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ABSTRACT 
 
Increasing population worldwide has put tremendous pressure on the land. Recent studies reported 
that many areas covered by wastelands are decreasing because parts of wastelands are being 
converted into arable land. It is important to identify and monitor these changes in spatial planning 
and management. This paper adopts a remote sensing-based identification of culturable 
wastelands based on seasonal vegetation changes in Vadodara district, India. Supervised 
classification was applied on three MODIS images of 2016-17 of 3 different seasons. Separability 
analysis was applied to get the best data combination for image classification. Validation was done 
by ground referencing and Google earth images. The composite of winter season image with NDVI 
and EVI performed best with an overall accuracy of 78.2% with the kappa co-efficient of 0.7580. 
This method opens a possibility of using digital classification for identification of culturable 
wastelands in the study area which are so far mapped with visual interpretations only. 
 

Original Research Article 



 
 
 
 

Mankad; JGEESI, 17(1): 1-14, 2018; Article no.JGEESI.43269 
 
 

 
2 
 

Keywords: Culturable wastelands; vegetation activity; remote sensing; digital classification;  
separability analysis.          

 

1. INTRODUCTION 
 
Wastelands are degraded lands which can be 
brought under vegetative cover with reasonable 
effort. They are currently underutilised and are 
deteriorating due to lack of appropriate soil and 
water management or due to natural causes [1]. 
Wastelands develop naturally or due to the 
influence of the environment, chemical and 
physical properties of the soil or management 
constraints. Culturable wastelands are the 
categories of wastelands that have a potential for 
the development of vegetative cover but not 
being used due to several constraints such as 
erosion, water logging, salinity, etc. Location and 
spatial distribution of culturable wastelands are 
crucial for planning and management and 
optimum utilisation of these land resources. 
 
Identification of wastelands in general and 
culturable wastelands in particular through digital 
image classification technique is a challenging 
task. The soil - vegetation interaction and its 
change throughout the season/year makes their 
identification difficult. Often, the spectral 
signatures of culturable wastelands are 
coinciding with other vegetation classes such as 
agriculture and forest. Direct extraction of 
culturable wastelands through any digital 
technique may not be feasible as it may lead to 
under or over classification of wastelands that 
too without any error estimate. Hence, it is 
advisable to perform digital classification using all 
delineable land use/land cover (LU/LC) classes 
and then extract the culturable wastelands from 
the output classified layer.   
 
The use of satellite images to identify wastelands 
varies from classification of wastelands through 
visual interpretation [2,3,4,5,6,7,8,9,10] to more 
sophisticated digital analysis [11,12,13,14,15, 
16,17].    
 
Various researchers used a variety of 
approaches such as [11], incorporated 
supervised classification algorithm for delineation 
of different categories of wastelands at micro 
level in Matar taluka of the Kheda district, 
Gujarat, India; [12] incorporated Landsat with 
JERS-1 SAR (L-band); [13] used multi-nomial 
logistic regression to classify badlands (a 
category of wastelands) in the Spanish 
Pyrenees; [14] used the receiver operating 
curves to define the threshold for badland areas; 

[15] mapped badlands effectively by combining 
spectral information with the slope and aspect 
from a Digital Elevation Model (DEM), while [16] 
used Normalized Difference Vegetation Index 
(NDVI) to assess the dynamics of badlands [17]. 
Proposed a remote sensing-based detection 
method for mapping of badlands dynamics based 
on seasonal vegetation changes in the lower 
Chambal valley, India using supervised image 
classification, different band selection methods 
were applied to get the best classification.  
 
Ideally, different combinations of these 
techniques should give the most accurate 
identification of wastelands because of the 
complex spectral behaviour and combined 
response from soil and vegetation classes. Until 
recent years, only visual interpretation of remote 
sensing image was applied in the Vadodara 
district, India [9], and no attempt has been made 
of using digital classification of satellite images 
for this area. 
 
Vegetation indices provide a possibility to 
estimate vegetation cover based on significant 
differences of reflectance between the near-
infrared (NIR) and the red (R) bands [18]. These 
indices include the NDVI, Enhanced Vegetation 
Index (EVI) and many others. NDVI is more 
sensitive to chlorophyll activity, whereas EVI is 
linked with vegetation structural variation and 
hence useful in the mapping of tropical forests 
[19] or land with dense scrub, a category of 
culturable wasteland used in this study.  
 
