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ABSTRACT

In this paper, we introduce the generalized 2-primes sequences and we deal with, in detail, three
special cases which we call them 2-primes, Lucas 2-primes and modified 2-primes sequences.
We present Binet’s formulas, generating functions, Simson formulas, and the summation formulas
for these sequences. Moreover, we give some identities and matrices related with these sequences.
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1 INTRODUCTION

In this paper, we investigate the generalized 2-
primes sequences and we investigate, in detail,
three special cases which we call them 2-
primes, Lucas 2-primes and modified 2-primes
sequences.

The sequence of Fibonacci numbers {Fn} and
the sequence of Lucas numbers {Ln} are
defined by

Fn = Fn−1 + Fn−2, n ≥ 2, F0 = 0, F1 = 1,

and

Ln = Ln−1 + Ln−2, n ≥ 2, L0 = 2, L1 = 1
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respectively. The generalizations of Fibonacci
and Lucas sequences lead to several nice and
interesting sequences.

The generalized Fibonacci sequence
{Wn(W0,W1; r, s)}n≥0 (or shortly {Wn}n≥0) is
defined (by Horadam [1]) as follows:

Wn = rWn−1+sWn−2, W0 = a,W1 = b, n ≥ 2
(1.1)

where W0,W1 are arbitrary complex (or real)
numbers and r, s are real numbers, see also
Horadam [2], [3] and [4]. Now these numbers
{Wn(a, b; r, s)} are called Horadam numbers.

The sequence {Wn}n≥0 can be extended to
negative subscripts by defining

W−n = −r

s
W−(n−1) +

1

s
W−(n−2)

for n = 1, 2, 3, ... when s ̸= 0. Therefore,
recurrence (1.1) holds for all integer n.

For some specific values of a, b, r and s, it
is worth presenting these special Horadam
numbers in a table as a specific name. In
literature, for example, the following names and
notations (see Table 1) are used for the special
cases of r, s and initial values.

Table 1. A few special case of generalized Fibonacci sequences

Name of sequence Wn(a, b; r, s) Binet Formula OEIS[5]

Fibonacci Wn(0, 1; 1, 1) = Fn

(
1+

√
5

2

)n

−
(

1−
√

5
2

)n

√
5

A000045

Lucas Wn(2, 1; 1, 1) = Ln

(
1+

√
5

2

)n

+
(

1−
√

5
2

)n

A000032

Pell Wn(0, 1; 2, 1) = Pn

(
1 +

√
2
)n −

(
1−

√
2
)n

2
√
2

A000129

Pell-Lucas Wn(2, 2; 2, 1) = Qn

(
1 +

√
2
)n

+
(
1−

√
2
)n

A002203
Jacobsthal Wn(0, 1; 1, 2) = Jn

2n−(−1)n

3
A001045

Jacobsthal-Lucas Wn(2, 1; 1, 2) = jn 2n + (−1)n A014551

Here OEIS stands for On-line Encyclopedia of Integer Sequences.

Jacobsthal sequence has been studied by many authors and more detail can be found in the extensive
literature dedicated to these sequences, see for example, [6,7,8,9,10,11,12,13,14,15,16,17,18,19].

Pell sequence has been studied by many authors and more detail can be found in the extensive
literature dedicated to these sequences, see for example, [20,21,22,23,24,25,26,27]. For higher order
Pell sequences, see [28,29,30,31,32,33].

We can list some important properties of Horadam numbers that are needed.

• In 1843, Binet gave a formula which is called “Binet formula” for the usual Fibonacci numbers
Fn by using the roots αF = 1+

√
5

2
, βF = 1−

√
5

2
of the characteristic equation x2 − x− 1 = 0 :

Fn =
αn
F − βn

F

α− β
.

Here αF is called Golden Proportion (or Golden Number or Golden Section) (for details, see
for example [34,35,36]).

Binet formula of Horadam sequence can be calculated using its characteristic equation which
is given as

x2 − rx− s = 0.

The roots of characteristic equation are

α =
r +

√
∆

2
, β =

r −
√
∆

2
.
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where ∆ = r2 + 4s and the followings hold

α+ β = r

αβ = −s.

Using these roots and the recurrence relation, Binet formula can be given as follows

Wn =
Aαn −Bβn

α− β
(1.2)

where A = b − aβ and B = b − aα. The Binet form of a sequence satisfying (1.2) for
non-negative integers is valid for all integers n,

• The generating function for Horadam numbers is

g(x) =
W0 + (W1 − rW0)x

1− rx− sx2
. (1.3)

• The Cassini identity for Horadam numbers is

Wn+1Wn−1 −W 2
n = sn−1(rW0W1 −W 2

1 −W 2
0 s). (1.4)

A search of the literature turns up that there are many identities including Simson (Cassini),
Catalan, d’Ocagne, Melham, Tagiuri, Gelin-Cesaro, Gould identities, see for example, [37,38,39,-
40,41,42, 43,44].

• A summation formula for Horadam numbers is
n∑

i=0

Wi =
W1 −W0(r − 1) + sWn −Wn+1

1− r − s
. (1.5)

• For ∆ = r2 + 4s > 0, α and β are reals and α ̸= β. Note also that

α2 = α
√
∆− s (1.6)

and
β2 = −β

√
∆− s. (1.7)

•

Aαn = αWn + sWn−1,

Bβn = βWn + sWn−1.

