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Abstract
Aims/ Objectives: The paper seeks to investigate the dynamic relationship between drivers
licensing, vehicle registration, motorbike registration and accidents.
Study Design: Cross-sectional study.
Place and Duration of Study: The secondary data was collated on a monthly basis on
Accidents, Driver license, Motor Registration and Vehicle Registration that spanned 9 years from
January 2010 to December 2018 from the Upper East Regional Office of the Drivers Vehicle and
License Authority.
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Methodology: The data was analyzed using vector autoregression model to establish the
dynamic relationship between the variables. The R and Eviews softwares were used in the
analysis.
Results: The findings revealed that in the short-run and long-run neither Driver license, Vehicle
Registration, Motor Registration none Accidents cannot influence much on each other but
experienced their own shock. Findings further ascertain that Accidents can granger cause vehicle
registration to change but the remaining variable have no much influence on accidents.Although,
accidents can granger cause vehicle registration to change, the remaining variables had no
influence on accidents. The finding finally concluded that ARCH-LM test indicated that there
was no ARCH effect present in the series implying that the Vector Autoregression model was
appropriate to establish the dynamic relationship between the variables.

Keywords: Vector autoregression; granger causality; stability; variance decomposition; impulse
function; serial correlation; autocorrelation function; Wald test.

2010 Mathematics Subject Classification: 37M10, 62M10.

1 Introduction

The motorcycles are Northern Ghana’s most common means of transportation. Motorcycles are
required by law to be licensed with a number plate before they’re placed on the roads. It is done
first, to know the number of motorcycles in the region; second, to get some revenue for the state
and last, to be able to locate the owners in the case of an accident or robbery. However, there are
still some motorcycles on our highways, without number plates. Users of such motorcycles are also
required to possess a rider’s license. An individuals riding skills is checked before a license is issued
to ensure that such a rider can use the motorcycle safely on the road without causing accident or
nuisance to other riders and road users.

Road traffic accidents and fatalities are a growing public health problem worldwide, according to
Agnihotri and Joshi [1]. Collaborations to assess how poorly maintained vehicles contribute to
traffic collisions and to evaluate the impact of safety measures [2]. Banthia et al. [3] also reported
that road traffic accidents are a major cause of death and disability worldwide, with a large number
occurring in developing nations. Motorcyclists are found to be about three times more likely to
be involved in a collision than car drivers, and 16 times more likely to die [4]. The driver also
absorbs both the kinetic and compressive energy arising from the collision in a motorcycle accident
[5]. Murray et al. [6] identifies some barriers that hinder the safety of fleet in Australia.

Road traffic accidents are a significant but ignored global public health problem, requiring concerted
efforts to prevent them effectively and sustainably. According to the Peden et al. [7], highway
transport is the most complicated and the most hazardous of all the networks that people have
to deal with on a daily basis. Worldwide, the number of people killed in road traffic accidents is
estimated at approximately 1.2 million per year, while the number injured may be as high as 50
million [7]. The disaster behind such numbers often receives less media coverage than other less
common, but more extreme forms of disasters. The total number of road fatalities and injuries
worldwide is predicted to rise by about 65% between 2000 and 2020 [8], and fatalities in low and
middle-income countries are projected to increase by as much as 80%. This calls for greater efforts
and new measures to tackle the danger.

What is the condition of motorcycle registration and injuries in a developing country Ghana and
a region like that of the Upper East of Ghana? It is the topic the researcher discusses in this
work. Studies in some parts of the world (e.g. Ghana and Indonesia) have shown that road traffic
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accidents are the leading cause of road death and injury, and that the majority of road traffic deaths
and injuries occurred in rural areas on roads [9],[10].

Road accidents in the year 2009 were about 12,299 with a total of 2,237 casualties and 6,242
sustaining serious injuries [11]. The level of road trauma imposes huge economic costs, representing
between 1 and 3 percent of GDP in most countries with about 70 percent of these accident related
deaths occurring in developing countries [12].