The use of NDVI and other indices for vegetation 
studies is well known. Here an attempt has been 
made to use MODIS reflectance data along with 
two indices namely NDVI and EVI to achieve an 
improvement in wasteland classification through 
digital technique.  

 
MODIS is a key instrument onboard the Terra 
and Aqua satellites. The sensor is viewing the 
entire Earth's surface every 1 to 2 days, 
acquiring data in 36 spectral bands. Terra 
MODIS spatial resolution varies from 250 m, 
500m to 1000 m for various surface reflectance 
bands and derived products. Several data 
products have been generated from MODIS data 
including NDVI and EVI. In comparison to coarse 
resolution MODIS data, several moderate 
resolution satellite sensors exist such as 
LANDSAT, IRS and SPOT. For these sensors, 
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the spatial resolution ranges from 15 to 30 m; 
this may have wider applicability. However, free 
data availability, higher data frequency and range 
of ready-to-use products make MODIS a good 
choice for many applications.  
 
The present study aims at identifying spatial 
extent and distribution of culturable wastelands in 
the Vadodara district, India during the year 2016-
17 using digital image classification technique. 
Also, the study tries to suggest the best season 
and data combination for delineation of culturable 
wasteland categories. As per the National 
Wastelands Atlas of India [9], the culturable 
wastelands occupy a significant share (99.92 %) 
among total wastelands in the study area 
(Vadodara district, India). Out of various 
categories of culturable wastelands, three 
important categories with larger extent (87 % of 
the total culturable wastelands) namely land with 
open scrub, land with dense scrub and gullied 
and/or ravinous land (medium) are considered 
for the present study.  
 

2. STUDY AREA 
 
Vadodara district, India is located between 
21°49' to 22°48' N latitude and 72°51' to 74°17' E 
longitude and extends over an area of 7720 km

2
, 

accounts for about 4 % of the total geographical 
area of the Gujarat state, India. The average 
annual rainfall in the district is 832 mm (1981-
2002) [20]. The period from January to May is 
comparatively dry. The wastelands are mainly 

confined to south-west, south-east and south-
central parts of the study area. Three culturable 
wastelands categories such as land with open 
scrub, land with dense scrub and gullied and/or 
ravinous land (medium) are the major vegetative 
wasteland classes found in the study area [9] 
and therefore, these three categories are 
considered in the present study. The 
gullied/ravinous lands have mainly developed 
along the courses of two major rivers namely the 
Orsang and the Narmada. Land with dense scrub 
is found mainly on undulating terrain with some 
soil development and moisture. Land with open 
scrub is mainly located in areas with poor soil, 
low rainfall and moisture.     
 
Vadodara district forms a part of the great 
Gujarat plain. Geologically, the major part in 
east, west and south of Vadodara district fall 
under alluvium formation whereas some of the 
northern part comprises of a rocky formation. 
Sand, silt, clay and gravels form the alluvium. In 
general, the soils of Vadodara district are 
medium black to black having good prospects for 
agriculture. The climate of the study area has 
three main seasons, summer, monsoon and 
winter. The summer season extends from 
February to June, the monsoon from July to 
October and the winter from November to 
February. The climate of the study area can be 
classified as arid (B), Steppe (S) with hot arid (h), 
i.e. BSh according to the updated Köppen–
Geiger classification [21]. The location map of 
the study area is presented in Fig. 1. 

 

 
 

Fig. 1. Location map of study area 
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3. DATA SETS 
 
Images from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) sensor which is on 
board the Earth Observing System Terra as               
well as the Aqua satellites 
(http://modis.gsfc.nasa.gov/about/) were used in 
this study for identification of categories of 
culturable wastelands. The MODIS MYD13Q1 
were retrieved from the online tool 
https://earthexplorer.usgs.gov/, courtesy of the 
NASA EOSDIS Land Processes Distributed 
Active Archive Center (LP DAAC), USGS/Earth 
Resources Observation and Science (EROS) 
Center, Sioux Falls, South Dakota 
(https://lpdaac.usgs.gov/). MODIS reflective 
bands namely Blue, Red and NIR and also the 
MODIS derived products i.e. NDVI and EVI have 
been incorporated as ancillary layers to achieve 
expected improvement in classification accuracy 
(Table 1). Three season data viz. 23

rd
 October, 

2016 (post-monsoon), 9
th
 January, 2017 (winter) 

and 15th April, 2017 (summer) are considered for 
making comparative analysis and suggesting the 
best season and data combination for delineation 
of selected culturable wasteland categories. 
Three season images were so selected as to 
study differences in spectral signatures due to 
different vegetation activity. The dates of the 
image acquisitions were decided on the basis of 
data availability and percentage of cloud cover.  
 
