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Abstract

Understanding the spectral behaviour of water is of the greatest importance to the quality management of water
resources. Continuous monitoring by remote sensing is therefore essential for administrators seeking the efficient
management of its many uses. The aim of this research was to characterise the spectral response of water
submitted to different concentrations of sediments of varying textural properties, organic matter and salts, and to
identify the implications of these characteristics using simplified modelling. The experiment was conducted at
the Radiometry Laboratory of the Department of Agricultural Engineering of the Federal University of Ceara,
Brazil. The soils used in the research came from two areas of irrigated agriculture in Ceara, one in Morada Nova
and the other in Pentecoste. Both soils were classified as Fluvic Neosols; the first saline and the second
saline-sodic, and presented significant differences in granulometric composition and organic matter content.
From the results, it can be concluded that: (i) sediments added at different concentrations cause an increase and
deformation of the reflectance curves, and that maximum spectral partitioning occurs at two reflectance peaks;
(i1) derivative analysis favours the identification of wavelengths that best differentiate sediment concentration,
allowing more-efficient modelling of the process; (iii) the characteristics of texture, organic matter and salt
content have little effect on estimating suspended-sediment concentration in the water, making multiple linear
regression modelling a viable option for this purpose.
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1. Introduction

Monitoring the quality of surface water is a basic tool in managing this resource (Abdelmalik, 2018; Kim et al.,
2017), especially in regions where the supply of water for a wide range of uses is almost entirely dependent on
surface reservoirs. Population growth and the increased demand for consumer goods have resulted in a
significant increase in the number of artificial reservoirs in various areas of the world, such as Australia (Callow
& Smettem, 2009), Brazil (Malveira, de Aratijo, & Gilintner, 2012), China (Li & Wei, 2008), Romania (Radoane
& Radoane, 2005), Spain (Mamede, 2008), the United States (Minear & Kondolf, 2009) and Canada
(Teegavarapu & Simonovic, 2002). Despite efficient storage capacity, surface reservoirs are subject to impacts
on the quality and quantity of waterdue to the supply of sediment from natural or anthropogenic processes.

The semiarid regions of Brazil are an example of regions where the supply of water is almost entirely dependent
on surface reservoirs (Andrade, Aratijo, Rosa, Disney, & Alves, 2007; de Araujo, Giintner, & Bronstert, 2006;
Krol, de Vries, van Oel, & de Araujo, 2011). In these environments, the risk of water shortage is imminent due to
the growth in demand as well as the water supply being restricted to the rainfall history of the previous years and
the accumulated volume in the reservoirs (de Aratjo & Bronstert, 2016). Therefore, the availability of water
relies on the retention of river flows in the reservoirs, which on its turn is subject to the siltation process and can
have serious impacts on the local and regional economy in relation to potable water supply, irrigation and energy
supply (Agostinho, Gomes, Santos, Ortega, & Pelicice, 2016). The reduction in water availability is one of the
key impact factors on silting in reservoirs on the semiarid regions. It is estimated that the reduction, for the State
of Ceara alone, is approximately 388 L.s™ yearly (90% annual reliability: Campos, 2010; de Aratijo et al., 2006).
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Still, qualitatively the reservoirs can be affected by silting since they act as filters able to retain a considerable
portion of the sediment carried by rivers (Lima Neto, Wiegand, & de Araujo, 2011; Lira, Toledo, & Mamede,
2014). This retained portion, when at high deposition rates, can cause significant increases in nutrient and other
water pollutants. The deposition of enriched sediments can have negative environmental consequences, which
are detected by changes in indicators of water quality, mainly related to the solubility of salts, nutrients and
sediment transport (Andrade et al., 2007).

It is therefore essential to monitor water resources in order to promote measures for controlling and preventing
large amounts of sediment in surface reservoirs.

Among the current techniques for monitoring water bodies, remote sensing is important., and has shown great
potential for overcoming the spatio-temporal limitations of traditional methods of water monitoring in situ, since
it allows the acquisition of information on different spatial and temporal scales (Gin, Koh, & Lin, 2003; Rudorff,
Novo, Galvao, & Pereira Filho, 2007; Valerio et al., 2018; Wang & Lu, 2010; Zhang et al., 2016).