The Bolgatanga Municipal Health Administration [13] reported that road traffic incidents in the
area have regularly appeared in the top ten causes of hospital admissions and attendance since 2006.
The report of the preceding year [14] carried the same indication. In Africa, it has been estimated
that in 1990 59,000 people lost their lives in road traffic accidents, and by 2020 this number would
be 144,000, a rise of about 144 percent [15]. This paper seek to examine the dynamic relationship
between Accidents, motorcycle registration and vehicle registration in the Upper East region of
Ghana.

2 Materials and Methods

The study made used of secondary data spanning over the period 2009 to 2016. Data was sourced
from the Upper East Regional Driver and Vehicle License Authority in Bolgatanga, Ghana. As in
most time series studies, we first checked for stationarity of the data.The ADF and PP unit root
test was conducted to check for stationary of the data. The study employed Vector Autoregression
model (VAR). According to James H. Stock and Mark W. Watson [16], a univariate autoregression
is a single-equation, single-variable linear model in which the current value of a variable is explained
by its own lagged values. A VAR is an n-equation, n-variable linear model in which each variable
is in turn explained by its own lagged values, plus current and past values of the remaining n − 1
variables.

Also, the lag length (p) associated with the minimum from a set of values of AIC, SBIC and HQIC
is selected as the correct lag length (p) for the VAR model. The Granger causality test to determine
the dynamic relationship that exist among the variables was conducted. Variance decomposition
as well as impulse response function was employed to determine the shock transmissions among
the variables. The ARCH-LM test, correlogram of the residuals and serial correlation test was
conducted to assess the fitness and adequacy of the VAR model. Stata and Eviews softwares were
employed as the statistical tool for the analyses of the data.

2.1 Autoregressive (AR) model

Vector Autoregression (VAR) is a generalized reduced form which helps in detecting the statistical
relationship among variables in a particular system. It allows all the variables in the system to
interact with themselves and with each other, without having to impose a theoretical structure on
the estimates. It provides additional method that help in analyzing the impact of a given variable
on itself and on all other variables using Impulse Response Functions (IRFs) and Variance Error
Decompositions (VED). An AR(p) is given by

yt = Σp
r=1αryt−1 + zt (2.1)

=⇒ α1yt−1 + α2yt−2 + · · ·+ αpyt−p + zt

where {αr}p1 are fixed constants and {zt} is purely white noise. Using the backward-shift operator,
equation 2.1 is rewritten as

(1− α1B − α2B
2 − · · · − αPB

p)yp = zt

(B)yt = zt (2.2)
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From equation 2.2
yt = α(B)−1zt

yt = (1− α1B − α2B − · · · − αPB
P )−1zt (2.3)

From Equation 2.3,

• E(yt) = 0 since zt is a random process.

• V ar(yt) is finite provided Σ∞
i=1α(B)i converges (a condition for stationarity).

• Equivalently, the stationarity condition is that the values of B to α(B) = 0 must be greater
than one.

The simplest form of an AR model is the first order denoted AR (1) and defined as yt = αyt−1 + zt
It is stationary provide |α| < 1.

2.2 Causality test

Granger causality test [17], is the frequently used test for exploring the causality among variables
included in a VAR analysis. The primary purpose for fitting a VAR model and the interest of
researchers is to establish the causality between the variables. When causality is detected, care
must be taken in the interpretation. We say that variable y granger-causes variable x if variable
y helps in the prediction of the variable x. According to Lütkepohl [18], the test for non-zero
correlation between the error processes of the cause and eect variables is carried out in the process.
The vector of endogenous variables yt is usually, split into two sub-vectors y1t(k1 × 1) and y2t ,
k = k1 + k2. Thus, the V AR(p) is written as[

y1,t
y2,t

]
=

p∑
i=1

[
Π11,i Π12,i

Π21,i Π22,i

] [
y1,t−i

y2,t−i

]
+ Cdt +

[
ε1,t−i

ε2,t−i

]
(2.4)

The following hypothesis is then tested; H0 : Π21,i = 0 for i = 1, 2, , p (that is y1t does not Granger-
cause y2t. H1 : Π21,i0 for i = 1, 2, , p. The test statistic is distributed as F (PK1K2 − n∗) where n*
is the total number of parameters in the model in equation (2).