The MODIS reflective bands are an estimate of 
the surface spectral reflectance corrected for the 
effect of atmospheric gases, aerosols, and thin 
cirrus clouds [22]. This helps in achieving a 
spectrally unbiased image classification. Apart 
from spectral reflectance, MODIS provides a 
range of products with different spatial 
resolutions. This study used MYD13Q1 
Vegetation indices data due to its better spatial 

resolution, i.e. 250 m than other MODIS 
products. Additionally, it always provides a well-
timed NDVI value for each pixel even in 
persistent cloud cover or bad quality during the 
16-day period [23].  
 
The NDVI is calculated by taking the ratio of the 
difference in red and NIR portions of the 
electromagnetic spectrum. NDVI provides 
measures of the amount or condition of 
vegetation in a given area. NDVI ranges from −1 
to +1 where negative values are generated from 
water; around zero values generated from non-
vegetated surfaces, i.e. bare rocks and bare soil 
[24], while the increasing values towards positive 
one represent healthy vegetation activity. NDVI is 
one of the most used vegetation indices  
because it is successful as a vegetation  
measure and is sufficiently stable to allow 
meaningful comparisons of seasonal and inter- 
annual changes in vegetation growth and activity 
[25]. 
 
Another vegetation index from MODIS, the EVI is 
designed with improved sensitivity to differences 
in vegetation from sparse to dense vegetation 
conditions. The two VIs complement each other 
in global vegetation studies and improve upon 
the extraction of the canopy biophysical 
parameters [25]. 
 

4. METHODOLOGY 
 
This section discusses the methodology used                 
in analysing seasonal variation in                        
wasteland categories, spectral separability                    
of LU/LC classes from MODIS reflective bands 
and their derived products viz. NDVI and EVI, 
digital classification and accuracy assessment. 
These all are discussed under relevant 
subsections.

 
Table 1. MODIS data layer characteristics 

 

Dataset name Data layers Description Date of acquisitions Spatial 
resolution (m) 

MYD13Q1 Red band Surface 
reflectance - 16 
days composite 

 23rd October, 2016 
(post-monsoon) 

 9
th
 January, 2017 

(winter) 

 15th April, 
2017(summer) 

 

 

250 

NIR band 

Blue band 

NDVI 16 days average 

EVI 

Source: adapted from https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/myd13q1_v006 
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4.1 Wasteland Classification Schemes 
and Training Sites 

 
The culturable wastelands were identified using 7 
LU/LC classes, i.e. water body, cropland, fallow 
land, settlement and three classes of culturable 
wastelands viz. Gullied and/or ravinous land 
(medium), land with open scrub and land with 
dense scrub (Fig. 2). Land with scrub is the land 
with little soil cover, at times chemically 
degraded, extremes of slopes, severely eroded 
and lands subjected to excessive aridity with 
scrubs dominating the landscape. It can be 
further classified into two classes, land with open 
scrub and land with dense scrub based on the 
presence of vegetation cover on such lands. 
Gullied/ravine land results from localized surface 
run-off affecting the unconsolidated material 
converting into perceptible channels causing 
undulating terrain. Ravines are in fact an 

extensive system of gullies developed along the 
river courses. Gullied and/or ravinous land 
(medium) has an average depth of 2.5 to 5 
metres [9].         
 
The training sites were selected based on ground 
truth survey, Google Earth images and visual 
interpretation of MODIS images. From the 
ground survey, 75% of the sites were used for 
identifying training sites and remaining 25% of 
the sites were used for accuracy assessment 
which is discussed in the subsequent subsection 
of digital classification and accuracy assessment. 
It is often recommended that a training sample 
size for each class should not be fewer than 10-
30 times the number of bands [26,27,28]. Hence, 
the minimum number of training pixels for each 
LU/LC class was decided based on the number 
of bands and proportion of the extent of each 
class within the study area image.  

