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Small areas of elevated activity are a concern during a final status scan survey of

residual radioactivity of decommissioned and contaminated sites. Due to the

characteristics of scanning, the lower limit of detection is relatively high

because the number of counts is low due to the short measurement time.

To overcome this, an algorithm capable of finding hotspots with little

information through deep learning was developed. The developed model

using an artificial neural network was trained with the scan survey data

acquired from a Monte Carlo-based computational simulation. A random

mixing method was used to obtain sufficient training data. In order to

respond properly to the experimental data, training and verification were

conducted in various situations, in this case, in the presence or absence of

random background counts and collimators and various source

concentrations. Experimental data were obtained using a conventional

detector, in this case, the 3″ × 3″ NaI(Tl). The advantages and limitations to

the proposed method are as follows. Results were well predicted even in cases

at less than 1 Bq/g, which is lower than the scanned minimum detectable

concentration (MDC) of the detection system. It is a great advantage that it can

detect contaminated areas that are lower than the existing scan’s minimum

detectable concentration. However, the limitation is that it cannot be predicted,

and the accuracy is low inmulti-sourced scans. The source position and size are

also important in residual radioactive evaluations, and scanning data images

were evaluated in artificial neural network modes with suitable prediction

results. The proposed methodology proved the high accuracy of hotspot

prediction for low-activity sites and showed that this technology can be

used as an efficient and economical hotspot scanning technology and can

be extended to an automated system.
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1 Introduction

Radiation measurements at decommissioned sites or in a

post-accident environment are very important for radiation

protection (Abu-Eid et al., 2012; Huang et al., 2013; Lee et al.,

2010; Takahashi et al., 2015). After decontamination, such sites

are investigated to confirm that the activity concentration is

lower than the release criteria. Laboratory sample preparation is

an important step, but it is an expensive and time-consuming

step during measurements of elevated radioactivity levels.

However, because it is not possible to accurately measure all

sites in a wide area, a dynamic survey method or scanning has

been used (Hong et al., 2014).

The derived concentration guideline level (DCGL) is the

residual radioactivity that can be distinguished from the

background level, and it is assumed that the contamination

source is uniformly distributed in the contaminated area of

the site. The average value of the residual radioactivity for

each region of interest should not exceed the DCGL value for

each nuclide. In areas with locally high residual radioactivity

(hotspots), the number and locations of measurements are

determined using the DCGLEMC method of calculating the

derived concentration standard. Also, DCGLEMC is a value

applied to an area with high local residual radioactivity, and it

is the site release standard for hotspot areas. In addition, the

actual MDC of the selected scanning technique is compared to

the required scan MDC. If the actual scan MDC is smaller than

the required scan MDC, the selected scanning technique is

considered to have adequate sensitivity for hotspot

measurements. In residual contamination level surveys of

large-scale sites, the scan MDC is derived according to the

appropriate measurement conditions (e.g., scan speed, detector

type, etc.) to evaluate hotspots quickly and accurately, and an

investigation plan is established (United States Nuclear

Regulatory Commission, 2005).

Measurements of hotspots at the site are performed

through a dynamic survey (scan survey) because the scan

MDC value changes depending on the type of the detector,

survey speed, and height of the detector. Therefore, it is

necessary to establish proper measurement conditions

according to the release criteria (Kurtz, 2017; Abelquist

et al., 2020; Owens et al., 2018; Hong et al., 2011). Unlike a

static survey, for a scan survey, the target area is measured

during the continuous movement of the detector, and the

measurement time within the target area is short. Therefore,

the minimum detectable concentration (MDC) of the scan

survey is relatively high. It is possible to increase the

measurement time to meet the desired concentration, but if

it exceeds a certain time limit, the advantage of the scan survey

for quick measurements will be lost. The scan survey method

is generally used to evaluate the distribution of contamination

at sites in the final status survey (FSS) (Abelquist, 2013; Lee

et al., 2020). Also, the scan MDC varies depending on the

survey conditions and the type of the instrument used. In

2016–2019, a study to evaluate scan MDC outcomes for 137Cs

with high soil adsorption levels was conducted (Kim et al.,

2020). This study evaluated the sensitivity, according to the

dynamic irradiation conditions, by changing the scan speed

and measuring the height using 2″ NaI(Tl) and 3″ NaI(Tl)

crystals. Recently, various scenarios have been investigated for

uranium enrichment facilities in Spain using scan

measurement methods (Vico et al., 2021). These studies

follow the multi-agency radiation survey and site

investigation Manual (MARSSIM) assessment method,

which is the methodology followed in many countries to

demonstrate compliance with radiation standards.

According to previous studies, it was found that the higher

the scan speed and the lower the efficiency of the instrument

were, the higher the contamination range became. For this

reason, it is necessary to develop a method capable of

investigating hotspots with a fast scan rate.

The gamma camera was a representative technology for

investigation of hotspots (Gal et al., 2006; Okada et al., 2014).