2.3 Impulse Response Function (IRF)

In Beenstock and Felsenstein [19], the Impulse Response Function (IRF) is used to determine how
each endogenous variable responds over time to a shock in its own value and in every other variable.
Again, any VAR can be modelled as a triangular moving average process.

yt = + θ0µt + θ1µt−1 + θ2µt−2 (2.5)

From this equation we can observe changes in yt given a change in the residual. Plotting the IRF
maps out the cyclic created in all variables given a shock in one variable.

∂yi, t+ s

∂µi, t
=

∂yi, t

∂µi, t− s
= θsiji, j = 1, 2, · · ·n, s > 0 (2.6)

It is common to draw bootstrapped confidence interval around IRF.

2.4 Forecast Error Variance Decomposition (FEVD)

If the innovation which actually drive the system can be identify, a further tool used to interpret
VAR model is forecast error variance decompositions. It is given as

Wjk,h =

∑h−1
i=0 (eiθiek)

2∑h−1
i=0 eiθi

∑h−1
i=0 θiek

(2.7)

Which denotes the kth column of Ik by ek, the proportion of the h-step forecast error variance of
the variable k [18].
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3 Results and Discussion

In this section of the study, we deal with the analysis of the data, discussion and interpretation
of the results obtained from the study. The section is presented into preliminary analysis, further
analysis and discussion of the results.

Fig. 1. Time series plot of accidents, motor registration, vehicle registration and
driver license

In order to achieved the first objective of the study, the Fig. 1 reveals the pattern of the Accidents,
Driver License, Motor Registration and Vehicle Registration of the time series plot of the data. All
the four variables were plotted on single graph and the graph displayed some level of stationarity
in the data as all series fluctuated about a fixed point. There was no exhibition of any pattern of
trend and the presence of seasonality was not observed in all the four variables. Accidents fluctuated
above Driver License, Motor Registration and Vehicle Registration and relatively exhibiting higher
variability.

3.1 Stationary test

To investigate whether the four time series data are stationary or not, the ADF and PP unit root
was employed. Table 1 is the presentation of Accidents, Driver License, Motor Registration and
Vehicle Registration. The trend component was absent when the test was conducted. All the series
were stationary at 5% level of significance. This meant that the data was good for fitting the VAR
model.

3.2 VAR models and lag selection

The VAR model order assumed to increase with the sample size and that is h ∼ p(T )1/3, where
T is size of the time series in Lütkepohl and Saikkonen [20]. The conclusion they made was that
VAR(p) are fitted to data such that h goes to infinity with sample size. We considered VAR models
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from lag 1 to lag 8. VAR model at lag 2 was chosen by FPE, AIC, SC, HQ whiles VAR model at
lag 1 was chosen by HQ. VAR model at lag 8 was chosen by LR criteria as displayed in Table 2.
The Lag 1, lag 2 and lag 8 are useful for predicting accidents whiles its lag 3, lag 4, lag 6 and lag 7
are not. Lag selection criterion has advised us to take lag 2 in the VAR model to be optimum lags.
It is clearly shown that lag 2 is appropriate to estimate VAR model based on FPE, AIC, SC, HQ
and HQ.

Table 1. Stationary test

Method Statistic Probability Cross-section Observations

Null: Unit root (assumes common unit root process)

Levin, Lin & Chu t* -10.8122 0.0000 4 427

Null: Unit root (assumes individual unit root process)

Im, Pesaran and Shin W-Stat -11.2019 0.0000 4 427
ADF - Fisher Chi-square 121.889 0.0000 4 427
PP - Fisher Chi-square 163.448 0.0000 4 428

Table 2. VAR lag order selection criteria

Lag LogL LR FPE AIC SC HQ

0 -2036.654 NA 6.24e+12 40.81308 40.91728 40.85525
1 -1977.885 111.6607 2.65e+12 39.95770 40.47874 40.16857*
2 -1969.831 14.65851 3.11e+12* 40.11662* 41.05448* 40.49619*
3 -1962.775 12.27765 3.74e+12 40.29550 41.65018 40.84376
4 -1957.351 9.003376 4.65e+12 40.50702 42.27854 41.22399
5 -1950.527 10.78177 5.66e+12 40.69054 42.87889 41.57621
6 -1939.586 16.41240 6.38e+12 40.79171 43.39688 41.84607
7 -1932.157 10.54818 7.76e+12 40.96315 43.98514 42.18620
8 -1910.664 28.80091* 7.19e+12 40.85328 44.29211 42.24504