With the application of remote-sensing techniques, it is possible to evaluate the responses resulting from
disturbances due to anthropogenic activity, so as to predict the impact of such action on the conditions that
guarantee maintenance of the environmental quality in the medium and long term (Novo, 2005). Therefore, the
relationship between responses in the spectral domain and optically active limnological characteristics are the
focus of applying remote sensing to bodies of water. It is sought to understand the dynamics of the composition
and biophysical components of water that are relevant to monitoring aquatic ecosystems (Ren¢ et al., 2009).

The difficulty in understanding the dynamics of the composition and optically-active components of water lies in
their interactivity, since sediment, due to such characteristics as its granulometric composition, results in changes
to spectral response (Lodhi, Rundquist, Han, & Kuzila, 2007; Ostrovsky & Tegowski, 2010). In addition, this
sediment is associated and interacts with other optically active components, such as organic matter. The organic
matter acts in reducing the bidirectional reflectance factor of the water (Mantovani & Novo, 1996) in the visible
spectrum and promotes increased reflectance in the infrared. Organic matter dissolved in the water causes
absorption of the incident energy in the region of the spectrum between 400 and 700 nm (Bricaud, Morel, &
Prieur, 2018), with a consequent reduction in reflectance. Increases in the concentrations of organic matter in the
water also promote an increase in reflectance amplitude in the red and infrared regions (Mobley, 1994).

In view of the above, the aim of this study was to characterise the spectral response of water submitted to
different concentrations of two soils of different texture and concentrations of organic matter. It was also sought
to identify the relationship between spectral signature and concentration using multiple regression analysis.

2. Method

2.1 Collection of Experimental Data

The experiment was conducted at the Radiometric Laboratory of the Department of Agricultural Engineering of
the Federal University of Ceara (DENA/UFC), Brazil. To minimise interference from variations in the angular
position of the sun, all readings were taken under a clear sky from 10:00 to 14:00.

The experiment was carried out in a blue polyethylene container, painted internally with matte black paint. The
container had a total capacity of 310 litres; the volume of water used in the experiment was 200 litres (Figure 1).
An ASD FieldSpec®3 Hi-Res spectroradiometer, manufactured by Analytical Spectral Devices, was used to

measure the radiance. The spectral resolution of this equipment is 1 nm, with a spectral range of from 350 to
2,500 nm.
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Figure 1. Container and ASD FieldSpec®3 Hi-Res spectroradiometer used in the experiment to collect
radiometric data

The wavelength bands to be analysed comprised the 400 to 900 nm range, corresponding to the range of the
optically active components of the water. A Spectralon reference plate, to represent a Lambertian surface, was
used in measuring the radiance, since it has a similar reflectance to that of a perfect Lambertian surface.

Radiance values were converted to reflectance factor with Equation 1.
FRB, = (L,;/L,;) * 100 (1)

where, FRB; = bidirectional reflectance factor (%); L., = spectral radiance of the target (W em? st pm); L.,=
spectral radiance reference (W cm™ sr pm).

Spectral readings began using clear water (with no added sediment). After each reading (i.e. five sequences of
data acquisition) a known amount of sediment was added (Table 1), and a reading was taken.

Table 1. Weight of sediment added to the water according to concentration

B Weight of sediment (g)

n SSC (mgL™)
Added Accumulated

1 0 0 0
2 50 10 10
3 100 10 20
4 150 10 30
5 300 30 60
6 400 20 80
7 700 60 140
8 900 40 180
9 1250 70 250
10 1500 50 300

Note: n = concentration number; SSC = suspended-sediment concentration (mg L™).

The soils used in this research came from two regions of irrigated agriculture in the State of Ceara, one in
Morada Nova (RUbd;) and the other in Pentecoste (RUbd,), both classified as Fluvic Neosols (RUbd;). The
average geographic coordinates of the central points of the areas RUbd; and RUbd, are 5°10" S, 38°22" W and
3°45' S, 39°14" W, respectively.