In this paper we consider the case r = 2, s = 3 and in this case we write Vn = Wn. A generalized
2-primes sequence {Vn}n≥0 = {Vn(V0, V1)}n≥0 is defined by the second-order recurrence relations

Vn = 2Vn−1 + 3Vn−2 (1.8)

with the initial values V0 = c0, V1 = c1 not all being zero.

The sequence {Vn}n≥0 can be extended to negative subscripts by defining

V−n = −2

3
V−(n−1) +

1

3
V−(n−2)

for n = 1, 2, 3, .... Therefore, recurrence (1.8) holds for all integer n.

Eq. (1.2) can be used to obtain Binet formula of generalized 2-primes numbers. Binet formula of
generalized 2-primes numbers can be given as

Vn =
b1α

n

(α− β)
+

b2β
n

(β − α)
=

b1α
n − b2β

n

(α− β)
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where
b1 = V1 − βV0, b2 = V1 − αV0. (1.9)

Here, α and β are the roots of the quadratic equation x2 − 2x− 3 = 0. Moreover

α = 3

β = −1

Note that

α+ β = 2,

αβ = −3,

α− β = 4.

So
Vn =

(V1 + V0)3
n − (V1 − 3V0)(−1)n

4
.

The first few generalized 2-primes numbers with positive subscript and negative subscript are given
in the following Table 2.

Table 2. A few generalized 2-primes numbers

n Vn V−n

0 V0

1 V1
1
3
V1 − 2

3
V0

2 3V0 + 2V1
7
9
V0 − 2

9
V1

3 6V0 + 7V1
7
27
V1 − 20

27
V0

4 21V0 + 20V1
61
81
V0 − 20

81
V1

5 60V0 + 61V1
61
243

V1 − 182
243

V0

6 183V0 + 182V1
547
729

V0 − 182
729

V1

7 546V0 + 547V1
547
2187

V1 − 1640
2187

V0

8 1641V0 + 1640V1
4921
6561

V0 − 1640
6561

V1

Now we define three special cases of the sequence {Vn}. 2-primes sequence{Gn}n≥0, Lucas 2-
primes sequence {Hn}n≥0 and modified 2-primes sequence {En}n≥0 are defined, respectively, by
the second-order recurrence relations

Gn+2 = 2Gn+1 + 3Gn, G0 = 1, G1 = 2, (1.10)

Hn+2 = 2Hn+1 + 3Hn, H0 = 2, H1 = 2, (1.11)

and
En+2 = 2En+1 + 3En, E0 = 1, E1 = 1, (1.12)

The sequences {Gn}n≥0, {Hn}n≥0 and {En}n≥0 can be extended to negative subscripts by defining

G−n = −2

3
G−(n−1) +

1

3
G−(n−2), (1.13)

H−n = −2

3
H−(n−1) +

1

3
H−(n−2), (1.14)

and
E−n = −2

3
E−(n−1) +

1

3
E−(n−2), (1.15)

for n = 1, 2, 3, ... respectively. Therefore, recurrences (1.13), (1.14) and (1.15) hold for all integer n.

Note that the sequences {Gn}, {Hn} and {En} are not indexed in [5] yet. Next, we present the
first few values of the 2-primes, Lucas 2-primes and modified 2-primes numbers with positive and
negative subscripts:
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Table 3. The first few values of the special second-order numbers with positive and negative
subscripts

n 0 1 2 3 4 5 6 7 8 9 10 11 12

Gn 1 2 7 20 61 182 547 1640 4921 14762 44287 132860 398581

G−n 0 1
3

− 2
9

7
27

− 20
81

61
243

− 182
729

547
2187

− 1640
6561

4921
19683

− 14762
59049

44287
177147

Hn 2 2 10 26 82 242 730 2186 6562 19682 59050 177146 531442

H−n − 2
3

10
9

− 26
27

82
81

− 242
243

730
729

− 2186
2187

6562
6561

− 19682
19683

59050
59049

− 177146
177147

531442
531441

En 1 1 5 13 41 121 365 1093 3281 9841 29525 88573 265721

E−n − 1
3

5
9

− 13
27

41
81

− 121
243

365
729

− 1093
2187

3281
6561

− 9841
19683

29525
59049

− 88573
177147

265721
531441

For all integers n, 2-primes, Lucas 2-primes and modified 2-primes numbers (using initial conditions
in (1.9)) can be expressed using Binet’s formulas as

Gn =
αn+1

(α− β)
+

βn+1

(β − α)
=

3n+1 + (−1)n

4
,

and
Hn = αn + βn = 3n + (−1)n ,

and

En =
(α− 1)αn

(α− β)
+

(β − 1)βn

(β − α)
=

3n + (−1)n

2
,

respectively.

Note that for all n we have

Hn = 2En,

En = Gn −Gn−1,

and

G−n =
1

3n−1
(−1)nGn−2, n ≥ 2

H−n =
1

3n
(−1)nHn, n ≥ 1,

E−n =
1

3n
(−1)nEn, n ≥ 1.

2 GENERATING FUNCTIONS

Next, we give the ordinary generating function
∞∑

n=0

Vnx
n of the sequence {Vn}.