However, these devices have a low sensitivity of a few

hundreds of μGy/h because they lose too many gamma ray

signals as they utilize a pinhole collimator. Therefore, the

gamma camera has been used for high levels of contamination,

such as inspections of nuclear power plants, radioisotope

generators, and nuclear accident sites. The Compton

camera has been used for low-dose rate levels and for

relatively accurate source position tracking (Suzuki et al.,

2013). Compared to a gamma camera, this camera can be

used at relatively low doses and can locate sources at the level

of hundreds of nGy/h. Based on this, a compactly

manufactured Compton camera feasible for use at sites

after an accident was developed (Sato et al., 2020; Sato

et al., 2018). A gamma ray detector was attached to an

unmanned aerial vehicle which flew over the scanning area,

whereas the conventional Compton camera used a pixelated

gamma ray detector. The conventional type incurs a high cost

because it needs two pixelated photon detectors. However, in a

study involving the compact Compton camera, the Compton

cone was calculated using data acquired when moving along

the flight route. Therefore, this type did not require multiple

detectors, which reduces its weight and cost. However, a

problem arose when multiple sources were positioned

adjacently as distance correction among the Compton

cones was difficult and the process only indicated whether

there was any source in the area. Device-oriented studies, such

as those that automate a conventional detector by loading it

into a vehicle, have also been carried out (Lee et al., 2020;

Ardiny et al., 2019), but there are only a few software-based

approaches.

Artificial neural networks have been widely applied in

various fields in engineering to solve complex multi-variable

problems (Shafiq et al., 2021a, Shafiq et al., 2021b, Shafiq et al.,
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2022; Colak et al., 2022), improve the accuracy of classification of

image-like data (Sibille et al., 2019), and spectroscopy (Galib

et al., 2021; Cui et al., 2019; Li et al., 2021). By training the neural

network model, also called deep learning, meaningful results can

be obtained from the data at a level that is difficult for humans to

find or is statistically insignificant due to lack of information. By

using deep learning, radionuclides can be identified from a full-

energy peak that is unshaped due to lack of counts and from a

spectrum acquired with poor energy resolution, such as that by a

plastic scintillator (Daniel et al., 2020; Jeon et al., 2020).

Based on these outcomes, in this study, a low-level hotspot

investigation method based on an ANN-based deep-learning

algorithm and scanning data imagery is proposed. The

method is based on deep learning and determines hotspots in

the scanning area with activity levels lower than those of the

conventional scan MDC. In the application of deep learning on

gamma ray spectroscopy, although the number of counts was not

sufficient in the range of interest, the presence of a certain

radionuclide can be determined using the data from other

channels. Taking this into consideration, if the scanned data

are imaged, each pixel becomes a data channel adjacent to the

others, and even if the amount of data obtained directly above the

hotspot are small, the location and size of the hotspot can be

predicted using the surrounding data. The present study uses

scanning data imagery and undertakes training of the ANN

model using computational simulation data and verification of

hotspot prediction results through both simulations and

experiments.

2 Materials and methods

The purpose of the deep learning-based hotspot investigation

algorithm proposed in this study is supporting to identify

radioactively elevated hotspots using a deep learning model

trained with simulation data. This section describes how the

neural network model is configured and the training data are

prepared.

2.1 Hotspot investigation algorithm with
an ANN

The ANNmodel works similarly to how neurons in the brain

work (Kim et al., 2019). Neurons (nodes) between layers are

connected with weights. The values in the input layer are

multiplied by weights through the hidden layer, and the result

is obtained at the output layer. The errors between the answers

and results are reduced by updating the weights with an

optimization function and a loss function. By repeating this

with a proper number of cycles, the model can predict the

desired target value.

Figure 1 shows a conceptual diagram of the hotspot

investigation algorithm with deep learning. An ANN model is

trained using image-like count rate scanning data obtained from

scanning simulation. In this study, the input data have a shape of

24 × 24. Each pixel contains the count rate in a scanning interval.

Candidates for neural network models include fully connected

FIGURE 1
Conceptual diagram of the hotspot investigation algorithm.
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sequential neural networks, convolutional neural networks, and

recurrent neural networks. Convolutional neural networks are

widely used in 2D data such as images and are useful for

extracting features by training the correlation between

adjacent pixels. It is particularly effective for problems that

are too expensive to train with a fully connected neural

network when the number of pixels in the image is large.

However, in this study, the number of pixels is small because

the scanning range is not large at one time. There are also cases

where the hotspot covers only one pixel because the area per

scanning interval is large. Therefore, the convolutional neural

network is excluded because it may be disadvantageous in

learning sparse image data. Recurrent neural networks are

used to learn sequential data such as spectra or waveforms. If

the spectroscopy data from the scintillator detector are directly

used to train the model, it would be very useful, but in this study,

the counting rate data were used. Therefore, the recurrent neural

network is also excluded. As a result, this study does not consider

other models because the computational cost is not large even

when using a fully connected sequential neural network.

The ANN is composed of a flattening layer to convert the

two-dimensional data array into one-dimensional data before

training, two hidden layers, and an output layer (Yegnanarayana,

2009). The first hidden layer uses the activation function of the

rectified linear unit (ReLU), and the second layer uses a sigmoid

function. A binary cross-entropy loss function is used to train the

model to classify whether radioactive sources exist or not.