Table 3 represent the parameters estimates of the VAR model. Some of the coefficients of the
VAR models are found not to be significant and this suggests that further analysis be conducted to
ascertain whether or not the coefficients are indeed not significant. A Wald test was thus conducted
on the perceived insignificant VAR models coefficients. It surprisingly turned out that the overall
probability value was significant suggesting that the coefficients cannot be rejected and should
rather be retained.

Table 4 shows clearly the four VAR models estimated. Also in that table is the Durbin-Watson
Statistic for each of the four VAR models which are all less than 4, indicating that all the four VAR
models are free from serial correlation.

3.3 Stability condition of the VAR model

The Table 5 indicates the stability condition of VAR (8) model. The results shows that all the
roots are inside the unit circle since the modulus of the roots are all less than 1. This means that
the VAR (8) stability condition is achieved. This confirms that Accidents, Driver License, Motor
Registration and Vehicle Registration are stationary as stated in the earlier tests.

3.4 Model adequacy and diagnosis checks

To investigate a proper model for a given time series data, it is necessary to carry out the ACF
and PACF analysis. The Fig. 2 is the presentation of model adequacy and diagnostic checks to
measure how the variables in the time series are related to one another. The correlation plot of
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vehicle registration against vehicle registration shows that all the spikes within the lower and the
upper bounds are not significant except lag 12 which is significant.

Table 3. Coefficient estimates of the VAR model

Lags Coefficient Standard Error t-Statistic Probability

C(1) -0.004019 0.103474 -0.038843 0.9690
C(2) 0.277849 0.099681 2.787371 0.0056
C(3) -0.000114 0.009229 -0.012373 0.9901
C(4) 0.000611 0.009224 0.066200 0.9473
C(5) 0.073532 0.063963 1.149603 0.2510
C(6) -0.004420 0.064084 -0.068975 0.9450
C(7) 0.716444 0.350787 2.042393 0.0418
C(8) 0.375384 0.356716 1.052332 0.2933
C(9) -22.97540 12.84064 -1.789272 0.0744
C(10) -1.540891 1.220653 -1.262350 0.2076
C(11) 1.509765 1.175912 1.283910 0.1999
C(12) 0.562614 0.108866 5.167938 0.0000
C(13) -0.002127 0.108817 -0.019548 0.9844
C(14) 0.344525 0.754549 0.456598 0.6482
C(15) 0.587871 0.755984 0.777624 0.4373
C(16) 1.289716 4.138127 0.311667 0.7555
C(17) 2.803194 4.208073 0.666147 0.5057
C(18) 25.32319 151.4772 0.167175 0.8673
C(19) 0.011677 0.165216 0.070675 0.9437
C(20) 0.099903 0.159161 0.627684 0.5306
C(21) 0.000280 0.014735 0.018987 0.9849
C(22) 0.009099 0.014728 0.617796 0.5371
C(23) 0.655051 0.102129 6.413969 0.0000
C(24) 0.054990 0.102323 0.537415 0.5913
C(25) 0.579703 0.560099 1.035001 0.3013
C(26) -0.504936 0.569567 -0.886526 0.3759
C(27) 32.64042 20.50258 1.592015 0.1122
C(28) -0.001564 0.030136 -0.051898 0.9586
C(29) -0.002897 0.029031 -0.099775 0.9206
C(30) -0.000932 0.002688 -0.346803 0.7289
C(31) 0.003780 0.002686 1.407011 0.1602
C(32) 0.016942 0.018628 0.909469 0.3637
C(33) -0.003899 0.018664 -0.208901 0.8346
C(34) -0.121288 0.102162 -1.187206 0.2359
C(35) 0.000530 0.103889 0.005097 0.9959
C(36) 22.46711 3.739680 6.007762 0.0000

