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ABSTRACT 
 
Nigeria’s effort to reduce under-five mortality has been biased in favour of childhood mortality to the 
neglect of neonates and as such the literature is short of adequate information on the determinants 
of neonatal mortality, whereas studies have shown that about half of infant deaths occur in the 
neonatal period. Knowledge of the determinants of neonatal mortality is essential for the design of 
intervention programmes that will enhance neonatal survival. Therefore, this study was conducted 
to investigate the trends in neonatal mortality in Nigeria. It also proposed a Poisson based 
continuous probability distribution called Poisson-Lindley distribution to neonatal mortality rate in 
Nigeria. Some properties of the new model and other relevant measures were obtained. The 
unknown parameters of the model were also estimated using the method of maximum likelihood. 
The fitness of the proposed model to the neonatal mortality rate was considered using a dataset on 
neonatal mortality rate from 1967 to 2019. 
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1. INTRODUCTION  
 
Infant Mortality which is the probability of a child 
dying between birth and the first birthday is one 
of the most useful indicators for assessing the 
general level of health and development of a 
society. It gives an overview of the functionality 
of a country’s healthcare system, socioeconomic 
situation, and the state of maternal and child 
health. Globally, 85 and 29% of deaths among 
children occurred in the first 5 years of life and 
during infancy respectively. More than 50% of 
these deaths occurred in Sub-Saharan Africa 
(SSA) with Infant Mortality Rate (IMR) of 62 
deaths per 1000 in 2018 [1]. Improvement in 
child health, survival and life expectancy has 
been a concerted and continuous global effort as 
indicated in the Sustainable Development Goals–
3 (SDGs 3) which aims to end preventable 
deaths among children under-5 years of age and 
targets reduction of under-five mortality to as low 
as 25 per 1000 live births by 2030 [2]. However, 
feasibility of the realization of this target is 
doubtful due to slow pace of mortality reduction 
in Sub-Saharan Africa as many countries in this 
world sub-region may likely fall short of the SDG 
target [1]. Infant mortality rate is the number of 
children that die under one year of age in a given 
year per 1,000 live births and the neonatal 
mortality rate is the number of children that die 
under 28 days of age in a given year, per 1,000 
live births.  
 
Nigeria with a population of over 200 million is 
one of the five countries that accounted for half 
of global burden of infant mortality occupying a 
second position after India [1,3]. In Nigeria, 
previous studies have estimated a decline in IMR 
from 125 in 1990 to 67 in 2018 [3,4]. Despite this 
achievement in IMR reduction over the years, the 
current level is higher than the IMR estimates for 
other countries in Sub-Saharan Africa like South 
Africa (28/1000), Kenya (31/1000) and Ghana 
(35/1000) which are already close to achieving 
the SDGs - target 3. Survival of infants in Nigeria 
is challenged by the prevailing poor health 
service delivery and malnutrition as a result of 
poverty which ravages the nation. Some 
preventable health/environmental related 
conditions (infectious diseases, chronic health 
conditions of the mother, obstetric and non-
obstetric complications, lack of immunization, 
and other prevalent childhood diseases), socio-
demographic characteristics (place of residence, 

region, religion, marital status and education 
level) and biological factors associated with 
mothers have been found in the literature as 
additional sources of threat to the survival 
chances of infants in Nigeria [1,5–7]. It is 
important to note that risk of adverse pregnancy 
outcome like infant mortality are unevenly 
distributed among women population owing to 
the variation in their biologic features and 
demographic composition [8]. 
 