Therefore, the model predicts the hotspots by using the count

rates in the scanning intervals. The shape of the output from the

model is same with the flattened input which corresponds to

576 × 1, and then, the output is reshaped to 24 × 24 to create

image-like results. After the ANN is sufficiently trained by the

dataset produced by simulation, the experimentally measured

count rate data are used and predicted by the model. The

performance of the model is evaluated by these real-world

data. For summary, this model takes count rates in the pixels

as the input, and it classifies whether each pixel has elevated

radioactivity or not. Therefore, each count rate can be considered

as a sample. Therefore, the model performance metrics such as

accuracy, precision, and recall are estimated in an image that

contains 576 samples.

2.2 Training data production

The number of samples should be sufficient to train a deep

learning model. In general, a few thousand samples are required

to train the learning model and validate it. However, data

acquisition at this level of a source condition is too complex

to carry out via an experiment. One scanning data include 24 ×

24 count rates, and too much physical time is needed for the

experiment. For the training of the ANN model, input (or

feature) and answer (or target) datasets are required. It is

important to have input data with a clear tendency with

regard to the target data so as correctly to train the model

data. For these reasons, we obtained the count rate data

through a computational simulation and checked whether the

model learns and predicts the locations of hotspots well. In this

way, the model predicts hotspot locations when using an

experimentally obtained count rate data.

Monte Carlo N-Particle 6 (MCNP6) was used for the particle

transportation simulation (Goorley et al., 2012). The detector was

composed of NaI(Tl) with a density of 3.67 g/cm3. Both the

diameter and height of the detector were 7.62 cm. The target

scanning area was a 100 cm2 × 100 cm2 concrete wall with a

density of 2.3 g/cm3. The face of the detector was located at a

distance of 10 cm from the wall. The detector was initially

positioned at a starting point (4, 4), then moved in steps of

4 cm to emulate scanning, and finally reached the ending point

(96, 96). In this way, 24 × 24 data points in total were acquired.

The circular source was randomly positioned in the concrete wall

area, and the source diameter was randomly sampled with a

range of 0–15 cm. The source was uniformly distributed on the

defined diameter with a depth of 1 cm. The radionuclide was
137Cs, which emits mono-energy photons at 662 keV. Figure 2

shows examples of the randomly positioned circular sources and

count rate data recorded by the scanning simulation. The black

and white colors in each pixel represent the count rate data, and

the orange circle, which represents the area of the source, is

overlapped on the count rate data. The count rate data and the

source position were well matched. Based on this, binary target

datasets were produced in which all pixels touched by the source

region were set to 1, while those without sources were set to 0.

In total, 100 randomly generated single circle sources were

simulated through MCNP6. The Y-position and Z-position of

each source were randomly sampled from 0 to 100 cm and from

50 to 150 cm, respectively, when the X-direction was

perpendicular to the wall. The scanning data with a single

source were not a real-world case because there can be

multiple source points in the scanning area. If a neural

network model is trained with only single-source data, the

accuracy for predicting multiple sources will be poor.

Therefore, the input data with a single source were randomly

sampled two, three, four, and five times in each case, yielding

1,000 combinations each to increase the number of samples and

the responsiveness to multiple sources. By merging these

combinations, 4,100 samples including single and multiple

sources were prepared in this augmentation process. When

preparing the datasets with n combinations, the fractions were

randomly sampled to have a standard deviation of 1/5n to

determine the deviation of the radioactivity with the data after

combining and then normalized. Similar to the input datasets,

4,100 answer datasets were prepared but binarized, meaning that

all non-zero cells were set to 1. The input and answer datasets

were split into the training and test datasets with a ratio of 4:1.

The model was trained by the training datasets, and the source
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position was predicted using the test datasets. The predicted

results were compared with the test answer datasets with the

same index.

2.3 Effects of the collimator and random
background noise

The collimator shields the detector from extraneous photons

but allows activity from a specified area of contamination to

reach the detector. A short-pitch collimator can reduce scattered

photons, and a long-pitch collimator can define the field-of-view

of the detector. Given these characteristics, collimators are

mainly used in radiographic imaging. During the process of

producing the training data, two different conditions of the

detector, with and without a collimator, were used in the test.

The random background count rate is inevitable during

experimental measurements. The results from the Monte

Carlo simulation only include count rates from defined

radiation sources. In cases where an ANN model is trained

with clear data without a background count rate, the

predicted result will not be accurate if experimentally acquired

input data, which include the background count rate, are used for

prediction. Therefore, the data used for training should include

random background noise to be similar to experimentally

acquired data. If a detector has a collimator, a corresponding

shield of the same thickness should cover it. The background

count rates for the NaI(Tl) detector were experimentally

estimated. The background count rates with and without a 2-

cm lead collimator were estimated to be 5,082 and 24,969 cpm,

respectively. Considering a scanning interval of 2 s, the average

background counts for the corresponding scanning intervals

were 169 ± 13 and 832 ± 29 counts. These background counts

were randomly sampled and added to the count rate obtained

from the tally.

To sum up, three datasets for training were produced: one

without a background count rate with a collimator, one with a

background count rate with a collimator, and one with a

background count rate without a collimator. The first can

represent the ideal case, while the latter two are closer to reality.