Lemma 2.1. Suppose that fVn(x) =
∞∑

n=0

Vnx
n is the ordinary generating function of the generalized

2-primes sequence {Vn}n≥0. Then,
∞∑

n=0

Vnx
n is given by

∞∑
n=0

Vnx
n =

V0 + (V1 − 2V0)x

1− 2x− 3x2
. (2.1)
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Proof. Using the definition of generalized 2-primes numbers, and substracting 2x
∑∞

n=0 Vnx
n and

3x2 ∑∞
n=0 Vnx

n from
∑∞

n=0 Vnx
n we obtain

(1− 2x− 3x2)
∞∑

n=0

Vnx
n =

∞∑
n=0

Vnx
n − 2x

∞∑
n=0

Vnx
n − 3x2

∞∑
n=0

Vnx
n

=

∞∑
n=0

Vnx
n − 2

∞∑
n=0

Vnx
n+1 − 3

∞∑
n=0

Vnx
n+2

=
∞∑

n=0

Vnx
n − 2

∞∑
n=1

Vn−1x
n − 3

∞∑
n=2

Vn−2x
n

= (V0 + V1x)− 2V0x+

∞∑
n=2

(Vn − 2Vn−1 − 3Vn−2)x
n

= V0 + (V1 − 2V0)x.

Rearranging above equation, we obtain (2.1).

The previous Lemma gives the following results as particular examples.

Corollary 2.2. Generated functions of 2-primes, Lucas 2-primes and modified 2-primes numbers are

∞∑
n=0

Gnx
n =

1

1− 2x− 3x2
,

and
∞∑

n=0

Hnx
n =

2− 2x

1− 2x− 3x2
,

and
∞∑

n=0

Enx
n =

1− x

1− 2x− 3x2
,

respectively.

Proof. In Lemma 2.1, take Vn = Gn with G0 = 1, G1 = 2, Vn = Hn with H0 = 2, H1 = 2 and Vn = En

with E0 = 1, E1 = 1, respectively.

3 OBTAINING BINET FORMULA FROM GENERATING FUNCTION

We next find Binet formula of generalized 2-primes numbers {Vn} by the use of generating function
for Vn.

Theorem 3.1. (Binet formula of generalized 2-primes numbers)

Vn =
d1α

n

(α− β)
+

d2β
n

(β − α)
(3.1)

where

d1 = V0α+ (V1 − 2V0),

d2 = V0β + (V1 − 2V0)β.
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Proof. Let
h(x) = 1− 2x− 3x2.

Then for some α and β we write
h(x) = (1− αx)(1− βx)

i.e.,
1− 2x− 3x2 = (1− αx)(1− βx). (3.2)

Hence 1
α

and 1
β

are the roots of h(x). This gives α and β as the roots of

h(
1

x
) = 1− 2

x
− 3

x2
= 0.

This implies x2 − 2x− 3 = 0. Now, by (2.1) and (3.2), it follows that

∞∑
n=0

Vnx
n =

V0 + (V1 − 2V0)x

(1− αx)(1− βx)
.

Then we write
V0 + (V1 − 2V0)x

(1− αx)(1− βx)
=

A1

(1− αx)
+

A2

(1− βx)
. (3.3)

So
V0 + (V1 − 2V0)x = A1(1− βx) +A2(1− αx).

If we consider x = 1
α
, we get V0 + (V1 − 2V0)

1
α
= A1(1− β

α
). This gives

A1 =
α(V0 + (V1 − 2V0)

1
α
)

(α− β)
=

V0α+ (V1 − 2V0)

(α− β)
.

Similarly, we obtain

A2 =
V0β + (V1 − 2V0)β

(β − α)
.

Thus (3.3) can be written as

∞∑
n=0

Vnx
n = A1(1− αx)−1 +A2(1− βx)−1.

This gives
∞∑

n=0

Vnx
n = A1

∞∑
n=0

αnxn +A2

∞∑
n=0

βnxn =
∞∑

n=0

(A1α
n +A2β

n)xn.

Therefore, comparing coefficients on both sides of the above equality, we obtain

Vn = A1α
n +A2β

n

where

A1 =
V0α+ (V1 − 2V0)

(α− β)
,

A2 =
V0β + (V1 − 2V0)β

(β − α)
,

and then we get (3.1).
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Note that from (1.9) and (3.1) we have

V1 − βV0 = V0α+ (V1 − 2V0),

V1 − αV0 = V0β + (V1 − 2V0)β.

Next, using Theorem 3.1, we present the Binet formulas of 2-primes, Lucas 2-primes and modified
2-primes sequences.

Corollary 3.2. Binet formulas of 2-primes, Lucas 2-primes and modified 2-primes sequences are

Gn =
αn+1

(α− β)
+

βn+1

(β − α)
=

3n+1 + (−1)n

4
,

and
Hn = αn + βn = 3n + (−1)n ,

and

En =
(α− 1)αn

(α− β)
+

(β − 1)βn

(β − α)
=

3n + (−1)n

2
,

respectively.

We can find Binet formulas by using matrix method with a similar technique which is given in [29].
Take k = i = 2 in Corollary 3.1 in [29]. Let

Λ =

(
α 1
β 1

)
,Λ1 =

(
αn−1 1
βn−1 1

)
,Λ2 =

(
α αn−1

β βn−1

)
.