The Lindley is a probability distribution that was 
investigated in context of fiducial statistic as an 
alternative to Bayesian theory by [9]. Its 
fundamental properties with application to waiting 
time data were discussed by [10]. Afterwards, 
many researchers have studied this distribution, 
for instance, [11] applied the distribution to 
competing risks lifetime data. [12] estimated the 
parameter of the distribution with progressive 
Type-II censoring scheme and showed that it 
may be a better lifetime model than exponential, 
lognormal and gamma distributions in some real 
life situations. Singh & Gupta [13] used the 
distribution under load sharing system models. 
Al-Mutairi et al. [14] developed an inferential 
procedure of the stress-strength parameter when 
both stress and strength variables follow Lindley 
distribution and discovered that the distribution is 
useful when the data has an increasing failure 
rate. All these make the use of Lindley 
distribution in lifetime data analysis more 
frequent than the exponential distribution. 
Despite the important properties and various 
applications of the Lindley distribution in many 
disciplines, its applicability may be restricted to 
non-monotone hazard rate data according to 
[15]. To solve the above mentioned problem 
therefore, several extensions of the Lindley 
distribution have been proposed in literature and 
some of the recent generalizations are; the 
transmuted Lindley distribution by [16], the 
exponentiated Power Lindley distribution by [17], 
Generalized Lindley distribution by [18], 
Transmuted Generalized Lindley distribution by 
[19], Extended Power Lindley distribution by [20], 
Transmuted Two-Parameter Lindley distribution 
by [21] and A Three Parameter Lindley 
distribution by [22]. Akmakyapan & Kadlar [23] 
proposed two parameter generalizations of the 
Lindley distribution, called the power Lindley 
distribution which was generated using the power 
transformations to the Lindley distribution. 
Ashour & Eltehiwy [24] studied the transmuted 
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Lindley-geometric distribution. The beta-Lindley 
distribution was also introduced by [25]. Ashour 
& Eltehiwy [26] studied the statistical and 
mathematical properties of Kumaraswamy 
Quasi-Lindley distribution and Kumaraswamy 
Lindley distribution was proposed and discussed 
by [27]. 
 
The cumulative distribution function (c.d.f) and 
probability density function (pdf) of the Lindley 
distribution (LinD) are defined as: 
 

   1 1 e
1

xx
G x 



 
   

 
           (1) 

and 

    
2

1 e
1

xg x x 



 
   

        (2) 

 

respectively, for 0x   and 0  where   is the 

scale parameter of LinD.  
 

In recent times, a number of authors have 
developed efficient families of probability 
distributions and it has been proven that they 
produce more flexible probability models. These 
proposed families among others include the 
quadratic rank transmutation map proposed by 
[28], the Weibull-X family of distribution by [29], 
the Weibull-G family of distributions by [30], the 
Gamma-X family by [31], a Lomax-G family by 
[32], a new Weibull-G family by [33], a Lindley-G 
family by [34], a Poisson-X family by [35], a 
Gompertz-G family by [36], an odd Lindley-G 
family by [37] and an odd Lomax generator of 
distributions by [38]. 
 

Following the above listed families and the 
related extended probability distributions, this 
study will propose another extension of the 
Lindley distribution by using the Poisson-X family 
proposed by [35], this proposed distribution is 
called “the Poisson-Lindley distribution 
(PoisLinD)”. 
  

The rest of this paper is organized in sections as 
follows: the newly proposed distribution is 
defined with its plots in section 2. Section 3 
presents statistical properties of the new 
distribution. Section 4 looks at the estimation of 
parameters using maximum likelihood 
estimation. An application of the Poisson-Lindley 
distribution and other related distributions to 
neonatal mortality rate data is presented in 
section 5 and the final summary and conclusion 
is provided in section 6. 

 

2. A POISSON-LINDLEY DISTRIBUTION 
(POISLIND) 

 
According to [35], the cdf and pdf of a Poisson-X 
family of distributions are respectively given by; 
 

     
1 ( )1( ) 1 e 1 e

G x
F x

                      (3)
 

and  

       1 1 ( )1( ) 1 e e
G x

f x g x G x



        (4) 

 
where; x > 0, and   is the extra shape 

parameter,  G x  and  g x  are the cdf and pdf 

of any continuous distribution to be modified 
respectively.  

 
Equations (1) and (2) are substituted into 
equation (3) and (4) respectively. On 
simplification, the cdf and pdf of the PoisLinD are 
obtained as equations (5) and (6) respectively, 
as follow 

 

  
1 1 e1

11( ) 1 e 1 e

xx

F x






  
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   

 
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 

        (5) 

and  
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 

   
     

     
  

      
   

                                                                          (6)

  

where 0, 0, 0,x    
 
  and   are the 

shape and scale parameters of the PoisLinD 
respectively.  

 
Plots of the pdf and cdf of the PoisLinD using 
some parameter values are presented in Fig. 1 
as follows. 

 
Looking at Fig. 1 above, it can be seen that the 
pdf of PoisLinD distribution is positively skewed 
and takes various shapes in relation to the 
parameter values. Also, the plot of the cdf shows 
that the cdf tends to the value of one when x 
approaches infinity and equals zero when x 
tends to zero as normally expected. 
 