According to the physical-chemical analysis carried out, RUbd; is classified as a saline soil and RUbd, as a
saline-sodic soil. In addition to the above difference, it should be noted that although the soils have the same
classification, they display significant differences in granulometric composition and the amount of organic
matter (Table 2).
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Table 2. Soil characteristics

Granulometric composition (%)

Soil - EC (dSm') ESP OM (gkg')  Textural class
Sand Silt Clay

RUbd; 13 81 6 31.63 2 323 silty

RUbd, 18 51 31 13.72 73 14.0 clayey loam

Note. RUbd; = saline Fluvic Neosol from the Morada Nova irrigated perimeter, Ceara; RUbd, = saline-sodic
Fluvic Neosol from the Pentecoste irrigated perimeter, Ceara; EC = electric conductivity; ESP = exchangeable
sodium percentage; OM = organic matter.

2.2 Data Analysis

Derivative analysis is a technique that makes use of the derivative value of reflectance with respect to
wavelength. This allows identification of the points at which the spectral curve displays abrupt changes in
behaviour due to the presence of components that favour absorption and scattering of the target. Derivative
analysis was therefore used to evaluate more accurately the wavelength at which spectral changes occurred in
relation to the sediment concentrations under investigation.

The first derivative (dRA) of the reflectance spectrum with respect to wavelength x at a given point i can be
numerically approximated by a finite-difference scheme using central or symmetric approximation, expressed by

Equation 2.

dR, R, —-R._,
A = i+ L5 2
dx 2Ax 2)
where, Ax is the separation between two successive bands. Since Ax=x; — xy, it is assumed that x; > x; and the
interval between the bands is constant. From the results obtained with the derivative analysis, a multiple
regression analysis was carried out in order to establish empirical models for estimating the suspended-sediment

concentration in the water from the reflectance data.

In order to evaluate the performance of the resulting models, the following criteria based on statistical indices
were used: coefficient of determination (#?), which indicates the degree of correlation between the independent
variables and the dependent variable; Pearson correlation coefficient () (Equation 3); and the concordance index
(d) proposed by Willmott (1981), that indicates the degree of precision of the equation (Equation 4) and can
assume values from 0 (zero) to 1, for the no agreement and perfect agreement, respectively. The confidence
index of the model (c) was also analysed, which includes the indications of the two coefficients, » and d, (¢ = r-d),
where ¢ = 1 means perfect confidence and ¢ = 0 zero confidence, as proposed by Camargo and Sentelhas (1997).
Finally, the measured and simulated data were evaluated using the efficiency coefficient proposed by Nash and
Sutcliffe (1970) (Equation 5). The NSE coefficient varies from - to 1, and the greater the coefficient, the better
the performance of the model. If the NSE is less than 0 (zero), the predictive capacity of the model is less than
the measured mean value.

Different reflectance data were used in this analysis to those used in calibrating the models, thereby avoiding
errors resulting from autocorrelation of the data, which could result in the models giving skewed results. The
reflectance data for the selected wavelengths that were used in the calibration step constitute a mean of a set of
three values obtained for each concentration of suspended sediment (0 to 1500 mg L™). The reflectance data for
the same wavelengths used to model the SSC from the regression models evaluated correspond to the mean
obtained from the two remaining values of the readings repetitions (as previously described, at each stage of
addition of sediments were performed a sequence of five repetitions of readings).

Thus, it was possible to perform the SSC simulations from the empirical models with reflectance data not used in
the elaboration of the equations, allowing the comparison with the measured suspended sediment concentration.
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where, E: estimated suspended-sediment concentration (SSC) value, mg L'; E: mean value of the estimated
SSC values, mg L' M: measured SSC value, mg L'; M: mean value of the measured SCC values, mg L
number of measurements.

3. Results and Discussion
3.1 Relationship Between Reflectance and Sediment Concentration in the Water

In the absence of suspended sediments, the reflectance of the water in the container ranges from 0.5% to around
1.5% (Figure 2). The low reflectance values was mainly due to the absence of optically active material in the
water, causing the black inner walls of the container to absorb almost all the incident energy. For clear water,
maximum reflectance is recorded at around 400 nm, with discrete secondary peaks at 700 nm and 800 nm—this
effect can be seen in the research by Rudorff et al. (2007). The greatest absorption is seen in the near-infrared
band—beyond 750 nm, since, as there is no notable presence of organic matter or suspended solids, the water
absorbs a significant part of the incident radiation in the near infrared band (Jensen, 2007).
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Figure 2. Spectral curves of the water as a function of sediment concentration for saline (A) and saline-sodic (B)
Fluvic Neosols. The values for sediment concentration was expressed in mg L™, ranging from 0 to 1500

Successive increases in the suspended-sediment load result in a shift in the spectral reflectance profile towards
higher values. This can also be found in other studies, such as those by Chen, Curran, and Hansom (1992);
Curran and Novo (1988); Karabulut and Ceylan (2005) and Lodhi et al. (2007), who state that a higher
concentration of suspended sediment causes an increase in reflectance over the entire spectral band from 400 nm
to 900 nm.