FIGURE 2
Examples of randomly positioned circular sources and their count rates obtained by the MCNP scanning simulation.
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2.4 Experimental scanning test and
application

A situation with sources placed on a wall with scanning along

the wall was simulated. Figure 3 presents the arrangement of the

detector and source on a wall for the experiment and the sources

used in the experiment. In this case, a 100 cm2 × 100 cm2 grid

paper was attached onto the wall, and two surface sources were

attached onto the grid paper at arbitrary positions. The isotopes

of the surface sources were 137Cs and 60Co with a surface area of

10 × 10 cm2 in a square shape (Eckert & Ziegler). Their

corresponding activities were 3,589 and 3,109 Bq, according to

the decay rate from the reference date. From point (4, 4), moving

by 4 cm, we reached point (96, 96) by measuring 10 s at each

point. In this way, 24 × 24 count rate data were acquired in total.

As with the data produced by the computational simulation, the

data here were normalized and imaged. The imaged data were

used as inputs for the model, and the source location was

predicted.

As a reference for the detection system, the scan minimum

detectable concentration (scan MDC) was calculated by Eq. 1

(Abelquist and Brown, 1999).

scanMDC � d′ ×
��
bi

√
× (60i )��

p
√

× CPMR × ERC
. (1)

Here, d′ is the index of sensitivity, bi is the background count
in the measurement interval of i, p is the surveyor efficiency,

CPMR denotes the ratio of counts per minute relative to the

exposure rate, and ERC is the exposure-rate-to-concentration

ratio. The index of the sensitivity value is determined according

to the ratio of true positives and false positives. The index of the

sensitivity value corresponding to 95% true positives and 25%

false positives is 2.32. The scanning intervals were assumed to be

FIGURE 3
Arrangement of the detector and source on a wall for the experiment and the sources used in the experiment.
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2 s in the computational simulation case and 10 s for the

experimental case. The index of sensitivity and the scanning

interval can be changed according to the requirements,

considering the expected contamination level of the target

area. The 137Cs scan MDCs with a scanning interval of 2 s

including and not including the collimator were estimated to

be 8.20 and 17.62 Bq/g, respectively. For 60Co, they were

correspondingly 8.07 and 3.92 Bq/g. For the experiment case

with a scanning interval of 10 s and not including the collimator,

the scan MDCs were estimated to be 7.88 Bq/g and 3.61 Bq/g for
137Cs and 60Co, respectively. The corresponding ERCs were

estimated to be .719 and 2.70 (nGy/h)/(Bq/g) in the given

source condition.

3 Results and discussion

Figure 4 shows 10 predicted results using the ANN model

trained with datasets without background noise. The column on

the left represents the input count rate data, the middle column

represents the source position predicted by the ANN model, and

the column on the right represents the correct answer of the

source position. The brightness of the input image differed

according to the source, given the different relative intensities.

In the predicted results, the colors represent the different

probabilities of the prediction, with yellow, red, purple, and

black spots correspondingly representing over 90%, around

60%, around 30%, and 0%, respectively. Hence, purple and

black indicate no radioactive sources in the area, red

represents a questionable or gray region, and yellow

represents a clear presence of a radioactive source. Most

sources were correctly predicted, except for cases where the

difference in the fractions among sources was very large.

Because the input data included no random background

noise, the differences in the counting rates in the input data

are relatively more highlighted by the difference in the strength of

the source.

Figure 5 shows the predicted results using the ANN model

trained with datasets with random background noise and a

collimator. The source rates were assumed to be 10, 1, .1, and

FIGURE 4
Predicted results using the ANN model trained with datasets without background noise. Image of the input count rate data (left) and predicted
source position (middle), and the answer image of the source position (right) are shown.
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.01 Bq/g for each circular source. As mentioned in the ‘Training

data production’ section, the single-source datasets were mixed,

and the radioactivity of each source had deviations. In the cases

with a radioactivity concentration of 10 Bq/g, the source position

is discriminable with the human eye. On the other hand, in other

cases with lower concentrations, it is difficult to find the source

position intuitively. However, the ANN model could correctly

predict these source positions. It is assumed to be able to predict

much better than when there was no random background noise.

Considering that the scanMDCwas on the order of few Bq/g, it is

possible to find low-level hotspots not found by the existing

scanning methods when the proposed algorithm is applied.

Figure 6 shows the predicted results when using the ANN

model trained by datasets with random background noise but

without a collimator. Because no collimator was used, the bright

points in the input data were more widely spread and were larger

than the defined source area. Compared to Figure 5, for some

source positions, the prediction probability was low. Specifically,

FIGURE 5
Predicted results using the ANN model trained by datasets with random background noise and equipped with a collimator. The radioactivity
concentrations were as follows: (A) 10 Bq/g, (B) 1 Bq/g, (C) .1 Bq/g, and (D) .01 Bq/g.
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relatively small source positions were predicted with lower

probability. It was also confirmed that there are more

prediction points with low probabilities displayed in purple.