 

 
 

Fig. 2. Field photographs of types of wastelands (a) Gullied and/or ravinous land (medium) (b) 
land with open scrub (c) land with dense scrub 
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4.2 Spectral Separability Analysis 
 

Spectral separability analysis is performed to 
determine the bands that are most effective to 
discriminate each class from others [29]. It 
involves statistical and graphical analysis to 
determine the degree of between-class 
separability in the training data. The present 
study has used transformed divergence (TD) to 
evaluate class separability for various 
combinations of bands and ancillary layers. TD 
value ranges between 0 and 2000, 0 being least 
separability between two classes and value 2000 
represents highest separability between two 
classes considered. As a general rule, if the 
result is greater than 1,900, then the classes can 
be separated; between 1,700 and 1,900, the 
separation is fairly good and below 1,700, the 
separation is poor [29]. TD values have been 
calculated for various combinations of data viz. 3 
season images individually, composite of 3 
season images and their respective NDVI 
images, composite of 3 season images and their 
respective EVI images and composite of 3 
season images and their respective NDVI and 
EVI images. Out of all these combinations, the 
combination with best separability for all LU/LC 
classes was used for digital classification. For all 
composites, TD values for water body class 
could not be produced as inverse covariance 
matrix could not be generated due to lower within 
class variability.    
 

4.3 Digital Classification and Accuracy 
Assessment 

 

As mentioned in the earlier section, the 
composite with highest separability for all 
considered LU/LC classes was then classified 
with the parametric rule based maximum 
likelihood classifier. As within class variability 
was less in case of water body class, inverse 
covariance matrix could not be produced. Hence, 
maximum likelihood classifier could not be 
applied on water body class. An additional non-
parametric rule i.e. parallelepiped classifier was 
used for classifying water body class. 
Parallelepiped is a non-parametric supervised 
classifier which takes into consideration the 
mean and standard deviation of training pixels. 
The lower and higher threshold for the DN values 
for each class in each band is decided based on 
standard deviation. Pixels falling within the given 
threshold are classified under that class. 
Supervised classification module in Erdas 
Imagine software was used for applying these 
classification rules. A 3x3 majority filter was 
applied to reduce noise in the classification. 

Ground truth survey was carried out in the month 
of April 2017 so that LU/LC class verification 
could be done for all three seasons considered. 
A stratified random sampling scheme was 
applied to generate accuracy check points. Total 
of 238 points including 25% of the field survey 
sites (ground truth) were considered within entire 
study area for accuracy assessment of all LU/LC 
classes. Classification accuracy was assessed 
by estimating producer’s accuracy (PA), user’s 
accuracy (UA), overall accuracy (OA) and kappa 
statistics (K) calculated from the error matrix.     
 
An error matrix was created by making a cross-
tabulation where columns represented reference 
data, while rows represented classified data of all 
LU/LC classes. Diagonal values are truly 
classified pixels which are used to calculate 
overall accuracy, i.e. ratio of summation of 
diagonal values to the total pixels in the error 
matrix, while the non-diagonal values 
represented errors. If the errors are estimated 
through columns, i.e. proportion of diagonal 
value divided by total summed value of a given 
column, it gives producer’s accuracy or error due 
to omission. On the other hand, if errors are 
estimated through a row, it is termed as user’s 
accuracy or error due to commission. Error due 
to commission occurs when pixels of a category 
wrongly assigned to another category by 
classification, thus adding erroneous pixels to a 
LU/LC class. On the contrary, Producer’s 
Accuracy can be opposite of addition, i.e. 
omission. Additionally, kappa incorporates these 
errors with Overall Accuracy and gives a figure 
which can be interpreted as per cent to that 
classification is better than the random 
coincidence of the two data sets. Since it is hard 
to specify one single measure to assess the 
Overall Accuracy of the classification [30], all the 
aforementioned parameters were considered to 
evaluate the best possible accuracy.       
 