3. RELIABILITY ANALYSIS OF THE 
POISLIND 
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The Survival function describes the likelihood 
that a system or an individual will not fail after a 
given time. Mathematically, the survival function 
is given by: 
  

 
   1S x F x                                    (11)

  
Applying the cdf of the PoisLinD in (11), the 
survival function for the PoisLinD is obtained as: 
 

  
1 1 e1

11( ) 1 1 e 1 e

xx

S x






  
     

   

 
    
 
 

 

(12) 
 
Hazard function is a function that describes the 
chances that a product or component will 
breakdown over an interval of time. It is 
mathematically defined as: 
 

 

 
 

 

 

 1

f x f x
h x

S x F x
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
                           

(13)

 

 

Therefore, our definition of the hazard rate of the 
PoisLinD is given by 
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 (14) 

  

where , 0   . 

 
The figure below presents a plot of both the 
survival function (SF) and hazard function (HF) of 
PoisLinD based on arbitrary parameter values as 
follows: 
 
The plots in Fig. 2 show that the chances of 
survival are very certain at the beginning or early 
age and begin to reduce as the time advances 
and tend to zero at infinity.

 
The plots also 

revealed that the proposed distribution has an 
increasing failure rate which implies that the 
probability of failure for any random variable 
following a PoisLinD increases as time 
increases, that is, probability of failure or death 
increases as the process or event progresses. 

 

  

  
 

Fig. 1. PDF and CDF of the PoisLinD for different values of the parameters 
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Fig. 2. SF and HF of PoisLinD for Selected values of the parameters 
 

4. ESTIMATION OF UNKNOWN PARAMETERS OF THE POISLIND 
 
In this section, the estimation of the parameters of the PoisLinD is done by using the method of 

maximum likelihood estimation (MLE). Let nXXX .,,........., 21  be a sample of size ‘n’ independently 

and identically distributed random variables from the PoisLinD with unknown parameters 
 
and   

defined previously.  
 
The likelihood function of the PoisLinD using the pdf in equation (6) is given by; 
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 (15) 

Let the natural logarithm of the likelihood function be,  log | ,l L X  
, 

therefore, taking the 

natural logarithm of the function above gives: 
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(16) 
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Differentiating l  partially with respect to 
 
and   respectively gives the following results: 
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When (17) and (18) are equated to zero (0) and 
solved, the solution of the non-linear system of 
equations above will give the maximum likelihood 

estimates ̂
 
and ̂  of parameters 

 
and   

respectively. However, these solutions cannot be 
obtained manually except numerically with the 
aid of suitable statistical software such as R 
software as used in this study.  
 

5. APPLICATIONS 
 
This section presents a dataset on the               
rate of infant mortality in Nigeria from the year 
1964 to the year 2019. The descriptive                 
statistics and graphs of the dataset are also 
presented.  
 
This data can be obtained from 
www.data.unicef.org. 
 
The following table and figures present a good 
exploration of the dataset with some 
explanations. 
 
A summary of the dataset in Table 1 and Fig. 3 
has shown that neonatal mortality rate in Nigeria 
is bimodal and positively skewed. 
 
Also, the trend in the rate of neonatal mortality in 
Nigeria from 1967 to 2019 using a line plot is 
shown in Fig. 4 below. 
 
From Figs. 4 and 5, the plots reveal the trend in 
the rate of neonatal mortality which show that 
neonatal mortality rate has been a very major 
problem in the past and even today because 
Nigeria has not been able to reduce its death 
rate to a minimum level as indicated by the line 
plot and the bar chart.  

This clearly calls for more efforts from both 
private and government agencies to bring the 
curve to a bearable minimum level. 
Consequently, this article fits the Poisson-Lindley 
distribution (PoisLinD) to the above dataset in 
comparison with other existing probability Lindley 
related distributions. 
 
To choose the best model for the data, the 
following model selection criteria were used: 
Akaike Information Criterion (AIC), Consistent 
Akaike Information Criterion (CAIC), Bayesian 
Information Criterion (BIC), Hannan Quin 
Information Criterion (HQIC), Anderson-Darling 
(A*), Cramѐr-Von Mises (W*) and Kolmogorov-
smirnov (K-S) statistics. Adequate information on 
these criteria or statistics (A*, W* and K-S) can 
be found in [39].  
 
Note: the probability model or distribution with 
the lowest values of these criteria is considered 
to be the best model that fit the dataset. Also, all 
the required computations are performed using 
the R package “AdequacyModel” which is freely 
available from http://cran.r-
project.org/web/packages/AdequacyModel/Adeq
uacyModel.pdf. The results from this                               
R package and the commands are shown in 
Tables 2-4. 
 
Tables 2 lists the Maximum Likelihood Estimates 
of the model parameters, Table 3 presents the 
statistics AIC, CAIC, BIC and HQIC while A*, W* 
and K-S for the fitted models are given in Table 
4. 
 
