
of JNK revealed the following descending binding order: 
oxalic acid, hexyl 2-methyl phenyl ester (12) ˃ docked 
co-crystallized TCU inhibitor (18) ˃ germacrene B (4) 
˃ (-)-elema-1,3,11(13)-trien-12-ol (2) ˃ isosericenine 
(5) ˃ 3-[(E)-2-phenyl-1-propenyl]cyclohexanone (6) ˃ 
2,5,8-trimethyl-1-nonen-3-yn-5-ol (7) ≥ 2-(2-hydroxy-
2-methyl-2-phenylethyl)-3-methyl (14) ˃ curzerene (3) ˃ 
beta selinene (8) ˃ spathulenol (9) ≥ 1-deoxycapsidiol (10) 
˃ myrcenol (15) ˃ (-)-caryophyllene oxide (11) ˃ (-)-(R)-
ipsdienol (13) ˃ 2,8-decadiene (16) ˃ R(+)-limonene (1) ˃ 
bicyclo[3.1.1]hept-2-ene-2-carboxaldehyde,6,6-dimethyl-
,(1S)- (17). Moreover, their binding scores and interactions 
with the amino acids of the JNK pocket are depicted 

in (Table 4) and supplementary data.   
The findings of docking simulation showed that the 

docked co-crystallized TCU inhibitor (18) showed nearly 
the same binding mode of its native co-crystallized form, 
where it formed four H-bonds with Met108, Glu109, 
and Met111amino acids. At the same time, it formed the 
two extra H-bonds with Gln117 amino acid through the 
intermediate bridging H2O515 molecule. Its binding score 
was found to be -6.95 kcal/mol and the RMSD value was 
1.18. On the other hand, surprisingly, oxalic acid, hexyl 
2-methyl phenyl ester (12) achieved a superior binding 
score (-7.19 kcal/mol) than the docked co-crystallized 
TCU inhibitor (18) with an RMSD value of 1.25. It got 
stabilized through the formation of only one H-bond with 
Asn114 amino acid which indicates a highly stabilized 
fitting of the molecule regardless of the formed amino 
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Table 4. Binding scores and interactions of the seventeen isolated and identified compounds from myrrh resin (1-17) compared to TCU 
(docked, 18) inside the binding pocket of JNK-1.

No. Compound S a RMSD b Amino acid bond Length (A ֯)

1 R(+)-Limonene -4.96 1.51 - -

2 (-)-Elema-1,3,11(13)-trien-12-ol -6.30 0.98 Met108/H-donor 3.88
3 Curzerene -5.76 1.12 Val40/pi-H 4.20

4 Germacrene B -6.34 0.86 - -

5 Isosericenine -6.25 1.28 Met108/H-donor
Ser155/pi-H

3.74
3.84

6 3-[(E)-2-phenyl-1-propenyl]cyclohexanone -6.04 1.63 - -

7 2,5,8-Trimethyl-1-nonen-3-YN-5-ol -6.00 1.43 Asn114/H-donor
Ser155/H-acceptor

2.98
3.29

8 Beta selinene -5.65 1.38 - -
9 Spathulenol -5.63 1.08 Ser155/H-donor 2.80

10 1-Deoxycapsidiol -5.63 1.13 - -
11 (-)-Caryophyllene oxide -5.43 0.91 Asn114/H-acceptor 2.87

12 Oxalic acid, hexyl 2-methylphenyl ester -7.19 1.25 Asn114/H-acceptor 2.90

13 (-)-(R)-Ipsdienol -5.30 2.08 Ser155/H-donor
Asn114/H-acceptor

2.99
3.15

14 2-(2-Hydroxy-2-methyl-2-phenylethyl)-3-methyl -6.00 1.53 Val40/pi-H 4.15

15 Myrcenol -5.57 1.03 Ser155/H-donor
Asn114/H-acceptor

2.96
3.32

16 2,8-Decadiene -5.26 0.55 - -

17 Bicyclo[3.1.1]hept-2-ene-2-carboxaldehyde, 
6,6-dimethyl-,(1S)- -4.91 1.03 Gln37/H-acceptor 3.24

18 Docked co-crystallized inhibitor -6.95 1.18

Met111/H-donor
Gln117(H2O515)/H-acceptor
Met111/H-acceptor
Gln117(H2O515)/H-donor
Glu109/H-donor
Met108/H-donor

2.95
2.99
3.03
3.04
3.19
3.43

a S:  the score of a compound inside the protein binding pocket (Kcal/mol), 
b RMSD: The Root Mean Squared Deviation between the predicted pose and the crystal structure.

acid interactions compared to the co-crystallized TCU 
inhibitor (docked, 18) as represented in (Tables 4 and 5). 
At the same time, germacrene B (4), (-)-elema-1,3,11(13)-
trien-12-ol (2), and isosericenine (5) compounds showed 
very good binding scores which were very close to that of 
the docked co-crystallized TCU inhibitor (18) with score 
values of -6.34, -6.30, and -6.25, respectively (Table 4).   