Determinant residual covariance 1.30E+12

The residual plot of vehicle registration against motor registration shown that all the spikes are not
significant except at lag 8 and lag 12 whiles the residuals plot of vehicle registration against driver
license showed that all the lags are not significant except lag 9 which shows a significant spike.
The ACF plot of vehicle registration against accidents shows that all the spikes within the lower
bound and the upper bound are not significant. All the spikes are not significant except in the case
of motor registration versus vehicle registration at lag 12, motor registration versus driver license
at lag 9 and accidents versus accidents at lag 9. The overall assessment indicated that the model
is deemed fit and can be use to forecast since there is no significant spikes at lag 1 throughout
individual plot.
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Table 4. The four estimated VAR models

Equation: VEHREG = C(1)*VEHREG(-1) + C(2)*VEHREG(-2) + C(3)
*MOTREG(-1) + C(4)*MOTREG(-2) + C(5)*DRIVLICENCE(-1) + C(6)

*DRIVLICENCE(-2) + C(7)*ACCIDENT(-1) + C(8)*ACCIDENT(-2) + C(9)

R-squared 0.181156 Mean dependent var 17.02830
Adjusted R-squared 0.113622 S.D. dependent var 24.16785
S.E. of regression 22.75346 Sum squared resid 50218.82

Durbin-Watson stat 2.075255

Equation: MOTREG = C(10)*VEHREG(-1) + C(11)*VEHREG(-2) + C(12)
*MOTREG(-1) + C(13)*MOTREG(-2) + C(14)*DRIVLICENCE(-1) + C(15)

*DRIVLICENCE(-2) + C(16)*ACCIDENT(-1) + C(17)*ACCIDENT(-2) + C(18)

R-squared 0.386282 Mean dependent var 576.0755
Adjusted R-squared 0.335666 S.D. dependent var 329.3175
S.E. of regression 268.4157 Sum squared resid 6988559

Durbin-Watson stat 2.035799

Equation: DRIVLICENCE = C(19)*VEHREG(-1) + C(20)*VEHREG(-2) +
C(21)*MOTREG(-1) + C(22)*MOTREG(-2) + C(23)*DRIVLICENCE(-1)+

C(24)*DRIVLICENCE(-2) + C(25)*ACCIDENT(-1) + C(26)*ACCIDENT(-2) + C(27)

R-squared 0.545037 Mean dependent var 142.1321
Adjusted R-squared 0.507514 S.D. dependent var 51.76928
S.E. of regression 36.33031 Sum squared resid 128029.5

Durbin-Watson stat 2.044931

Equation: ACCIDENT = C(28)*VEHREG(-1) + C(29)*VEHREG(-2) + C(30)
*MOTREG(-1) + C(31)*MOTREG(-2) + C(32)*DRIVLICENCE(-1) + C(33)

*DRIVLICENCE(-2) + C(34)*ACCIDENT(-1) + C(35)*ACCIDENT(-2) + C(36)

R-squared 0.052986 Mean dependent var 23.10377
Adjusted R-squared -0.025118 S.D. dependent var 6.544979
S.E. of regression 6.626667 Sum squared resid 4259.534

Durbin-Watson stat 2.020677

Table 5. VAR stability conditions

Root Modulus

0.811723 0.811723
-0.526308 0.526308
0.519266 0.519266
0.464381 0.464381

0.141203 - 0.237046i 0.275915
0.141203 + 0.237046i 0.275915
-0.229555 - 0.083581i 0.244298
-0.229555 + 0.083581i 0.244298

3.5 ARCH-LM test

The ARCH-LM test was employed to test for constant variance assumption. The results for ARC-
LM test is displayed in Table 6. We failed to reject the null hypothesis of no ARCH effects in the
residuals since the p-value of the Chi-Square(1) test is 0.9451 and this implies that ARCH is not
appropriate to be estimated but rather the VAR model provides an adequate representation of the
accidents, driver license, motor registration and vehicle registration of the time series data since the
model satisfies all the assumptions.
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The LM statistic at various lag 1,2, and 3 with their corresponding probability values are also shown
in Table 6. The probability at various lags are appears to be significant indicating that the VAR
models are free from serial correlation. This implies that VAR model are adequate and can be used
to forecast the future behaviour of the variables.