Figure 7 shows the predicted result using the model with

experimentally acquired count rate data. The model was

trained with a dataset with background noise and no

collimator, which was the condition most similar to that in

the experiment. The first column shows experimentally

acquired count rate input data, the second column

represents the picture of the source arrangement, and the

third and the fourth columns represent the predicted source

locations. The third and fourth columns were predicted by

differently trained models which used datasets with

concentrations of 10 and 1 Bq/g, respectively. When using

the model trained with the 10 Bq/g dataset, it has a smaller

number of high-probability pixels, but it has some false positive

pixels. Otherwise, when in case of the 1 Bq/g dataset, it has a

larger area of high-probability pixels, which means that there

are many false positive pixels near the true-source points. The

accuracies with a threshold of .99 for three experimental data

from top to bottom are .929, .943, and .918 for 10 Bq/g; .and

906, .870, and .888 for 1 Bq/g, respectively.

FIGURE 6
Predicted results using the ANN model trained with datasets with random background noise without a collimator. The radioactivity
concentrations were (A) 10 Bq/g, (B) 1 Bq/g, (C) .1 Bq/g, and (D) .01 Bq/g.
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FIGURE 7
Predicted results with experimentally acquired input datasets. An image of the input dataset (Column 1), picture of the source arrangement
(Column 2), and hotspot locations predicted using the model trained by scanning simulation data with concentrations of 10 Bq/g (Column 3) and
1 Bq/g (Column 4).

FIGURE 8
Receiver operation characteristic (ROC) curve (left) and precision–recall curve (right) with models that are trained by datasets with different
concentrations.
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The source position of 60Co was manually discriminable in

the input data image; however, 137Cs was difficult to discriminate

because the data were normalized, and the relatively high

intensity of 60Co dominated the datasets. Therefore, the

position of the bright points due to the 137Cs source appears

to have shifted. This can lead to a misrepresentation of the

hotspot position. The probability prediction was relatively low

compared to the simulation-only results. The experimental error

was included in the dataset in this case, while the detector was

moved manually. Each pixel needed to receive data at precise

intervals to reflect the shape of the source accurately. If data can

be acquired while moving at a constant speed, akin to a robot

head used in optical devices, it will be possible to predict hotspots

more accurately.

Figure 8 shows the receiver operation characteristic (ROC)

curve and precision–recall curve with models that are trained by

datasets with different concentrations. The model trained by the

10 Bq/g dataset shows the best performance with the highest area

under curve (AUC) of .975. From a regulatory point of view, a

frequency of type II errors (i.e., false negative rate) of .05 or less

may be required. It implies that the model should show a certain

level of precision where the recall is .95 or more, and the model

trained on the 10 Bq/g dataset satisfies this criterion. In the case

of 10 Bq/g, it has a surficial concentration of about 23 Bq/cm2,

and the surface source used in the experiment has a surficial

concentration of about 35.9 Bq/cm2. Therefore, models trained

using a high-concentration dataset performed better. When

applied in the field, if a model trained by the expected

concentration of hotspots is used in consideration of the site

condition, the prediction with high performance will be achieved.

Based on the fact that the model trained with the simulated

dataset at 1/30 of the concentration (1 Bq/g) used in the

experiment also showed an accuracy of .87 or more, the

proposed method shows tolerance to the concentration of the

training dataset.

In the scanning survey to measure the hotspots, a

measurement point with a counting rate higher than that of

MDCR is taken as a hotspot, but the proposed method has the

advantage of imaging the data after scanning and finding

hotspots with lower concentrations than the scan MDC

through data correlations among the pixels in the image. In

terms of the absorbed dose, it is possible to distinguish hotspots

at the level of several nGy/h. In addition, it is possible to

minimize unnecessary decontamination by adjusting the size

of the hotspot in the data spread widely by scattered rays. One

consideration for in-field use is that the measurement location

and pixelization must be accurate. The cause of the relatively

poor prediction performance in the experiment was the

measurement location, which did not precisely match with the

pixel. Therefore, when using in a small area, a specified area can

TABLE 1 Case study for the SCAN MDC analysis.

Detector Height/scan
rate

Radionuclide Scan
area (m)

Scan MDC Reference

1 PVT scintillator and NaI(Tl) scintillator
(anti-coincidence circuit)

10–40 cm/
~10 m/s

137Cs .25 m2 1,67,000 Bq/m2

(average)
Lee et al. (2020)

2 3-inch NaI(Tl) scintillation detector with a
collimator

10 cm/.5 m/s 137Cs 60Co 1 m2 8.09 pCi/g Kim et al. (2020)

2.68 pCi/g

3-inch NaI(Tl) scintillation detector 137Cs 60Co 8.63 pCi/g

3.32 pCi/g

3 2-inch NaI(Tl) scintillation detector 5 cm/.25 m/s 137Cs .5 m2 4.5 pCi/g United States Nuclear Regulatory
Commission (2005)

1 m2 3.6 pCi/g

2 m2 3.2 pCi/g

4 m2 3.0 pCi/g

6 m2 2.5 pCi/g

8 m2 2.5 pCi/g

16 m2 2.5 pCi/g

25 m2 2.0 pCi/g

4 1.5-inch NaI(Tl) scintillation 10 cm/.5 m/s 137Cs .0126 m2 10.4 pCi/g U.S. NRC (2020)

5 3-inch NaI(Tl) scintillation detector 10 cm/.5 m/s 137Cs 1 m2 7.88 Bq/g This study

60Co 3.16 Bq/g
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be scanned using an automated robotic arm, or when using a

large area, a data correction method must also be considered so

that data can be entered into the correct grid through the Global

Positioning System (GPS) (Adsley et al., 2004).