5. RESULTS AND DISCUSSION 
 
5.1 Spectral Separabilities of LU/LC 

Classes 
 
Spectral separability analysis showed some 
peculiar patterns. Starting with post monsoon 
data of 23

rd
 October, 2016 three spectral bands 

namely blue, red and NIR were used for 
calculating TD using selected training sites for 
each LU/LC class. Lowest TD value of 361 was 
observed for crop land and land with dense scrub 
(Table 2). This may be because of high 
vegetation activity from both LU/LC classes in 
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post monsoon season. For other pairs of LU/LC 
classes, the TD ranged from 550 to 2000 
suggesting moderately low to high separability 
(Table 1). In case of winter season (9

th
 January, 

2017) three bands image, lowest separability 
(998) was found between land with open scrub 
and land with dense scrub. This is expected 
because by winter season, dense and open 
scrub might give similar spectral response due to 
decreasing vegetation activity in both the 
classes. However, compare to post monsoon 
image, the lowest separability value is higher in 
case of winter image suggesting overall good 
separability. The third data i.e. summer season 
image (15th April, 2017) represented even lower 
separability compare to post monsoon season 
image. The lowest TD was found to be 251 for 
between land with open scrub and land with 
dense scrub. This is due to further decrease of 
vegetation activity in dense scrub resulting into 
similar spectral response from open and dense 

scrub. Even for gullied and/or ravinous land 
(medium) and dense scrub, the TD value was 
1096 and for gullied/ravinous land (medium) and 
open scrub it was 1177 suggesting overall low to 
moderate separability. 
 
After considering the separability statistics 
particularly for three wasteland categories in 
three different seasons, it was thought that 
inclusion of vegetation indices might give better 
separability as all wasteland classes are affected 
by seasonal variation in vegetation activity and 
varied soil - vegetation interaction resulting into 
variable spectral response. Hence, NDVI, EVI 
and NDVI and EVI together were included as 
ancillary layers along with three season image 
bands respectively. These composites were then 
used for performing separability analysis as it 
was done for individual three season images. In 
case of a composite of post monsoon image and 
its NDVI, lowest TD improved from 361 to

 
Table 2. Separability analysis - TD values for three bands image 

 
Serial no. 23rd October, 2016 

(Post monsoon) 
9th January, 2017 (winter) 15th April, 2017 (summer) 

  Class pairs  TD Class pairs TD Class pairs TD 
1 1:2 2000 1:2 1997 1:2 2000 
2 1:3 1593 1:3 1981 1:3 1766 
3 1:4 361 1:4 1543 1:4 1630 
4 1:5 894 1:5 1995 1:5 1914 
5 1:6 2000 1:6 2000 1:6 2000 
6 1:7 2000 1:7 2000 1:7 2000 
7 2:3 2000 2:3 1753 2:3 1980 
8 2:4 2000 2:4 1339 2:4 1797 
9 2:5 2000 2:5 1270 2:5 1734 
10 2:6 1998 2:6 2000 2:6 2000 
11 2:7 1996 2:7 2000 2:7 2000 
12 3:4 1338 3:4 1204 3:4 1096 
13 3:5 1971 3:5 1267 3:5 1177 
14 3:6 2000 3:6 2000 3:6 2000 
15 3:7 2000 3:7 2000 3:7 2000 
16 4:5 550 4:5 998 4:5 251 
17 4:6 2000 4:6 2000 4:6 1999 
18 4:7 2000 4:7 2000 4:7 2000 
19 5:6 1976 5:6 1995 5:6 1997 
20 5:7 1994 5:7 2000 5:7 2000 
21 6:7 2000 6:7 2000 6:7 2000 
Class no. Class name           
1 Crop land 
2 Fallow land 
3 Gullied and/or ravinous land 
4 Land with dense scrub 
5 Land with open scrub 
6 Settlement 
7 Water body 

Source: Author’s calculation 
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619 for crop land and land with dense scrub 
(Table 3). For land with open scrub and land with 
dense scrub also, the TD improved from 550 to 
888. This is mainly due to the fact that inclusion 
of the NDVI layer led to greater spectral distance 
between various culturable wasteland categories 
resulting into better separability. The composite 
of winter season image and its NDVI and 
summer season image and its NDVI showed the 
similar trend. The TD values were higher for 
composite than for winter season and summer 
season image alone for all culturable wasteland 
classes suggesting again an improvement. 
 