According to the spectral responses of the water system for the two soils evaluated in this experiment, they were
similar, i.e. the curves have radiation-absorption bands around 400 nm, 750 nm and 900 nm, and due to the
absorption and scattering produced by the water molecules and sediment particles in these bands, there was two
prominent reflectance peaks, at 700 nm and 800 nm (Figure 2). It can also be seen that with the addition of
sediment, there is a rise in reflectance in the 400 to 675 nm range, with a crest at 700 nm followed by an abrupt
decrease trough from 725 nm. Reflectance then starts to increase up to 800 nm, followed by a reduction,
characterising a second reflectance peak. Rudorff et al. (2007) saw a similar effect on the radiation-absorption
bands for the waters of the Amazon River, and attributed these absorption bands to the joint spectral properties of
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the suspended sediments and dissolved organic matter (close to the 450 nm band), and by rotation of the water
molecules (750 nm and 900 nm).

It can also be seen that for the same sediment concentration, spectral reflectance values was slightly higher for
the soil with a greater sediment content of smaller particle size, i.e. clay (Figure 2B). In fact, for suspended
particles with diameters smaller than 63 pm, the maximum reflection coefficient is 11% at 570 nm (Gin et al.,
2003), while for sediment smaller than 10 pm, the maximum reflectance at the same wavelength is 15%.

For the saline soil (Figure 2A), reflectance values was similar between the peaks (700 nm and 800 nm), in
contrast to the saline-sodic soil (Figure 2B), where the values of the first peak was higher than those of the
second. These findings support the hypothesis that organic matter present in larger proportion in saline soil has
the effect of reducing reflectance in the 400 nm to 700 nm range, and at the same time promotes a substantial
increase in reflectance around 800 nm.

It is known that the presence of organic matter reduces the reflectance of both silt and clay particles, which,
despite being fractions of smaller diameter, undergo changes due to organic matter. Clay particles in the presence
of more organic matter have a darker colour and result in lower reflectance values at all wavelengths compared
to silty soil (Lodhi et al., 2007).

The greatest reflectance value, which occurred around 800 nm for the saline soil (soil with a higher
concentration of organic matter) confirms the findings of (Mantovani & Novo, 1996). Those authors report that
the greatest increase in the bidirectional reflectance factor as a function of organic matter concentration occurs at
around 800 nm.

Increases in the concentration of dissolved organic matter found in water systems decreases reflectance,
especially in the blue to red range. In the spectral range between 400 and 570 nm (blue and green),
concentrations of humic substances promote a reduction of approximately 40% in water reflectance. In the red
and infrared region, 670 and 900 nm, there is a proportional increase in reflectance amplitude throughout the
range (Mobley, 1994).

However, it is important to highlight the uncertainties that may occur due to factors in the field, such as the
variation in days and times of measurements; variations in irradiance and in solar illumination geometry during
data collection; specular reflectance; and movement of the water surface caused by the wind, which intensifies
the effects of the specular reflectance (Rudorff et al., 2007).

The most relevant characteristic of the spectral curves is the predominance of two reflectance peaks. These two
crests tend to become narrower and more prominent as more sediment is added. Maximum spectral partitioning
(rate of increase of peak reflectance at each concentration) for both soils can be seen at the wavelength bands
corresponding to the reflectance peaks. The formation of two reflectance peaks in the spectral profile when
sediment is added to the water is a fact resulting from this study, and is also seen in other studies, such as those
of (Lodhi et al., 2007; Rudorff et al., 2007).