Regarding the docking results of the isolated tested 
compounds of myrrh resin compared to TCU, represented a 
good idea concerning their binding affinities towards JNK-1. 
Many isolates of the resin showed ideal and promising binding, 
which indicates high affinities and predicted intrinsic activities 
as JNK inhibitors as well. 

Collectively, this study proposed the promising affinity 
of myrrh isolates against JNK-1, especially for oxalic 
acid, hexyl 2-methyl phenyl ester (12) which showed a 
superior binding affinity compared to the docked co-
crystallized TCU inhibitor (18). Accordingly, we propose 
such a compound for further in vitro and in vivo studies 
to gain an effective anti-inflammatory and subsequently an 
apoptotic therapeutic against nephrotoxicity. Moreover, the 
previously studied isolates may be examined either alone or 

in combinations with each other’s against nephrotoxicity.

Discussion
Mirazid’s renal protective effect against experimentally 
generated nephrotoxicity was investigated in this study. 
Effects on inflammation, antioxidants, and apoptosis 
were discovered to be responsible for the renal protective 
effect, which was mainly due to a modulatory effect on 
JNK1/iNos pathway. For nephrotoxicity induction, a well-
standardized experimental model was used. 

Although the benefits of Gentamicin in reducing a 
wide range of bacterial infections, mostly Gram-negative 
bacteria, have been demonstrated.73 Gentamicin-induced 
renal toxicity which is a major clinical challenge to its wide 
therapeutic application1,74,75 Gentamicin administration 
raised serum creatinine and urea levels, as well as kidney/
body weight, in the current study. In agreement with this 
result, through drug-induced free radical generation, 
gentamicin has been linked to the radical formation and 
oxidant injury in experimental models.76 Studies showed 
that serum urea and creatinine elevation is considered to 
be an important marker of renal dysfunction (glomerular 
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Table 5. 3D binding interactions and positioning between the most promising tested compound of myrrh resin (Oxalic acid, hexyl 2-methyl 
phenyl ester, 12) at the JNK-binding pocket compared to TCU (docked, 18). The red dash represents H-bonds and the black dash rep-
resents H-pi interactions.

damage marker).77 The most sensitive markers for kidney 
disease detection in experimental trials were serum 
creatinine, blood urea nitrogen, and kidney weight/body 
index, which were all raised by gentamicin.77,78 

A sensitive indicator of tubular injury is the LDH enzyme 
found in the proximal renal tubules.79 LDH activity was 
considerably higher in the Gentamicin group than in 
the control group. This increase can be explained by the 
fact that Gentamicin administration caused a change in 
redox status, which was demonstrated by a decrease in 
the concentration of glutathione and an increase in lipid 
peroxidation.80

Inflammation causes a wide spectrum of inflammatory 
mediators to be released. It is characterized by tissue 
destruction and secretion of many inflammatory 
cytokines.81,82 When these cells are activated, more cytokines 
such as nuclear factor kappa B (NF-κB) and iNOS are 
generated. iNOS causes inflammatory cells to migrate to 
the wounded area and generates cytokines such as NF-κB.83 
Gentamicin caused peroxynitrite production by inducing 
the expression of iNOS in glomeruli and mesangial cells.84 
Gentamicin-induced nephrotoxicity is also suggested 
as a result of nitric oxide (NO) overproduction.85 Lee et 
al.86 showed that NO is produced during inflammation.
These findings corroborated the results of the current 
investigation, which indicated Gentamicin’s nephrotoxicity.

The decline in antioxidant enzyme activity could be 

indicative of the negative impacts of Gentamicin. This is 
in alignment with Abdel-Zaher et al.87 when it comes to 
Probucol’s effect in preventing nephrotoxicity triggered by 
Gentamicin was studied in rats, and also in line with Pai et 
al.88 where the protective action of ursolic acid is activated 
against Gentamicin nephrotoxicity was studied. The main 
mechanism by which Gentamicin mediates kidney injury 
is oxidative stress.