Mean NDVI values for types of culturable 
wastelands show almost similar trend with slight 
differences in values over three seasons (Fig. 3). 
Mean NDVI values for crop land are quite high 
suggesting good separability except in post 
monsoon season. Also Fallow land mean NDVI 
values are low compare to all other vegetation 
classes in all three seasons.     

The inclusion of EVI is based on the fact that                   
it is designed to enhance the differences                       
in vegetation from sparse to dense vegetation 
conditions. This idea was applied to achieve 
higher spectral separability between land with 
open scrub and land with dense scrub. However, 
results of separability analysis revealed that 
though inclusion of respective EVI with three 
season images led to improvement of TD values 
(Table 4) compare to three season images alone 
but, it was not higher than composite of three 
season images and their respective NDVI.                   
For example, if we consider the class separability 
between land with open scrub and land                     
with dense scrub then in case of winter                
season image, composite with EVI gave TD 
value of 1168 which is lower than TD value of 
1650 for composite with NDVI and higher than 
TD value of 998 which is for winter season image 
alone. 

 

Table 3. Separability analysis - TD values for composite of 3 bands image and NDVI 
 

Serial no. 23
rd

 October, 2016  
(post monsoon) 

9
th

 January, 2017 (winter) 15
th

 April, 2017 (summer) 

  Class pairs TD Class pairs TD Class pairs TD 
1 1:2 2000 1:2 2000 1:2 2000 
2 1:3 1989 1:3 2000 1:3 1999 
3 1:4 619 1:4 1993 1:4 1970 
4 1:5 1296 1:5 2000 1:5 1997 
5 1:6 2000 1:6 2000 1:6 2000 
6 1:7 - 1:7 - 1:7 2000 
7 2:3 2000 2:3 1978 2:3 2000 
8 2:4 2000 2:4 1880 2:4 1947 
9 2:5 2000 2:5 1328 2:5 1964 
10 2:6 2000 2:6 2000 2:6 2000 
11 2:7 - 2:7 - 2:7 2000 
12 3:4 1684 3:4 1750 3:4 1713 
13 3:5 1999 3:5 1833 3:5 1460 
14 3:6 2000 3:6 2000 3:6 2000 
15 3:7 - 3:7 - 3:7 2000 
16 4:5 888 4:5 1650 4:5 793 
17 4:6 2000 4:6 2000 4:6 2000 
18 4:7 - 4:7 - 4:7 2000 
19 5:6 2000 5:6 2000 5:6 2000 
20 5:7 - 5:7 - 5:7 2000 
21 6:7 - 6:7 - 6:7 2000 
Class no. Class name      
1 Crop land 
2 Fallow land 
3 Gullied and/or ravinous land 
4 Land with dense scrub 
5 Land with open scrub 
6 Settlement 
7 Water body 

Source: Author’s calculation 
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Fig. 3. Mean NDVI values for selected three seasons/dates 
 

Table 4. Separability analysis - TD values for composite of 3 bands image and EVI 
 

Serial no. 23rd October, 2016  
(post monsoon) 

9th January, 2017 (winter) 15th April, 2017 (summer) 

  Class pairs TD Class pairs TD Class pairs TD 
1 1:2 2000 1:2 2000 1:2 2000 
2 1:3 1733 1:3 1991 1:3 1962 
3 1:4 536 1:4 1769 1:4 1959 
4 1:5 1147 1:5 2000 1:5 1999 
5 1:6 2000 1:6 2000 1:6 2000 
6 1:7 - 1:7 - 1:7 2000 
7 2:3 2000 2:3 1948 2:3 1989 
8 2:4 2000 2:4 1863 2:4 1913 
9 2:5 2000 2:5 1574 2:5 1886 
10 2:6 1999 2:6 2000 2:6 2000 
11 2:7 - 2:7 - 2:7 2000 
12 3:4 1452 3:4 1290 3:4 1173 
13 3:5 1994 3:5 1431 3:5 1296 
14 3:6 2000 3:6 2000 3:6 2000 
15 3:7 - 3:7 - 3:7 2000 
16 4:5 894 4:5 1168 4:5 511 
17 4:6 2000 4:6 2000 4:6 2000 
18 4:7 - 4:7 - 4:7 2000 
19 5:6 1997 5:6 1999 5:6 1999 
20 5:7 - 5:7 - 5:7 2000 
21 6:7 - 6:7 - 6:7 2000 
Class no. Class name      
1 Crop land 
2 Fallow land 
3 Gullied and/or ravinous land 
4 Land with dense scrub 
5 Land with open scrub 
6 Settlement 
7 Water body 

Source: Author’s calculation 
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Mean EVI values suggest the similar trend for 
types of culturable wastelands, crop land and 
fallow land as in the case with mean NDVI values 
(Fig. 4). The only difference is the mean values 
for EVI are low in comparison to NDVI.    
 