Then the Binet formula for 2-primes numbers is

Gn =
1

det(Λ)

2∑
j=1

G3−j det(Λj) =
1

Λ
(G2 det(Λ1) +G1 det(Λ2))

=
1

det(Λ)
(7 det(Λ1) + 2 det(Λ2))

=

(
7

∣∣∣∣ αn−1 1
βn−1 1

∣∣∣∣+ 2

∣∣∣∣ α αn−1

β βn−1

∣∣∣∣) /

∣∣∣∣ α 1
β 1

∣∣∣∣ .
Similarly, we obtain the Binet formula for Lucas 2-primes and modified 2-primes numbers as

Hn =
1

Λ
(H2 det(Λ1) +H1 det(Λ2))

=

(
10

∣∣∣∣ αn−1 1
βn−1 1

∣∣∣∣+ 2

∣∣∣∣ α αn−1

β βn−1

∣∣∣∣) /

∣∣∣∣ α 1
β 1

∣∣∣∣ ,
and

En =
1

Λ
(E2 det(Λ1) + E1 det(Λ2))

=

(
5

∣∣∣∣ αn−1 1
βn−1 1

∣∣∣∣+ ∣∣∣∣ α αn−1

β βn−1

∣∣∣∣) /

∣∣∣∣ α 1
β 1

∣∣∣∣ ,
respectively.
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4 SIMSON FORMULAS

There is a well-known Simson Identity (formula) for Fibonacci sequence {Fn}, namely,

Fn+1Fn−1 − F 2
n = (−1)n

which was derived first by R. Simson in 1753 and it is now called as Cassini Identity (formula) as well.
This can be written in the form ∣∣∣∣ Fn+1 Fn

Fn Fn−1

∣∣∣∣ = (−1)n.

The following theorem gives generalization of this result to the generalized 2-primes sequence {Vn}n≥0.

Theorem 4.1 (Simson Formula of Generalized 2-Primes Numbers). For all integers n, we have∣∣∣∣ Vn+1 Vn

Vn Vn−1

∣∣∣∣ = (−1)n3n
∣∣∣∣ V1 V0

V0 V−1

∣∣∣∣ . (4.1)

Proof. Eq. (4.1) is given in Soykan [45].

The previous theorem gives the following results as particular examples.

Corollary 4.2. For all integers n, Simson formula of 2-primes, Lucas 2-primes and modified 2-primes
numbers are given as ∣∣∣∣ Gn+1 Gn

Gn Gn−1

∣∣∣∣ = (−1)n+13n,

and ∣∣∣∣ Hn+1 Hn

Hn Hn−1

∣∣∣∣ = 16(−1)n+13n−1,

and ∣∣∣∣ En+1 En

En En−1

∣∣∣∣ = 4(−1)n+13n−1,

respectively.

5 SOME IDENTITIES

In this section, we obtain some identities of 2-primes, Lucas 2-primes and modified 2-primes numbers.
First, we can give a few basic relations between {Gn} and {Hn}.

Lemma 5.1. The following equalities are true:

81Hn = 82Gn+4 − 242Gn+3, (5.1)

27Hn = −26Gn+3 + 82Gn+2,

9Hn = 10Gn+2 − 26Gn+1,

3Hn = −2Gn+1 + 10Gn,

Hn = 2Gn − 2Gn−1,

and

72Gn = 5Hn+4 − 13Hn+3,

24Gn = −Hn+3 + 5Hn+2,

8Gn = Hn+2 −Hn+1,

8Gn = Hn+1 + 3Hn,

8Gn = 5Hn + 3Hn−1.
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Proof. Note that all the identities hold for all integers n. We prove (5.1). To show (5.1), writing

Hn = a×Gn+4 + b×Gn+3

and solving the system of equations

H0 = a×G4 + b×G3

H1 = a×G5 + b×G4

we find that a = 82
81
, b = − 242

81
. The other equalities can be proved similarly.

Note that all the identities in the above Lemma can be proved by induction as well.

Secondly, we present a few basic relations between {Gn} and {En}.

Lemma 5.2. The following equalities are true:

81En = 41Gn+4 − 121Gn+3,

27En = −13Gn+3 + 41Gn+2,

9En = 5Gn+2 − 13Gn+1,

3En = −Gn+1 + 5Gn,

En = Gn −Gn−1,

and

36Gn = 5En+4 − 13En+3,

12Gn = −En+3 + 5En+2,

4Gn = En+2 − En+1,

4Gn = En+1 + 3En,

4Gn = 5En + 3En−1.

Thirdly, we give a few basic relations between {Hn} and {En}.

Lemma 5.3. The following equalities are true:

27Hn = 14En+4 − 40En+3,

9Hn = −4En+3 + 14En+2,

3Hn = 2En+2 − 4En+1,

Hn = 2En,

and

54En = 7Hn+4 − 20Hn+3

18En = −2Hn+3 + 7Hn+2

6En = Hn+2 − 2Hn+1

2En = Hn

We now present a few special identities for the generalized 2-primes sequence {Vn}.

Theorem 5.4. (Catalan’s identity of the generalized 2-primes sequence) For all integers n and m,
the following identity holds:

Vn+mVn−m − V 2
n =

1

16
3n−m (−1)n−m (3V0 − V1) (V0 + V1) (3

m − (−1)m)2 .
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Proof. We use the identity

Vn =
(V1 + V0)3

n − (V1 − 3V0)(−1)n

4
.

As special cases of the above theorem, we have the following corollary.

Corollary 5.5. For all integers n and m, the following identities hold:

(a) Gn+mGn−m −G2
n = 1

16
3n−m+1 (−1)n−m (3m − (−1)m)2 .