The level of MDA in the Gentamicin group was 
significantly greater than in the control group, whereas the 
content of GSH was significantly lower in the Gentamicin 
group than in the control group. These findings were in 
line with earlier research which reported that ROS has 
a significant impact on renal disease pathophysiology.89 
Gentamicin increases ROS production in vivo and in vitro by 
modifying mitochondrial respiration. According to Khan 
et al.90, free radicals and ROS mediate polyunsaturated fatty 
acid peroxidation (PUFAs). An overabundance of PUFAs 
increases the kidneys’ vulnerability to ROS.90 Biological 
membranes contain significant amounts of PUFAs that 
are especially vulnerable to lipid peroxide-producing 
peroxidative attacks.91

The Gentamicin group had tubular degradation and 
necrosis, as well as mononuclear cell infiltration, as 
demonstrated in the histological image of the kidney 
tissues. The discovered histopathological renal changes 
as a result of nephrotoxicity induced by Gentamicin are 
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consistent with findings from Kuatsienu et al.92 Alarifi et 
al.93 reported,  necrosis, degeneration, and vacuolization 
were early signs of tubular changes caused by gentamicin 
treatment. By the conclusion of the gentamicin treatment, 
tubular abnormalities in the kidney had emerged, and 
their severity had grown. The majority of the proximal 
convoluted tubules and, to a lesser extent, the distal tubules 
were affected by degeneration up to severe necrosis. 

The activation of the apoptotic pathway was linked to 
Gentamicin-induced kidney damage, implying that the 
apoptotic pathway was linked to renal damage caused by 
Gentamicin. According to the study, NF-κB activation 
enhanced Gentamicin-induced apoptosis in rat tubular 
cells.94 The considerable increases in caspase3 expression 
in renal cortical tissue revealed that Gentamicin produced 
endoplasmic reticulum (ER) stress and activation of ER-
mediated cell death indicators in this investigation.95 One 
of the fundamental processes that provide protection and 
repair in stress-induced cellular dysfunction by inducing 
cell death is the activation of ER stress.96

In the current study, Mirazid prophylactic showed 
a reno-protective effect against Gentamicin triggered 
nephrotoxicity, Gentamicin-induced nephrotoxicity was 
significantly improved, as seen by considerable reductions in 
(creatinine, urea, and LDH) levels and kidney weight. These 
findings support Hanan’s findings that Mirazid therapy 
improved renal function in rats.97 Numerous experimental 
animal models have shown a relationship between 
oxidative stress and nephrotoxicity.50  Furthermore, it has 
been demonstrated that treating rats with hydroxyl radical 
scavengers protects them against acute renal failure caused 
by Gentamicin.98

Prophylactic treatment with Mirazid showed 
inhibition of kidney oxidative stress. It reduced MDA 
levels, meaning that it inhibited lipid peroxidation and 
the production of ROS, which was accompanied by 
increased GSH content, implying a significant boost in 
antioxidant defenses. Significant reductions in serum LDH 
activity accompanied these improvements in oxidative/
antioxidant balanceMirazid’s capacity to prevent lipid 
peroxidation and dramatically improve the activity of 
antioxidant enzymes has been established in previous 
research to have a protective impact.23 Various studies 
have reported findings that are consistent with the ones 
presented here, Polyphenolic groups in myrrh extract 
induce a protective action against ROS.99,100 Due to its free 
radical-scavenging properties, it exhibited a preventive 
effect against stomach ulcers.101 It was recently discovered 
that myrrh, a powerful antioxidant, works by enhancing 
the total antioxidant activity of the serum and tissues.99 
Meanwhile, Mirazid inhibited the production of MDA in 
Gentamicin induced renal cells.102 Improved antioxidant 
defense and reduced ROS generation can help maintain 
cellular integrity and provide structural, biochemical, and 
physiological benefits.103 Mirazid’s antioxidant properties 
were associated with a significant decrease in Pathological 
alterations caused by gentamicin, as well as a return to 

normal metabolic equilibrium and cellular hemostasis.104 
Mirazid has been proven to protect the nephrons, which 
is assumed to be related to its antioxidant effects99 and 
the antioxidants attenuate lipid peroxidation induced by 
Gentamicin.105