With the reflectance curves for 1,250 mg L™ and 1,500 mg L™ of sediment, an increase in suspended-sediment
concentration does not result in an increase in reflectance, i.e. there is low spectral separation, in such a way that
an increase in sediment concentration results in no significant increase in reflectance. Cloud cover and energy
intensity in the environment (Gin et al., 2003) are factors that cause these variations, however experimental
conditions during this research minimised the action of these factors. Another important factor, and one that may
have exerted greater influence, is the granulometric and mineralogical composition of the soil (Curran & Novo,
1988), especially sediment properties. The influence of granulometric composition should explain the result
described here, associating water saturation by the suspended-sediment load with the deposition rate, which
tends to be greater at high concentrations.

3.2 Relationship Between the First-Order Derivative and Sediment Concentration in the Water

After differentiating the reflectance curves for both soils (Figure 3), it was found that the first spectral derivative
applied to reflectance reduced variations from the constant addition of radiation at both levels of data acquisition,
highlighting certain spectral features. With these curves, the variation pattern was similar for each simulated
concentration of suspended-sediment in the water. First there was a negative peak around 725 nm, followed by a
positive rise to 800 nm, with the subsequent formation of another, more-pronounced negative peak around 825
nm. These findings for spectral behaviour are explained by the combined effect that the spectral properties of the
suspended sediments and dissolved organic matter together promote in the water. For Rudorff et al. (2007), these
joint properties of the dissolved elements translate into standard spectral behaviour of changes in the reflectance
and absorption peaks.
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Figure 3. Derivative curves of the water spectrum with different concentrations of suspended sediment for saline
(A) and saline-sodic (B) Fluvic Neosols. The values for sediment concentration are expressed in mg L™, and
range from 0 to 1500

By means of derivative analysis of the data it was possible to identify points where the spectral curve showed
abrupt changes in behaviour due to the presence of sediment in the water, and from this to define the spectral
bands that allow the suspended-sediment concentration to be estimated by means of multiple linear regression
models, and to analyse the relationship between sediment and spectral response. As the higher-contrast spectral
bands in the differentiation were the same for both soils under evaluation, the data were grouped, and the mean
values used to calibrate the models.

3.3 Multiple Linear Regression Models for Estimating Sediment Concentration

In view of the statistical data analysis, important information on the dispersive behaviour of the SSC and
reflectance data is required. It can be seen that there are distinct patterns in two regions of the reflectance
spectrum in relation to sediment concentration. A linear response is seen when the sediment concentration ranges
from 0 to 300 mg L. The relationship between reflectance factor and sediment concentration from 300 mg L™,
shows different behaviour, with the mean data better adjusted to a logarithmic curve (Figure 4). In addition,
another relevant factor is that mean spectral separability is about twice as high (36%) for lower concentrations of
sediment (i.e. less than 300 mg L") than for higher values (16%). It can therefore be inferred that estimates of

sediment concentration may be less susceptible to error when the models are divided into bands (Dorji et al.,
2016).
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Figure 4. Boxplot of reflectance values and trendlines of mean values for Fluvic Neosols at wavelengths of 725
nm (R 725) and 825 nm (R 825)

These findings support analysis of the data and models according to the above ranges of sediment concentration.
As a result, the regression analysis was divided into two parts, the first, which includes the range of 0 to 300 mg
L', and the second, for values greater than 300 mg L™

In addition, in order to verify the degree of interference that salts in the sediment may have in estimating the
suspended-sediment load, the saline and saline-sodic soils were parameterised individually.

In addition, even with the above mentioned findings, the data set used separately was combined in the calibration
of a general model so as to verify the depreciation of the model when used in a generalized way without previous
analysis of the dispersive behavior of the data.

The adjusted multiple linear regression models (Table 3) show good representativeness, with values for R* and
R?justca  greater than 0.93, indicating strong correlation, according to the Pearson scale. The good
representativeness of the models was associated to the fact that multiple linear regression makes use of distinct
and partially independent wavelength bands, providing a better fit to the data.