(b) Hn+mHn−m −H2
n = 3n−m (−1)n−m (3m − (−1)m)2 .

(c) En+mEn−m − E2
n = 1

4
3n−m (−1)n−m (3m − (−1)m)2 .

Note that for m = 1 in Catalan’s identity of the generalized 2-primes sequence, we get the Cassini
identity for the generalized 2-primes sequnce.

Theorem 5.6. (Cassini’s identity of the generalized 2-primes sequence) For all integers n and m, the
following identity holds:

Vn+1Vn−1 − V 2
n = 3n−1 (−1)n−1 (3V0 − V1) (V0 + V1) .

As special cases of the above theorem, we have the following corollary.

Corollary 5.7. For all integers n and m, the following identities hold:

(a) Gn+1Gn−1 −G2
n = 3n (−1)n−1 .

(b) Hn+1Hn−1 −H2
n = 16× 3n−1 (−1)n−1 .

(c) En+1En−1 − E2
n = 4× 3n−1 (−1)n−1 .

The d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities can also be obtained by using

Vn =
(V1 + V0)3

n − (V1 − 3V0)(−1)n

4
.

The next theorem presents d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of generalized 2-
primes sequence {Vn}.

Theorem 5.8. Let n and m be any integers. Then the following identities are true:

(a) (d’Ocagne’s identity)

Vm+1Vn − VmVn+1 =
1

4
(V1 − 3V0) (V0 + V1) ((−1)m 3n − (−1)n 3m) .

(b) (Gelin-Cesàro’s identity)

Vn+2Vn+1Vn−1Vn−2 − V 4
n =

1

432
(−3)n (3V0 − V1) (V0 + V1) ((3 + 32n+1 + 58 (−3)n)V 2

1

+3(9 + 32n − 58 (−1)n 3n)V 2
0 − 2(9− 32n+1 + 58 (−3)n)V1V0).

(c) (Melham’s identity)

Vn+1Vn+2Vn+6 − V 3
n+3 =

3

4
(−1)n 3n (V1 − 3V0) (V0 + V1) ((45× 3n − 17 (−1)n)V1

+3(15× 3n + 17 (−1)n)V0).

Proof. Use the identity Vn = (V1+V0)3
n−(V1−3V0)(−1)n

4
.
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As special cases of the above theorem, we have the following three corollaries. First one presents
d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of 2-primes sequence {Gn}.

Corollary 5.9. Let n and m be any integers. Then the following identities are true:

(a) (d’Ocagne’s identity)

Gm+1Gn −GmGn+1 =
1

4

(
(−1)n 3m+1 − (−1)m 3n+1) .

(b) (Gelin-Cesàro’s identity)

Gn+2Gn+1Gn−1Gn−2 −G4
n =

1

16
((−1)n 3n−1 + 9 (−1)n 33n−1 − 58× 32n−1).

(c) (Melham’s identity)

Gn+1Gn+2Gn+6 −G3
n+3 =

1

4
(−17× 3n+2 − 5 (−1)n 32n+5).

Second one presents d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of Lucas 2-primes sequence
{Hn}.

Corollary 5.10. Let n and m be any integers. Then the following identities are true:

(a) (d’Ocagne’s identity)

Hm+1Hn −HmHn+1 = 4 ((−1)n 3m − (−1)m 3n) .

(b) (Gelin-Cesàro’s identity)

Hn+2Hn+1Hn−1Hn−2 −H4
n = 16(32n+1 − 58 (−1)n 3n + 3) (−1)n 3n−3.

(c) (Melham’s identity)

Hn+1Hn+2Hn+6 −H3
n+3 = −16× 3n+1 (45 (−1)n 3n + 17)).

Third one presents d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of modified 2-primes sequence
{En}.

Corollary 5.11. Let n and m be any integers. Then the following identities are true:

(a) (d’Ocagne’s identity)
Em+1En − EmEn+1 = (−1)n 3m − (−1)m 3n.

(b) (Gelin-Cesàro’s identity)

En+2En+1En−1En−2 − E4
n = (−1)n (33n−2 + 3n−2)− 58× 32n−3.

(c) (Melham’s identity)

En+1En+2En+6 − E3
n+3 = −2× 3n+1 (45 (−1)n 3n + 17) .
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6 SUMS

The following proposition presents some formulas of generalized 2-primes numbers with positive
subscripts.

Proposition 6.1. If r = 2, s = 3 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 Vk = 1
4
(Vn+2 − Vn+1 − V1 + V0).

(b)
∑n

k=0 V2k = 1
8
((2n+ 5)V2n+2 − 6 (n+ 2)V2n+1 + 2V1 − 7V0).

(c)
∑n

k=0 V2k+1 = 1
8
(−2 (n+ 1)V2n+2 + 3 (2n+ 5)V2n+1 − 3V1 + 6V0).

Proof.

(a) Take x = 1, r = 2, s = 3 in Theorem 2.1 (a) in [46].

(b) We use Theorem 2.1 (b) in [46]. If we set r = 2, s = 3 in Theorem 2.1 (b) in [46] then we have

n∑
k=0

xkV2k =
− (3x− 1)xn+1V2n+2 + 6xn+2V2n+1 − 2xV1 + (7x− 1)V0

−9x2 + 10x− 1
.