Fig. 2. Residual plot of ACF and PACF

Table 6. ARCH-LM test

F-statistic 0.004651 Prob. F(1,105) 0.9458
Obs*R-squared 0.004740 Prob. Chi-Square(1) 0.9451

LM

Lags LM-Stat Prob
1 13.14813 0.6619
2 10.89854 0.8157
3 6.633902 0.9797

3.6 Causality test

From Table 7, we see relationship between accidents, driver license, motor registration and vehicle
registration where almost all the probability values are greater than 0.05 meaning that driver license,
motor registration and vehicle registration cannot granger cause accidents within the Upper East
Region. Likewise, the relationship runs from accidents to vehicle registration with all probability
value less than 0.05. Although, both accidents have greater influenced on vehicle registration but
the remaining have no influence on accidents. This implies that for accidents to be reduced in our
roads management of the road safety should enforce vehicle registration within the Upper East
Region.
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Table 7. Pairwise granger causality tests

Null Hypothesis: Obs F-Statistic Prob.

MOTREG does not Granger Cause VEHREG 106 0.20642 0.8138
VEHREG does not Granger Cause MOTREG 1.39233 0.2532

DRIVLICENCE does not Granger Cause VEHREG 106 2.19280 0.1169
VEHREG does not Granger Cause DRIVLICENCE 0.31788 0.7284

ACCIDENT does not Granger Cause VEHREG 106 3.43336 0.0361
VEHREG does not Granger Cause ACCIDENT 0.17968 0.8358

DRIVLICENCE does not Granger Cause MOTREG 106 1.41485 0.2477
MOTREG does not Granger Cause DRIVLICENCE 0.56021 0.5729

ACCIDENT does not Granger Cause MOTREG 106 0.40378 0.6689
MOTREG does not Granger Cause ACCIDENT 1.76989 0.1756

ACCIDENT does not Granger Cause DRIVLICENCE 106 1.11283 0.3326
DRIVLICENCE does not Granger Cause ACCIDENT 1.07875 0.3439

Table 8. Variance decomposition of accident

Period S.E. VEHREG MOTREG DRIVER LICENSE ACCIDENT

1 6.626667 0.979976 0.472442 1.298102 97.24948
2 6.697403 1.047139 0.480160 1.866069 96.60663
3 6.764106 1.184082 2.151723 1.905228 94.75897
4 6.780968 1.178417 2.554150 1.972826 94.29461
5 6.792404 1.225595 2.724286 2.064737 93.98538
6 6.798244 1.228906 2.787072 2.157371 93.82665
7 6.802420 1.241797 2.819823 2.225034 93.71335
8 6.805049 1.245130 2.838429 2.274654 93.64179
9 6.806841 1.249381 2.849504 2.308030 93.59308
10 6.808004 1.251253 2.856342 2.330955 93.56145

3.7 Impulse function

The impulse response function of VAR helps to interpret the dynamic relationship between variables
of time series data. The impulse response among the accidents, driver license, motor registration
and vehicle registration were explored. The Fig. 3 shows the interactions among accidents, driver
license, motor registration and vehicle registration following a shock in the VAR model. The
impulse response function must lie between 95% confidence interval. The two redline indicates the
95% confidence interval of lower and upper bound. Take for instance the impulse variable vehicle
registration. In the first period, vehicle registration reacted positively to a shock in its own values
followed by a zero response to second, third and fourth period. Motor registration reacted positive
to a shock in vehicle registration in the first period followed by the decrease in movement to the third
period and remain stable in the rest of the periods. Motor registration reacted positively to a shock
in relation to its own self in the first period and decline gradually through the rest of the period.
Driver license reacted zero in the first period to a shock in vehicle registration and maintained same
response and stable movement through the rest of the period. Driver license reacted positively to
a shock in motor registration from first period followed by a stable movement to the rest of the
period. From the initial period, Driver license reacted positively to its own shock and then started
declining in a stable movement to the final period.

Accidents had a zero reaction response to shock in vehicle registration from the first period through
to the fifth period. Accidents reacted negatively in response to motor registration from the first
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period and then increase from period three to period four. Thereafter, it remain stable throughout
the rest of the period. Accidents reacted positively in response to driver license in the first period
and then declined in the second period and thereafter remained on zero throughout the rest of
the period. Accidents reacted positive response to its own shock at first and then it declined to
a negative response at period two. Thereafter it increased in period three. However there was no
response for the rest of the period. Details are shown in the Fig. 3.