Finally, both NDVI and EVI were included as two 
ancillary layers with respective three season 
images and TD values were calculated (Table 5). 
In general, all three season composites with 
NDVI and EVI performed better than three 
season images alone and their composites 
separately with NDVI and EVI. Out of the three 
season composites with NDVI and EVI, winter 
season image (9

th
 January, 2017) composite with 

NDVI and EVI gave highest TD values for all 
wasteland classes. For example, for land with 
open scrub and land with dense scrub, the TD 
value calculated was 1786 which is highest 
among all considered combinations and 
composites. Similarly, for between gullied/ 
ravinous land (medium) and open scrub, the TD 
value achieved was 1965 which is again highest 
among all considered combinations and 
composites. 

 
The composite with highest TD values for                     
all LU/LC classes i.e. composite of winter                 
season image with NDVI and EVI was                 
finalized and further used for                            
performing maximum likelihood digital image 
classification.  
 

 

5.2 Digital Classification and Accuracy 
Assessment 

 

Maximum likelihood classifier was used to 
classify various data composites. The 
classification output from the composite (MODIS 
reflectance bands, NDVI and EVI) of winter 
season possessing highest accuracy has been 
presented in Fig. 5. 
 

The accuracy assessment results represented 
the similar trend as seen in separability analysis. 
In case of only MODIS reflectance bands data, 
culturable wastelands classes in particular and 
all LU/LC classes in general did not achieve high 
accuracy (overall accuracy of 60.9%) (Table 6). 
MODIS reflectance bands and EVI composite too 
achieved similar accuracy of around 61.3%. The 
inclusion of NDVI layer to MODIS reflectance 
bands has increased the accuracy up to 70.2%. 
However, the composite of MODIS reflectance 
bands with both NDVI and EVI performed best 
among all considered composites for three 
different season datasets; the results of which 
are discussed in length in following paragraph. 
 

Accuracy assessment (Table 6) results show that 
fallow land has lowest producer’s accuracy 
(55.6%) and land with dense scrub has lowest 
user’s accuracy (64.7%). Low UA indicates high 
error due to commission, i.e. other categories are 
falsely classified as land with dense scrub. Land 
with dense scrub has similar reflectance pattern 

 
 

Fig. 4. Mean EVI values for selected three seasons/dates 
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Table 5. Separability analysis - TD values for composite of 3 bands image, NDVI and EVI 

 
Serial no. 23

rd
 October, 2016  

(post monsoon) 
9

th
 January, 2017 (winter) 15

th
 April, 2017 (summer) 

  Class pairs TD Class pairs TD Class pairs TD 
1 1:2 2000 1:2 2000 1:2 2000 
2 1:3 1997 1:3 2000 1:3 2000 
3 1:4 773 1:4 1999 1:4 1999 
4 1:5 1415 1:5 2000 1:5 2000 
5 1:6 2000 1:6 2000 1:6 2000 
6 1:7 - 1:7 - 1:7 2000 
7 2:3 2000 2:3 1999 2:3 2000 
8 2:4 2000 2:4 1982 2:4 2000 
9 2:5 2000 2:5 1752 2:5 1998 
10 2:6 2000 2:6 2000 2:6 2000 
11 2:7 - 2:7 - 2:7 2000 
12 3:4 1821 3:4 1992 3:4 1851 
13 3:5 2000 3:5 1965 3:5 1591 
14 3:6 2000 3:6 2000 3:6 2000 
15 3:7 - 3:7 - 3:7 2000 
16 4:5 1155 4:5 1786 4:5 934 
17 4:6 2000 4:6 2000 4:6 2000 
18 4:7 - 4:7 - 4:7 2000 
19 5:6 2000 5:6 2000 5:6 2000 
20 5:7 - 5:7 - 5:7 2000 
21 6:7 - 6:7 - 6:7 2000 
Class no. Class name      
1 Crop land 
2 Fallow land 
3 Gullied and/or ravinous land 
4 Land with dense scrub 
5 Land with open scrub 
6 Settlement 
7 Water body 