For x = 1, the right hand side of the above sum formulas is an indeterminate form. Now, we
can use L’Hospital rule. Then we get

n∑
k=0

V2k =
d
dx

(− (3x− 1)xn+1V2n+2 + 6xn+2V2n+1 − 2xV1 + (7x− 1)V0)
d
dx

(−9x2 + 10x− 1)

∣∣∣∣∣
x=1

=
1

8
((2n+ 5)V2n+2 − 6 (n+ 2)V2n+1 + 2V1 − 7V0).

(c) We use Theorem 2.1 (c) in [46]. If we set r = 2, s = 3 in Theorem 2.1 (c) in [46] then we have

n∑
k=0

xkV2k+1 =
2xn+1V2n+2 − 3 (3x− 1)xn+1V2n+1 + (3x− 1)V1 − 6xV0

−9x2 + 10x− 1
.

For x = 1, the right hand side of the above sum formulas is an indeterminate form. Now, we
can use L’Hospital rule. Then we get

n∑
k=0

V2k+1 =
d
dx

(2xn+1V2n+2 − 3 (3x− 1)xn+1V2n+1 + (3x− 1)V1 − 6xV0)
d
dx

(−9x2 + 10x− 1)

∣∣∣∣∣
x=1

=
1

8
(−2 (n+ 1)V2n+2 + 3 (2n+ 5)V2n+1 − 3V1 + 6V0).

As special cases of above proposition, we have the following three corollaries. First one presents
some summing formulas of 2-primes numbers (take Vn = Gn with G0 = 1, G1 = 2).

Corollary 6.1. For n ≥ 0 we have the following formulas:

(a)
∑n

k=0 Gk = 1
4
(Gn+2 −Gn+1 − 1).

(b)
∑n

k=0 G2k = 1
8
((2n+ 5)G2n+2 − 6 (n+ 2)G2n+1 − 3).

(c)
∑n

k=0 G2k+1 = 1
8
(−2 (n+ 1)G2n+2 + 3 (2n+ 5)G2n+1).

Second one presents some summing formulas of Lucas 2-primes numbers (take Vn = Hn with
H0 = 2, H1 = 2).

Corollary 6.2. For n ≥ 0 we have the following formulas:
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(a)
∑n

k=0 Hk = 1
4
(Hn+2 −Hn+1).

(b)
∑n

k=0 H2k = 1
8
((2n+ 5)H2n+2 − 6 (n+ 2)H2n+1 − 10).

(c)
∑n

k=0 H2k+1 = 1
8
(−2 (n+ 1)H2n+2 + 3 (2n+ 5)H2n+1 + 6).

Third one presents some summing formulas of modified 2-primes numbers (take Vn = En with E0 =
1, E1 = 1).

Corollary 6.3. For n ≥ 0 we have the following formulas:

(a)
∑n

k=0 Ek = 1
4
(En+2 − En+1).

(b)
∑n

k=0 E2k = 1
8
((2n+ 5)E2n+2 − 6 (n+ 2)E2n+1 − 5).

(c)
∑n

k=0 E2k+1 = 1
8
(−2 (n+ 1)E2n+2 + 3 (2n+ 5)E2n+1 + 3).

The following proposition presents some formulas of generalized 2-primes numbers with negative
subscripts.

Proposition 6.2. If r = 2, s = 3 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 V−k = 1
4
(−5V−n−1 − 3V−n−2 + V1 − V0).

(b)
∑n

k=1 V−2k = 1
8
((2n+ 1)V−2n − 6 (n+ 1)V−2n−1 + 2V1 − 5V0).

(c)
∑n

k=1 V−2k+1 = 1
8
(−2 (n+ 2)V−2n + 3 (2n+ 1)V−2n−1 − V1 + 6V0).

Proof.

(a) Take x = 1, r = 2, s = 3 in Theorem 3.1 (a) in [46].

(b) We use Theorem 3.1 (b) in [46]. If we set r = 2, s = 3 in Theorem 3.1 (b) in [46] then we have
n∑

k=1

xkV−2k =
−xn+1 (x− 3)V−2n − 6xn+1V−2n−1 + 2xV1 + x (x− 7)V0

−x2 + 10x− 9
.

For x = 1, the right hand side of the above sum formulas is an indeterminate form. Now, we
can use L’Hospital rule. Then we get

n∑
k=1

V−2k =
d
dx

(−xn+1 (x− 3)V−2n − 6xn+1V−2n−1 + 2xV1 + x (x− 7)V0)
d
dx

(−x2 + 10x− 9)

∣∣∣∣∣
x=1

=
1

8
((2n+ 1)V−2n − 6 (n+ 1)V−2n−1 + 2V1 − 5V0).

(c) We use Theorem 2.1 (c) in [46]. If we set r = 2, s = 3 in Theorem 2.1 (c) in [46] then we have
n∑

k=1

xkV−2k+1 =
−2xn+2V−2n − 3 (x− 3)xn+1V−2n−1 + x (x− 3)V1 + 6xV0

−x2 + 10x− 9
.

For x = 1, the right hand side of the above sum formulas is an indeterminate form. Now, we
can use L’Hospital rule. Then we get

n∑
k=1

V−2k+1 =
d
dx

(−2xn+2V−2n − 3 (x− 3)xn+1V−2n−1 + x (x− 3)V1 + 6xV0)
d
dx

(−x2 + 10x− 9)

∣∣∣∣∣
x=1

=
1

8
(−2 (n+ 2)V−2n + 3 (2n+ 1)V−2n−1 − V1 + 6V0).