Table 1 summarizes the recent SCANMDC analysis research

results and describes the types of detectors, measured nuclides,

and results.

The method proposed here undertakes training and

prediction based on the overall counts of the spectrum. This

is performed because it is difficult to predict nuclides through the

full-energy absorption peak because the time needed to

determine the amount of data per pixel is very short due to

the scanning rate. It is expected that hotspot locations can be

identified more precisely if operated together with nuclide

identification in combination with methods for detecting

nuclides in low radioactivity or spectra with poor energy

resolutions. Efforts to realize this are currently underway

(Daniel et al., 2020; Jeon et al., 2020).

4 Conclusion

This study proposed an applicability of the in situ residual

radioactive hotspot detection methodology using a constantly

moving detection system with a deep learning model trained by

simulated count rate data. The method was based on creating an

image from scanning data and ANN-based deep learning. The

scanned data were transformed into a 24 × 24 image and utilized

for training and predictions. The ANN model was trained using

data produced by a Monte Carlo simulation. The ANN model

was trained and tested in several situations, including those with

no background, with background noise, and a collimator, and

with background noise and no collimator. When the data

included random background noise, the hotspot position

could be accurately predicted despite the fact that the activity

of the source was lower than the scan MDC of the detecting

condition. However, when multiple sources were spotted in the

scanning region, if the amounts of deviation among the

radioactivity levels of the sources were large, hotspots with

lower activities were predicted at low probabilities or were not

found. The method was validated by experimentally acquired

data. The positions of the sources were well predicted. The

advantages and limitations to the proposed method are as

follows. Importantly, it is an ANN model trained with

simulation data, and it can predict with high accuracy, even

using experimental data. Furthermore, it is a great advantage that

it can detect contaminated areas that are lower than the existing

scanMDC. However, the limitation is that it cannot be predicted,

or the accuracy is low in multi-sourced scans. As a challenge, we

have a plan for the automation system of the low-activity

radioactivity measurement and use it directly at the

dismantling site to verify its performance. This methodology

can easily be applied to an existing detection system simply by

software applications including the algorithm and modifying the

scanning process for imaging. This work is meaningful for the

development of artificial neural networks and deep learning

systems, which provide valuable insights and guidelines for

future progress in a final status scan survey of nuclear

decommissioning and contaminated sites.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material; further

inquiries can be directed to the corresponding author.

Author contributions

JB, SH, and BS contributed to the conception and design of

the study. JB, CR, and SM carried out the experiments and

simulations. Also, JB and SM contributed to manuscript revision

under the supervision of BS, CR, and SH. All authors contributed

to the discussion of experiments and simulation results.

Funding

This work was supported by the National Research Foundation

of Korea (NRF) Grant funded by the Ministry of Science and ICT

(NRF-2020M2C9A1068162 and RS-2022-00154985). Also, this

work was supported by the Korea Institute of Energy

Technology Evaluation and Planning (KETEP) and the Ministry

of Trade, Industry& Energy (MOTIE) of the Republic of Korea (No.

20203210100190) and partially supported by the Nuclear Global

Fellowship Program through the Korea Nuclear International

Cooperation Foundation (KONICOF) funded by the Ministry of

Science and ICT.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers in Energy Research frontiersin.org12

Bae et al. 10.3389/fenrg.2022.956596

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.956596


References

Abelquist, E. W., and Brown, W. S. (1999). Estimating minimum detectable
concentrations achievable while scanning building surfaces and land areas. Health
Phys. 76 (1), 3–10. doi:10.1097/00004032-199901000-00002

Abelquist, E. W., Clements, J. P., Huffert, A. M., King, D. A., Vitkus, T. J., and
Watson, B. A. (2020).Minimumdetectable concentrationswith typical radiation survey
instruments for various contaminants and field conditions. NUREG-1507 46, 3482.

Abelquist, E. W. (2013). Decommissioning health physics:A handbook for
MARSSIM users. London, United Kingdom: Routledge.

Abu-Eid, R. B. (2012). Decommissioning survey and site characterisation issues
and lessons learned. USNRC 57, 13223.