Table 3. Multiple linear regression models for estimating suspended-sediment concentration (SSC) from
reflectance data

Fluvic Neosol SSC Equation R? Rzajusted
Saline 0-300 SCCg; =-58.5 +(12397.3-R725) — (2300.3-R825) 0.998 0.996
>300 SCCs, =-286.9 — (22070.6:R725) + (48754.5:R825) 0.987 0.979
) Sa]mesodlc """"" 0-300  SCCsg =-90.4 + (23181.8:R725) — (13280.8R825) | 0983 0966
>300 SCCss, =-364.0 — (1833.5-R725) + (29766.7-R825) 0.959 0.932
" General model 0-1500  SCCyepera = -147.2 — (22018 3-R725) + (51692.8R825) 0976 0973

Note. General model = model for both soils by fitting all the data together, SSC = suspended-sediment
concentration (mg L™); R725 and R825 = bidirectional reflectance factor (dimensionless—see Equation 1, the
radiance measured on the surface of the Spectralon plate as reference) at wavelengths of 725 nm and 825 nm.

Figure 5 shows the measured values and those modelled by the equations proposed for the soils, providing cross-
validation of the data with saline characteristics against saline-sodic, and vice versa. Also presented are the
values simulated by the general model from the reflectance data of the water with saline and saline-sodium
sediments. It can be seen that the best fit between the measured and the modelled values for SSC occurs up to
150 mg L': from this concentration on, the values differ more. Nevertheless, any related errors are less than
10%, except for the general model, where the mean error up to 150 mg L' was greater than 42% and
approximately 32% at the immediately higher concentrations.
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Figura 5. Measured values and values modelled by the equations proposed for the soils

Note. SSC = suspended-sediment concentration; 'mensured reflectance values in saline used for cross-validation
of the saline-sodic model; *mensured reflectance values in saline-sodic used for cross-validation of the saline
model; *mensured reflectance values in saline used for validation of the general model; *mensured reflectance
values in saline-sodic used for validation of the general model.

The specific models for each soil underestimates the values for higher concentrations of sediment in the water
(e.g. 1500 mg L), while the general model overestimates the concentrations. This characterized a limitation of
multiple linear regression for modelling data of suspended-sediment concentrations from reflectance data fitted
logarithmically. Moreover, there is the limited applicability of the empirical models that, for Lopes, Barbosa,
Novo, Andrade, and Chaves (2014), useful only within the context from which they were determined and with
the aid of real field data.

The best fit found for the first range of concentrations is related to three factors: the linearity of the data, the
efficiency in adjusting the multiple linear model to the linear data and non-saturation of the water by suspended
sediments.

As reported above, the concentration of suspended sediments changes the rate of deposition, which tends to be
more dynamic at higher concentrations. According to Glymph (1973), the amount of sediment deposited in a
given reservoir depends on the amount of suspended material it receives and the capacity of the reservoir to
retain the suspended particles (retention efficiency).

By analogy to lentic and lotic bodies of water, the sedimentation ratio itself presents a similar general pattern,
where the larger particles, including the bed material load, are seen to sediment, forming a delta, while the lighter
particles, especially clay, are distributed beyond the interior of the body of water (Bondurant & LiveSey, 1973;
Yang, Sokoletsky, Wei, & Shen, 2017). Such material may interact with the dissolved salts, producing
flocculation, or even remain in suspension for long periods of time, thereby maintaining high turbidity in the
reservoir. There are also very fine sediment particles that are only deposited under conditions of reduced water
turbulence; these particles are able to remain in suspension for long periods (Okumura, 1995).

From joint analysis of the concordance index (d), the correlation coefficient (r) and the confidence index (c), it
can be seen that the specific multiple linear regression models display good reliability, indicating that the SSC
variable can be best estimated with precision and accuracy from the use of specific empirical models, since these
present a high degree of reliability, to the detriment of more general models. According to the analysis criteria of
Camargo and Sentelhas (1997), the models are classified as having optimal performance.

The calculated NSE coefficients confirm the results of the other indices regarding model performance. The
lowest value for NSE is associated with material with saline characteristics at higher concentrations, probably
due to the interaction of the dissolved salts with the water. In general terms, such results demonstrate that the
models have a wide range of applicability, and that the characteristic properties of the salts do not significantly
interfere in the performance of the models (Table 4). It was observed that the general model presented lower
efficiency value of the NSE coefficient for the lower SSC values, corroborating with the larger average errors
described previously. Even with the lowest efficiency, it was observed that under laboratory conditions the
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general models allow the grouping of a larger number of non-explanatory random variables, makes it feasible
and applicable in certain situations.