From the above proposition, we have the following corollary which gives sum formulas of 2-primes
numbers (take Vn = Gn with G0 = 1, G1 = 2).
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Corollary 6.4. For n ≥ 1, 2-primes numbers have the following properties.

(a)
∑n

k=1 G−k = 1
4
(−5G−n−1 − 3G−n−2 + 1).

(b)
∑n

k=1 G−2k = 1
8
((2n+ 1)G−2n − 6 (n+ 1)G−2n−1 − 1).

(c)
∑n

k=1 G−2k+1 = 1
8
(−2 (n+ 2)G−2n + 3 (2n+ 1)G−2n−1 + 4).

Taking Vn = Hn with H0 = 2, H1 = 2 in the last proposition, we have the following corollary which
presents sum formulas of 2-primes -Lucas numbers.

Corollary 6.5. For n ≥ 1, 2-primes -Lucas numbers have the following properties.

(a)
∑n

k=1 H−k = 1
4
(−5H−n−1 − 3H−n−2).

(b)
∑n

k=1 H−2k = 1
8
((2n+ 1)H−2n − 6 (n+ 1)H−2n−1 − 6).

(c)
∑n

k=1 H−2k+1 = 1
8
(−2 (n+ 2)H−2n + 3 (2n+ 1)H−2n−1 + 10).

From the above proposition, we have the following corollary which gives sum formulas of modified
2-primes numbers (take Vn = En with E0 = 1, E1 = 1).

Corollary 6.6. For n ≥ 1, modified 2-primes numbers have the following properties.

(a)
∑n

k=1 E−k = 1
4
(−5E−n−1 − 3E−n−2).

(b)
∑n

k=1 E−2k = 1
8
((2n+ 1)E−2n − 6 (n+ 1)E−2n−1 − 3).

(c)
∑n

k=1 E−2k+1 = 1
8
(−2 (n+ 2)E−2n + 3 (2n+ 1)E−2n−1 + 5).

The following proposition presents some formulas of generalized 2-primes numbers with positive
subscripts.

Proposition 6.3. If r = 2, s = 3 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 V
2
k = 1

32
((2n+ 7)V 2

n+2+(18n+ 49)V 2
n+1−12 (n+ 3)Vn+2Vn+1−5V 2

1 −31V 2
0 +24V1V0).

(b)
∑n

k=0 Vk+1Vk = 1
16
(− (n+ 2)V 2

n+2−9 (n+ 3)V 2
n+1+(6n+ 17)Vn+2Vn+1+V 2

1 +18V 2
0 −11V1V0).

Proof. The proof can be given using induction on n.

As special cases of above proposition, we have the following three corollaries. First one presents
some summing formulas of 2-primes numbers (take Vn = Gn with G0 = 1, G1 = 2).

Corollary 6.7. For n ≥ 0 we have the following formulas:

(a)
∑n

k=0 G
2
k = 1

32
((2n+ 7)G2

n+2 + (18n+ 49)G2
n+1 − 12 (n+ 3)Gn+2Gn+1 − 3).

(b)
∑n

k=0 Gk+1Gk = 1
16
(− (n+ 2)G2

n+2 − 9 (n+ 3)G2
n+1 + (6n+ 17)Gn+2Gn+1).

Second one presents some summing formulas of Lucas 2-primes numbers (take Vn = Hn with
H0 = 2, H1 = 2).

Corollary 6.8. For n ≥ 0 we have the following formulas:

(a)
∑n

k=0 H
2
k = 1

32
((2n+ 7)H2

n+2 + (18n+ 49)H2
n+1 − 12 (n+ 3)Hn+2Hn+1 − 48).

(b)
∑n

k=0 Hk+1Hk = 1
16
(− (n+ 2)H2

n+2 − 9 (n+ 3)H2
n+1 + (6n+ 17)Hn+2Hn+1 + 32).

Third one presents some summing formulas of modified 2-primes numbers (take Vn = En with E0 =
1, E1 = 1).

Corollary 6.9. For n ≥ 0 we have the following formulas:
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(a)
∑n

k=0 E
2
k = 1

32
((2n+ 7)E2

n+2 + (18n+ 49)E2
n+1 − 12 (n+ 3)En+2En+1 − 12).

(b)
∑n

k=0 Ek+1Ek = 1
16
(− (n+ 2)E2

n+2 − 9 (n+ 3)E2
n+1 + (6n+ 17)En+2En+1 + 8).

The following proposition presents some formulas of generalized 2-primes numbers with negative
subscripts.

Proposition 6.4. If r = 2, s = 3 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 V
2
−k = 1

32
((2n+ 1)V 2

−n+1+(18n+ 23)V 2
−n−12 (n+ 1)V−n+1V−n−V 2

1 −23V 2
0 +12V1V0).

(b)
∑n

k=1 V−k+1V−k = 1
16
(− (n+ 2)V 2

−n+1 − 9 (n+ 1)V 2
−n + (6n+ 7)V−n+1V−n + 2V 2

1 + 9V 2
0 −

7V1V0).

Proof. The proof can be given using induction on n.

From the above proposition, we have the following corollary which gives sum formulas of 2-primes
numbers (take Vn = Gn with G0 = 1, G1 = 2).