In this study, there was an elevation in the expression 
of iNOS and JNK1. This can be explained by; Gentamicin 
administration has led to stimulation of inflammatory 
pathways through the upregulation of iNOS expressions. 
Furthermore, tumor necrosis factor-alpha (TNF-α) is 
a pro-inflammatory cytokine produced by glomerular 
and tubular cells, as well as extrinsic inflammatory cells, 
in response to Gentamicin treatment. TNF-α operates 
through the mitogen-activated protein kinase (MAPK) 
and NF-κB signaling pathways.106 Tissue damage and 
inflammation are important nephrotoxicity triggers.107 
Furthermore, Gentamicin activates the signaling pathways 
of MAPK.108 JNK1 is one of three well-known MAPK 
pathways; it is regarded as a pro-inflammatory pathway. 
Cell proliferation, differentiation, migration, and apoptosis 
are also controlled.109 The effect of Gentamicin obtained 
in the current study can be explained by these findings 
(Figure 6).

Gentamicin caused nephrotoxicity by increasing 
membrane lipid peroxidation and the formation of lipid 
aldehyde by stimulating ROS. JNK1 is one of three well-
known MAPK pathways that activate protein kinase.; 
it is regarded as a pro-apoptotic and pro-inflammatory 
pathway.110 JNK activates the apoptosis pathway and the 
production of inflammatory markers. Gentamicin induced 
inducible nitric oxide synthase expression in glomeruli 
and mesangial cells and caused peroxynitrite production. 
This results in insult of inflammation and damage of 
the glomerulus (Nephrotoxicity). Mirazid possesses 
nephroprotective benefits due to its antioxidant, anti-
inflammatory, and anti-apoptotic qualities.

Mirazid’s anti-inflammatory and immune-modulating 
properties are confirmed by a reduction in renal iNOS 
content. In agreement with these results, the transcription 
factor NF-κB and MAPK that regulate the expression of 
many immune and inflammatory genes were inhibited 
by Mirazid, and several inflammatory mediators needed 
for initiation, maintenance of an inflammatory process, 
and reduction of oxidative stress were modulated by 
Mirazid.50 Because it regulates genes and coordinates the 
expression of pro-inflammatory enzymes and cytokines 
including iNOS and TNF-α, as well as interleukin-6, NF-
κB is generally understood to be critical for cell viability 
(IL-6).111 In inflammatory and immune reactions, the 
NO radical is recognized to have a central role.112,113 iNOS 
is inactive in resting cells under normal physiological 
conditions, but it produces a large amount of NO under 
pathological conditions, resulting in interferon (IFN) and 
lipopolysaccharide (LPS) increased endothelial nitric oxide 
synthase (eNOS) levels 10 times, which has a dual function 
in chronic infection, inflammation, and carcinogenesis.114

Mitigation of Gentamicin-induced histological alterations 
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confirm the anti-inflammatory impact of mirazid; of 
worth, choosing is the significant downregulation of 
apoptotic and inflammatory responses. Mirazid caused 
caspase-3 expression to decrease, indicating that apoptosis 
was retracted.94 In light of the situation, by inhibiting the 
activation of the ER stress and NF-κB pathways, Mirazid 
protected cells from apoptosis. These mechanisms that 
have been proposed are backed up by prior research that 
found Mirazid is an effective free radical scavenger in the 
kidney inhibiting inflammatory signaling pathways and 
preventing gentamicin-induced renal toxicity.50

Conclusion
Finally, by blocking the JNK1/iNOS pathway, Mirazid 
generates anti-inflammatory, anti-oxidant, and anti-
apoptotic effects, as demonstrated in this study. Molecular 
docking was used to investigate seventeen identified chemicals 
from myrrh resin using GC–MS and ICP–MS separation 
techniques against JNK-1 which is responsible for stopping 
both the apoptotic and iNOS pathways and therefore 
proposed to be the main mechanism of action for its anti-
inflammatory effects. Among the tested isolates oxalic acid, 
hexyl 2-methyl phenyl ester (12) was found to be superior 
to the docked co-crystallized inhibitor (18) with a binding 
score of -7.19 kcal/mol compared to -6.95, respectively. 
Our findings could help in the exact identification of 
the main constituents of myrrh responsible for its anti-
inflammatory effects by targeting JNK-1. Especially oxalic 
acid, hexyl 2-methyl phenyl ester (12), germacrene B (4), 
(-)-elema-1,3,11(13)-trien-12-ol (2), and isosericenine 
(5) isolates represent the most promising compounds for 
further preclinical and clinical studies for the treatment of 
inflammation. 
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