Adsley, I., Davies, M., Murley, R., Pearman, I., and Scirea, M. (2004). 3D GPS
mapping of land contaminated with gamma-ray emitting radionuclides. Appl.
Radiat. isotopes 60 (2-4), 579–582. doi:10.1016/j.apradiso.2003.11.089

Ardiny, H., Witwicki, S., and Mondada, F. (2019). Autonomous exploration for
radioactive hotspots localization taking account of sensor limitations. Sensors 19 (2),
292. doi:10.3390/s19020292

Colak, A. B., Shafiq, A., and Sindhu, T. N. (2022). Modeling of Darcy-
Forchheimer bioconvective Powell Eyring nanofluid with artificial neural
network. Chin. J. Phys. 77, 2435–2453. doi:10.1016/j.cjph.2022.04.004

Cui, X., Wang, Q., Zhao, Y., Qiao, X., and Teng, G. (2019). Laser-induced breakdown
spectroscopy (LIBS) for classification of wood species integrated with artificial neural
network(ANN). Appl. Phys. B 125 (56), 56–12. doi:10.1007/s00340-019-7166-3

Daniel, G., Ceraudo, F., Limousin, O., Maier, D., and Meuris, A. (2020).
Automatic and real-time identification of radionuclides in gamma-ray spectra:
A new method based on convolutional neural network trained with synthetic
data set. IEEE Trans. Nucl. Sci. 67 (4), 644–653. doi:10.1109/tns.2020.2969703

Gal, O., Gmar, M., Ivanov, O. P., Lainé, F., Lamadie, F., Le Goaller, C., et al.
(2006). Development of a portable gamma camera with coded aperture. Nucl.
Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 563 (1),
233–237. doi:10.1016/j.nima.2006.01.119

Galib, S., Bhowmik, P., Avachat, A., and Lee, H. (2021). A comparative study of
machine learning methods for automated identification of radioisotopes using NaI
gamma-ray spectra. Nucl. Eng. Technol. 53 (12), 4072–4079.,

Goorley, T., James, M., Booth, T., Brown, F., Bull, J., Cox, L., et al. (2012). Initial
MCNP6 release overview. Nucl. Technol. 180 (3), 298–315. doi:10.13182/nt11-135

Hong, S. B., Hwang, D. S., Seo, B. K., and Moon, J. K. (2014). Practical application
of the MARSSIM process to the site release of a Uranium Conversion Plant
following decommissioning. Ann. Nucl. Energy 65, 241–246. doi:10.1016/j.
anucene.2013.11.018

Hong, S. B., Lee, K. W., Park, J. H., and Chung, U. S. (2011). Application of
MARSSIM for final status survey of the decommissioning project. J. korean
Radioact. waste Soc. 9, 107–111. doi:10.7733/jkrws.2011.9.2.107

Huang, L., Zhou, Y., Han, Y., Hammitt, J. K., Bi, J., and Liu, Y. (2013). Effect of the
Fukushima nuclear accident on the risk perception of residents near a nuclear
power plant in China. Proc. Natl. Acad. Sci. U. S. A. 110 (49), 19742–19747. doi:10.
1073/pnas.1313825110

Jeon, B., Lee, Y., Moon, M., Kim, J., and Cho, G. (2020). Reconstruction of
Compton edges in plastic gamma spectra using deep autoencoder. Sensors 20 (10),
2895. doi:10.3390/s20102895

Kim, J. H., Cho, G. S., Lee, J. J., Hong, S. B., Lee, E. J., Seo, B. K., et al. (2020). Study
on improvement of scan survey system performance using collimator. Trans.
Korean Nucl. Soc. 787, 4733.

Kim, J., Lim, K. T., Kim, J., Kim, C.-j., Jeon, B., Park, K., et al. (2019).
Quantitative analysis of NaI(Tl) gamma-ray spectrometry using an artificial
neural network. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom.
Detect. Assoc. Equip. 944, 162549. doi:10.1016/j.nima.2019.162549

Kurtz, J. E. (2017). Technical basis document:detection capability for radiological
field instruments, Washingtonriver protection solutions. RPP-53865 3, 65.

Lee, C., Park, S.-W., and Kim, H. R. (2020). Development of mobile scanning
system for effective in-situ spatial prediction of radioactive contamination at
decommissioning sites. Nucl. Instrum. Methods Phys. Res. Sect. A Accel.
Spectrom. Detect. Assoc. Equip. 966, 163833. doi:10.1016/j.nima.2020.163833

Lee, K. W., Hong, S. B., Park, J. H., and Chung, U. S. (2010). Final status of the
decommissioning of research reactors in Korea. J. Nucl. Sci. Technol. 47 (12),
1227–1232. doi:10.1080/18811248.2010.9720990

Li, L. N., Liu, X. F., Yang, F., Xu, W. M., Wang, J. Y., and Shu, R. (2021). A review
of artificial neural network based chemometrics applied in laser-induced
breakdown spectroscopy analysis. Artificial 180, 106183.

Okada, K., Tadokoro, T., Ueno, Y., Nukaga, J., Ishitsu, T., Takahashi, I., et al.
(2014). Development of a gamma camera to image radiation fields. Prog. Nucl. Sci.
Technol. 4, 14–17. doi:10.15669/pnst.4.14

Owens, A. S., Engel, K. M., Benton, P. H., Smith, W. F., and Bailey, E. N. (2018).
Characterization report for ORISE south campus building SC-13 oak ridge. Tenn.
18-HEE-0996 55, 1772.