Corollary 6.10. For n ≥ 1, 2-primes numbers have the following properties:

(a)
∑n

k=1 G
2
−k = 1

32
((2n+ 1)G2

−n+1 + (18n+ 23)G2
−n − 12 (n+ 1)G−n+1G−n − 3).

(b)
∑n

k=1 G−k+1G−k = 1
16
(− (n+ 2)G2

−n+1 − 9 (n+ 1)G2
−n + (6n+ 7)G−n+1G−n + 3).

Taking Vn = Hn with H0 = 2, H1 = 2 in the last proposition, we have the following corollary which
presents sum formulas of 2-primes -Lucas numbers.

Corollary 6.11. For n ≥ 1,

(a)
∑n

k=1 H
2
−k = 1

32
((2n+ 1)H2

−n+1 + (18n+ 23)H2
−n − 12 (n+ 1)H−n+1H−n − 48).

(b)
∑n

k=1 H−k+1H−k = 1
16
(− (n+ 2)H2

−n+1 − 9 (n+ 1)H2
−n + (6n+ 7)H−n+1H−n + 16).

From the above proposition, we have the following corollary which gives sum formulas of modified
2-primes numbers (take Vn = En with E0 = 1, E1 = 1).

Corollary 6.12. For n ≥ 1, modified 2-primes numbers have the following properties:

(a)
∑n

k=1 E
2
−k = 1

32
((2n+ 1)E2

−n+1 + (18n+ 23)E2
−n − 12 (n+ 1)E−n+1E−n − 12).

(b)
∑n

k=1 E−k+1E−k = 1
16
(− (n+ 2)E2

−n+1 − 9 (n+ 1)E2
−n + (6n+ 7)E−n+1E−n + 4).

7 MATRICES RELATED WITH GENERALIZED 2-PRIMES
NUMBERS

Matrix formulation of Wn can be given as(
Wn+1

Wn

)
=

(
r s
1 0

)n (
W1

W0

)
. (7.1)

For matrix formulation (7.1), see [47]. In fact, Kalman gave the formula in the following form(
Wn

Wn+1

)
=

(
0 1
r s

)n (
W0

W1

)
.

We define the square matrix A of order 2 as:

A =

(
2 3
1 0

)
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such that detA = −3. From (1.8) we have(
Vn+1

Vn

)
=

(
2 3
1 0

)(
Vn

Vn−1

)
(7.2)

and from (7.1) (or using (7.2) and induction) we have(
Vn+1

Vn

)
=

(
2 3
1 0

)n (
V1

V0

)
.

If we take Vn = Gn in (7.2) we have(
Gn+1

Gn

)
=

(
2 3
1 0

)(
Gn

Gn−1

)
. (7.3)

We also define

Bn =

(
Gn 3Gn−1

Gn−1 3Gn−2

)
and

Cn =

(
Vn 3Vn−1

Vn−1 3Vn−2

)
Theorem 7.1. For all integer m,n ≥ 0, we have

(a) Bn = An

(b) C1A
n = AnC1

(c) Cn+m = CnBm = BmCn.

Proof.

(a) By expanding the vectors on the both sides of (7.3) to 3-colums and multiplying the obtained on
the right-hand side by A, we get

Bn = ABn−1.

By induction argument, from the last equation, we obtain

Bn = An−1B1.

But B1 = A. It follows that Bn = An.

(b) Using (a) and definition of C1, (b) follows.

(c) We have

ACn−1 =

(
2 3
1 0

)(
Vn−1 3Vn−2

Vn−2 3Vn−3

)
=

(
2Vn−1 + 3Vn−2 6Vn−2 + 9Vn−3

Vn−1 3Vn−2

)
= Cn

i.e. Cn = ACn−1. From the last equation, using induction we obtain Cn = An−1C1. Now

Cn+m = An+m−1C1 = An−1AmC1 = An−1C1A
m = CnBm

and similarly
Cn+m = BmCn.
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Some properties of matrix An can be given as

An = 2An−1 + 3An−2

and
An+m = AnAm = AmAn

and
det(An) = (−3)n

for all integer m and n.

Theorem 7.2. For m,n ≥ 0 we have

Vn+m = VnGm + 3Vn−1Gm−1 (7.4)

Proof. From the equation Cn+m = CnBm = BmCn we see that an element of Cn+m is the product
of row Cn and a column Bm. From the last equation we say that an element of Cn+m is the product
of a row Cn and column Bm. We just compare the linear combination of the 2nd row and 1st column
entries of the matrices Cn+m and CnBm. This completes the proof.

Remark 7.1. By induction, it can be proved that for all integers m,n ≤ 0, (7.4) holds. So for all
integers m,n, (7.4) is true.

Corollary 7.3. For all integers m,n, we have

Gn+m = GnGm + 3Gn−1Gm−1, (7.5)

Hn+m = HnGm + 3Hn−1Gm−1, (7.6)

En+m = EnGm + 3En−1Gm−1. (7.7)

8 CONCLUSIONS

In the literature, there have been so many
studies of the sequences of numbers and the
sequences of numbers were widely used in many
research areas, such as physics, engineering,
architecture, nature and art. We introduce the
generalized generalized 2-primes sequence (it’s
three special cases, namely, 2-primes, Lucas
2-primes and modified 2-primes sequences)
and we present Binet’s formulas, generating
functions, Simson formulas, the summation
formulas, some identities and matrices for these
sequences.
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