Source: Author’s calculation 
  
Table 6. Accuracies of winter season image (9

th
 January, 2017) for different composites (in %) 

 

Datasets MODIS  - 
3 bands 

MODIS  - 
3 bands 

and NDVI 

MODIS  - 
3 bands 
and EVI 

MODIS  - 3 
bands, NDVI 

and EVI 
Sr. no. Class PA UA PA UA PA UA PA UA 
1 Crop land 60.5 76.5 69.8 88.2 58.1 73.5 74.4 94.1 
2 Fallow land 51.1 67.6 53.3 70.6 42.2 55.9 55.6 73.5 
3 Gullied/ravinous land (medium) 65.5 55.9 79.3 67.6 72.4 61.8 86.2 73.5 
4 Land with open scrub 50.0 61.8 61.9 76.5 47.6 58.8 69.0 85.3 
5 Land with dense scrub 62.5 44.1 83.3 58.8 75.0 52.9 91.7 64.7 
6 Settlement 52.0 38.2 64.0 47.1 56.0 41.2 92.0 67.6 
7 Waterbody 90.0 79.4 93.3 82.4 90.0 79.4 100.0 88.2 
Overall accuracy  60.9 70.2 61.3 78.2 

Source: Author’s calculation 
 
as crop land and hence low UA. Also, there              
may be spectral confusion between land                     
with dense scrub and plantation crops                          
due to their similar vegetation activity. Open 
scrub on undulating terrain has also given similar 

reflectance pattern as dense scrub which was 
observed during accuracy assessment. Also, 
fallow land with trees on field boundaries might 
have spectrally confused with open or dense 
scrub. Interestingly, settlement has shown 
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Fig. 5. Culturable wasteland types classified using MXL classifier - Vadodara district (India) 
 

higher producer’s accuracy of 92.0% meaning 
thereby less omission error and user’s accuracy 
of 67.6% suggesting low commission error 
comparatively. Generally settlement is spectrally 
confused with land with open scrub, but this was 
avoided by use of NDVI and EVI layers; hence, 
good UA and PA of settlement class. 
Gullied/ravinous land (medium) also showed 
good producer’s (86.2%) and user’s accuracy 
(73.5%). User’s accuracy was lower than 
producer’s accuracy mainly because of spectral 
confusion with land with open scrub. Land with 
open scrub has been wrongly classified as 
gullied/ravinous land (medium) resulting into 
lower UA than PA. In case of land with open 
scrub, it is opposite i.e. PA is lower than UA 
meaning error of omission was higher than error 
of commission. This suggests that pixels of land 
with open scrub are wrongly classified as other 
categories leading to lower PA. The overall 
accuracy of the classification calculated to be 
78.2 % with overall kappa statistic of 0.7580. 
 

6. CONCLUSION 
 
The inclusion of both NDVI and EVI with winter 
season MODIS reflectance bands (blue, red and 

NIR) data has improved the spectral separability 
between various classes for identification of 
culturable wastelands. The overall digital 
classification accuracy has improved to 78.2% 
from only NDVI (70.2%) and only EVI (61.3%) 
inclusion. Also, the class-wise user’s and 
producer’s accuracy has improved particularly for 
culturable wasteland categories gullied and/or 
ravinous land (medium), land with open scrub 
and land with dense scrub. The contrast of 
vegetation activity has helped the separation of 
wastelands from cropland and fallow land in the 
winter season when cropland is either fallow or at 
the peak of cultivation (rabi crop) and wastelands 
have least vegetation activity. Here, the 
exception is the NDVI values of land with dense 
scrub which follow the similar trend to those of 
cropland mainly of plantations. The study 
signifies the use of contrast of vegetation activity 
in digitally classifying the culturable wastelands 
from remote sensing data. Future work may be 
directed towards the use of moderate to high-
resolution remote sensing data for better 
accuracy. Also, the inclusion of ancillary data 
related to climates such as temperature and 
rainfall may help in improving digital classification 
of culturable wastelands. 
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