Table 9. Forecast error variance evaluation

Variable Inc.obs. RMSE MAE MAPE Theil

VEHREG 108 24.77672 16.31198 70.72873 0.471641
MOTREG 108 543.4784 437.7815 307.7484 0.675394

DRIVLICENCE 108 428.1352 425.4991 75.09557 0.595081
ACCIDENT 108 8.993223 6.950724 41.84171 0.220294

Fig. 3. Impulse Function

From the residuals impulse response function in Fig. 4, it is clearly shows that the upper diagonals
and the lower diagonals are uncorrelated. This implies that the impulse response function actually
reflects and explains the movement of the four variables in the study.

The variance decomposition of accident is shown in Table 8. In the short run, that is quarter 3,
impulse or innovation or a shock to vehicle registration will account for 1.184% variation of the
fluctuation in Accidents. A shock to motor registration can cause 2.152% fluctuation in accidents,
impulse or innovation to driver license account for 1.905% variation of the fluctuation in accident.
Also, a shock to accidents can cause 94.76% fluctuation in accidents (own shock). In the long-run,
that is quarter 10, impulse or innovation or a shock to vehicle registration account 1.25% variation
of the fluctuation in accident. Still in quarter 10, a shock to motor registration can cause 2.86%
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fluctuation in accident. An impulse or innovation to driver license account for 2.33% variation of
the fluctuation in accident, a shock to accidents can 93.56% fluctuation in accidents(own shock).
This implies that both in the short and long-run vehicle registration and motor registration cannot
contribute much to variation of the fluctuation in the accident.

Fig. 4. Residual of the impulse function

It can be observed from Table 9 that the least variation among the four variables (Accidents,
Motor Registration, Vehicle Registration and Driver license). The variable that has the minimum
variation can be selected based on the minimum values of RMSE, MAPE, MAD, MSD and Theil.
The maximum variation occurred in motor registration and this happened because the most popular
means of transportation within the region is motorcycle. A careful inspection indicated that
accidents within the region has the minimum variation and this implies that the accidents occurred
at closed time interval.

4 Summary of the Findings

The findings in Fig. 1 revealed the pattern of the Accidents, Driver License, Motor Registration and
Vehicle Registration of the time series plot of the data. All the four variables were plotted on single
graph and the graph displayed some level of stationary in the data as all series fluctuate about a
fixed point. There was no exhibition of any pattern of trend and the presence of seasonality was
not observed in all the four variables. The relative accidents fluctuated above the Driver license,
Motor Registration and Vehicle Registration and relatively exhibiting high variability.

To investigate whether the four time series data are stationary or not, the ADF and PP unit root
was employed. The trend component was absence when the test was conducted. All the series were
stationary at 5% level of significance. This means that the data was good for fitting VAR model.
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Table 3 represent the parameters estimates of the VAR model. The Lag 1, lag 2 and lag 8 were
found to be useful for predicting accidents whiles its lag 3, lag 4, lag 6 and lag 7 were not. Lag
selection criterion advised us to take lag 2 in the VAR model to be optimum lags. It clearly showed
that lag 2 is appropriate to estimate VAR model based on FPE, AIC, SC, HQ and HQ. From Table
4, the Durbin-Watson Statistic for the four VAR models were all less than 4 indicating that all the
four VAR models were free from serial correlation. Some of the coefficients of the VAR models were
not significant and this suggested that further analysis be conducted to ascertain whether or not the
coefficients are indeed not significant. Wald test was further conducted on perceived insignificant
of the VAR models coefficients. It showed that the overall probability value was significant which
indicated that the coefficients could not be rejected but rather retained. The results also showed
that all the roots are inside the unit circle and the reason was that the modulus of the roots were
less than 1. This means that the VAR (8) stability condition was achieved and hence suggested that
the series (Accidents, Driver license, Motor Registration and Vehicle Registration) were stationary
as stated in the ADF and PP test in Table 2. The ACF and PACF plot of vehicle registration
against accidents shows that all the lags spikes within the lower bound and the upper bound were
not significant. All the spikes of the lags were not significant except in the case of motor registration
versus vehicle registration at lag 12, motor registration versus driver license at lag 9 and accidents
versus accidents at lag 9. The overall assessment indicated that the model was fit and could be
used to forecast since there was no significant spikes at lag 1 throughout individuals plot.