Table 4. Results of the evaluate the performance of the models for Fluvic Neosol

Model SSC r d c NSE
. 0-300 0.99 0.99 0.98 0.95
Saline
>300 0.97 0.96 0.93 0.84
. . 0-300 0.99 0.99 0.99 0.96
Saline-sodic
>300 0.99 0.98 0.98 0.95
General model 0-300 0.98 0.93 0.91 0.54
>300 0.97 0.94 0.91 0.76

Note. SSC = suspended-sediment concentration (mg L™); r = Pearson correlation coefficient; d = concordance
index; ¢ = confidence index of the models; NSE = Nash-Sutcliffe efficiency coefficient.

Despite the good results presented in this research, it is necessary to discuss that the laboratory conditions to
which the models were developed may not offer the conditions of applicability in the monitoring of the bodies of
water. This is due to the fact that the suspended sediments originate in different sources and the proportion that
each source contributes in the blend is variable in the time and the space, consequence of the erosive processes
that are in course in the contribution basin. Even growth methods that are based on measures and comparisons
between measures; which admit the fundamental principle that suspended sediments maintain some of their
acquired geochemical properties in the sources, and these properties are then used as tracers for efficiency; have
limitations on the applicability in watersheds and differentiation of sediment sources. An example of this is the
fingerprinting technique (Collins & Walling, 2002; Minella, Merten, & Clarke, 2009; Poleto, Merten, & Minella,
2009; Tiecher et al., 2018).

Thus the temporal dynamics of sediment in the catchment as well as the different sources (e.g. roads, crops,
pastures, fluvial channel), induce the necessity of larger models as opposed to specific models for different types
of soil. Although general models have lower efficiency under laboratory conditions, they may overcome the
problem of the innumerable sources of variation that sediments may present. For example, the sites where the
soil samples were collected are characterized as being of intense agricultural use and in some cases without the
adoption of conservation practices, which can cause high rates of soil loss and sediment production that, when
they reach the bodies of water cause significant damage. Despite this logic of establishing that agricultural areas
contribute more to sediment production, studies by Croke, Mockler, Fogarty, and Takken (2005); Foltz,
Copeland, and Elliot ( 2009); Navarro-Hevia, Lima-Farias, de Araujo, Osorio-Pelaez, and Pando (2016) e Ziegler
et al. (2007) showed that unpaved roads were significant sources of runoff and sediment production, albeit to a
lesser extent. In addition, erosion rates produced on roads were much higher (or at least similar) than the usual
erosion rates dating back to agricultural fields (Cao, Zhang, & Zhang, 2009; Rijsdijk, Sampurno Bruijnzeel, &
Sutoto, 2007).

These findings suggest that the monitoring conditions of the bodies of water from specific models for soils of
agricultural area may not represent the share of sediments in the water from significant sources, such as unpaved
rural roads. These questions highlight the need for monitoring and continuity of research in order to overcome
the limited applicability of the empirical models that, for Lopes et al. (2014), are useful only within the context
from which they were determined and with the aid of real field data.

4. Conclusions
The results obtained in this research, under controlled laboratory conditions, allowed to conclude that:

Different concentrations of suspended sediments in the water causes an increase and deformations in the
reflectance curves for the bands corresponding to the optically active components, with maximum spectral
partitioning correlated with the predominance of two reflectance peaks that were more intense at higher sediment
concentrations.

The technique of derivative analysis was promising in identifying points on the spectral curve for differentiating
between sediment concentrations, thereby allowing the elaboration of more-efficient regression models for the
wavelength where the spectral changes occurred in relation to the sediment concentrations under study.
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The use of multiple linear regression models was a viable alternative for estimating sediment concentration in
surface waters, in such a way that the characteristics of texture, organic matter and salt content do little to
interfere in modelling the concentration of suspended-sediments in the water.

It is necessary to use the empirical models in field conditions, in order to verify the applicability of the method in
the estimation of the sediment concentration in the bodies of water and in the monitoring of the water quality
from the reflectance data. Thus, allowing to evaluate the interference that soil heterogeneity in a catchment, the
temporal dynamics of suspended sediments and field conditions different from those in controlled laboratory
experiments, can generate in the estimates.
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