Sato, Y., Ozawa, S., Terasaka, Y., Minemoto, K., Tamura, S., Shingu, K., et al.
(2020). Remote detection of radioactive hotspot using a Compton camera mounted
on a moving multi-copter drone above a contaminated area in Fukushima. J. Nucl.
Sci. Technol. 57 (6), 734–744. doi:10.1080/00223131.2020.1720845

Sato, Y., Tanifuji, Y., Terasaka, Y., Usami, H., Kaburagi, M., Kawabata, K., et al.
(2018). Radiation imaging using a compact Compton camera inside the fukushima
daiichi nuclear power station building. J. Nucl. Sci. Technol. 55 (9), 965–970. doi:10.
1080/00223131.2018.1473171

Shafiq, A., Colak, A. B., Sindhu, T. N., Al-Mdallal, Q. M., and Abdeljawad, T.
(2021a). Estimation of unsteady hydromagneticWilliamson fluid flow in a radiative
surface through numerical and artificial neural network modeling. Sci. Rep. 11,
14509. doi:10.1038/s41598-021-93790-9

Shafiq, A., Colak, A. B., and Sindhu, T. N. (2021b). Designing artificial neural
network of nanoparticle diameter and solid–fluid interfacial layer on single-walled
carbon nanotubes/ethylene glycol nanofluid flow on thin slendering needles. Int.
J. Numer. Methods Fluids 93, 3384–3404. doi:10.1002/fld.5038

Shafiq, A., Colak, A. B., Sindhu, T. N., and Muhammad, T. (2022). Optimization
of Darcy-forchheimer squeezing fluow in nolinear stratified fluid under convective
conditions with artificial neural network. Heat. Transf. Res. 53 (3), 67–89. doi:10.
1615/heattransres.2021041018

Sibille, L., Seifert, R., Avramovic, N., Vehren, T., Spottiswoode, B., Zuehlsdorff, S.,
et al. (2019). 18F-FDG PET/CT Uptake classification in Lymphoma and Lung
Cancer by using deep convolutional neural networks. Radiology 294 (2), 445–452.
doi:10.1148/radiol.2019191114

Suzuki, Y., Yamaguchi, M., Odaka, H., Shimada, H., Yoshida, Y., Torikai, K., et al.
(2013). Three-dimensional and multienergy gamma-ray simultaneous imaging by using
a Si/CdTe Compton camera. Radiology 267 (3), 941–947. doi:10.1148/radiol.13121194

Takahashi, J., Tamura, K., Suda, T., Matsumura, R., and Onda, Y. (2015). Vertical
distribution and temporal changes of 137Cs in soil profiles under various land uses
after the Fukushima Dai-ichi Nuclear Power Plant accident. J. Environ. Radioact.
139, 351–361. doi:10.1016/j.jenvrad.2014.07.004

United States Nuclear Regulatory Commission (2005). Maine yankee’s license
termination plan(LTP), sectopm 5, final status survey plan.

Vico, A. M., Noguerales, M. C., Rodriguez, L., and Alvarez, A. (2021). Clearance
of building of a former uranium concentrates plant. Ann. Nucl. Energy 159, 108313.
doi:10.1016/j.anucene.2021.108313

Yegnanarayana, B. (2009). Artificial neural networks. PHI Learn. Pvt. Ltd. 53,
33213.

Frontiers in Energy Research frontiersin.org13

Bae et al. 10.3389/fenrg.2022.956596

https://doi.org/10.1097/00004032-199901000-00002
https://doi.org/10.1016/j.apradiso.2003.11.089
https://doi.org/10.3390/s19020292
https://doi.org/10.1016/j.cjph.2022.04.004
https://doi.org/10.1007/s00340-019-7166-3
https://doi.org/10.1109/tns.2020.2969703
https://doi.org/10.1016/j.nima.2006.01.119
https://doi.org/10.13182/nt11-135
https://doi.org/10.1016/j.anucene.2013.11.018
https://doi.org/10.1016/j.anucene.2013.11.018
https://doi.org/10.7733/jkrws.2011.9.2.107
https://doi.org/10.1073/pnas.1313825110
https://doi.org/10.1073/pnas.1313825110
https://doi.org/10.3390/s20102895
https://doi.org/10.1016/j.nima.2019.162549
https://doi.org/10.1016/j.nima.2020.163833
https://doi.org/10.1080/18811248.2010.9720990
https://doi.org/10.15669/pnst.4.14
https://doi.org/10.1080/00223131.2020.1720845
https://doi.org/10.1080/00223131.2018.1473171
https://doi.org/10.1080/00223131.2018.1473171
https://doi.org/10.1038/s41598-021-93790-9
https://doi.org/10.1002/fld.5038
https://doi.org/10.1615/heattransres.2021041018
https://doi.org/10.1615/heattransres.2021041018
https://doi.org/10.1148/radiol.2019191114
https://doi.org/10.1148/radiol.13121194
https://doi.org/10.1016/j.jenvrad.2014.07.004
https://doi.org/10.1016/j.anucene.2021.108313
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.956596

	Low-activity hotspot investigation method via scanning using deep learning
	1 Introduction
	2 Materials and methods
	2.1 Hotspot investigation algorithm with an ANN
	2.2 Training data production
	2.3 Effects of the collimator and random background noise
	2.4 Experimental scanning test and application

	3 Results and discussion
	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