The ARCH-LM test was employed to test for constant variance assumption. The results for ARCH-
LM test revealed that there was no ARCH effect in the series since the probability value of 0.9451
is greater than 0.05. This implies that ARCH is not appropriate to be estimated but rather that
the VAR model provided an adequate representation of the series (accidents, driver license, motor
registration and vehicle registration) since the constant variance assumption was satisfied. The LM
statistic at various lag 1, 2, and 3 with their corresponding probability values are shown in Table
7. The probability values at various lags were greater than 0.05 indicating that the VAR models
are free from serial correlation. This implies that VAR model are adequate and can use to forecast
future behaviour of the variables.

It was found that although, accidents can granger cause vehicle registration change, the remaining
variables have no influence on accidents. This implies that for accidents to be reduce in our
roads management of the road safety should be enforced and vehicle registration within the region
encouraged.

When the impulse variable was vehicle registration, it reacted positively to a shock in its own
values in the first period, followed by a zero response in the second, third and fourth period. Motor
registration reacted positively to a shock in vehicle registration in the first period followed by the
decrease movement in the third period and remained stable in movement through the rest of the
period. Motor registration reacted positively to a shock relative to its own shock in the first period
and declined gradually to the rest of the period. Driver license reaction was zero in the first period
to a shock in vehicle registration and maintained same positive stable movement to the rest of
the period. Driver license reacted positively to a shock in motor registration from first the period
followed by a stable movement through the rest of the periods. From the initial period, Driver
license reacted positively to its own shock from first period and then started declining in a stable
movement to the final period. Accidents had a zero reaction in response to a shock in vehicle
registration from the first period and remained same throughout the fifth period. Accidents reacted
negatively in response to motor registration from the first period and then increased from period
three to period four and thereafter maintained a stable movement throughout the rest of the period.
Accidents reaction was positive in response to driver license in the first period and then declined
in second period thereafter its reaction was zero throughout the rest of the period. The reaction of
accidents was positive in response to its own shock at the first period and then decline to negative
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response at period two and thereafter increased in period three however there was no response for
the rest of the period.

The residuals impulse response function in Fig. 4 indicated that the upper diagonals and the lower
diagonals are uncorrelated. This implies that the impulse response function actually reflects and
explained the movement of the four variables in the study. Table 8 revealed that in the short-run
and long-run vehicle registration, driver license and motor registration cannot contribute much to
variation of the fluctuation in the accidents but accidents experienced their own shock. The findings
finally revealed that Accidents were having the minimum variation and motor registration obtained
the maximum variation. This implies that the accidents occurred within the region at close time
interval whiles the motor registration occurred at relatively wide time interval.

5 Conclusions

In conclusion we found that there was no exhibition of any pattern of trend and the presence of
seasonality was not observed in all the four variables. All the four series were stationary at 5% level
of significant. This was confirmed by stability test which showed that the roots were all found in
the unit circle. Lag 2 was found to be appropriate to estimate VAR model based on FPE, AIC, SC,
HQ and HQ This meant that the data was good for fitting the VAR model. The parameters of the
model for the series were estimated and further analysis conducted to confirm the significance of
the coefficients. An overall assessment of the the model through the model diagnostic test showed
that the model was very fit to be used for forecasting purposes. In the short-run and long-run
neither driver license, vehicle registration, motor registration nor accidents can influence much on
each other but rather, they experience their own shock. Although, accidents can cause vehicle
registration to change, the remaining variable had no influence on accidents. The finding further
helps us conclude that there was no ARCH effect present in the series since the probability value
0.9451 is greater than 0.05 and this implies that the vector autoregression model was appropriate
to establish the dynamic relationship between the variables. This implies that for accidents to be
reduce in our roads, enforcement of compulsory vehicle registration in the region must be ensured.
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