Fig. 6 presents a histogram and estimated 
densities and cdfs of the fitted models to the 
Neonatal mortality rate data.  
 

http://www.data.unicef.org/
http://cran.r-project.org/web/packages/AdequacyModel/AdequacyModel.pdf
http://cran.r-project.org/web/packages/AdequacyModel/AdequacyModel.pdf
http://cran.r-project.org/web/packages/AdequacyModel/AdequacyModel.pdf
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Table 1. Summary statistics of the Neonatal mortality rate from 1967 to 2019 
 

paramete
rs 

n Minimu
m 

1Q  Media
n 

3Q  Mea
n 

Maximu
m 

Varianc
e 

Skewne
ss 

Kurtosi
s 

Values 5
3 

35.85  39.8
6  

49.53  53.0
2  

48.8
3  

69.30 87.0527
9 

0.45574  -
0.5892
1 

 

 
 

Fig. 3. A graphical summary of the dataset 
 

 
 

Fig. 4. A Line plot of Neonatal Mortality Rate in Nigeria from 1967 to 2019 
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Fig. 5. Bar chart of Neonatal Mortality Rate from 1967 to 2019 
 

 
 

Fig. 6. Estimated densities and cdfs of the fitted distributions to the Neonatal mortality rate 
data 

 
Table 2. Maximum Likelihood Parameter Estimates for the dataset 

 

Distributions Parameter Estimates 

PoisLinD ̂  0.06147592 ̂  4.68515022  - 

TraTPLinD ̂  0.04949141  ̂  4.08919046  ̂  -0.99640859  

LomLinD ̂  0.03942008 ̂  4.88556302  ̂  6.97045762  

LinD ̂  0.04016662 
- - 

TraLinD ̂  0.05063256  
- ̂  -0.33400161  
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Table 3. The statistics ℓ, AIC, CAIC, BIC and HQIC for the dataset 
 

Distribution ˆ  
AIC CAIC 

 
BIC 

 
HQIC Ranks 

PoisLinD  210.9511  425.9022  426.1422  429.8428  427.4176  1
st
  

TraTPLinD  225.8028  457.6057  458.0955  463.5165  459.8787  2
nd

  
LomLinD  249.6315  505.2629  505.7527  511.1738  507.536  3

rd
  

LinD  240.5366  483.0731  483.1515  485.0434  483.8308  4
th
  

TraLinD  236.9102  477.8204  478.0604  481.761  479.3357 5
th
  

 
Table 4. The A

*
, W

*
,
 
K-S statistic and P-values based on the dataset 

 

Distribution A
*
 W

*
 K-S P-Value (K-S) Ranks 

PoisLinD  1.112935  0.1799556  0.2111  0.01499  1
st
  

TraTPLinD  1.096892  0.1742217  0.28506  0.000264  2
nd

  
LomLinD  1.097486  0.1749093  0.39879  4.067e-08  3

rd
  

LinD  1.098607  0.1736916  0.43507  1.218e-09  4
th
  

TraLinD  1.101905  0.1736544  0.47346  1.983e-11  5
th
  

 

 
 

Fig. 7. Probability plots for the fitted distributions based on the Neonatal mortality rate data 
 
Interpreting the results from the tables above, it 
is shown that Table 2 presents the parameter 
estimates and Table 3 lists the values of AIC, 
CAIC, BIC and HQIC for the fitted distributions 
using a dataset on neonatal mortality rate in 
Nigeria which is skewed to the right. The values 
of AIC, CAIC, BIC and HQIC in Table 3 are 
smaller for the PoisLinD compared to those of 
the other four distributions and this result 
indicates that the Poisson-Lindley distribution 
(PoisLinD) is better than the other fitted 
distributions. This entire result was confirmed 
using the other statistics in tabLe 4 and the plots 
in Fig. 6 and Fig. 7 respectively. Conclusively, it 
has shown that adding a parameter(s) to a 
probability distribution generate a distribution 
with greater flexibility in modeling real life data as 

reported by many other authors in previous 
studies.  
 

6. SUMMARY AND CONCLUSION 
 
This study considered a Poisson-X family to 
define and study a Poisson-Lindley distribution 
leading to a new distribution called “Poisson-
Lindley distribution”. The article derived and 
studied some properties of the proposed 
distribution with graphical analysis and 
discussion on its usefulness and applications. 
The method of maximum likelihood was used to 
estimate the unknown model parameters. As 
presented in the previous section, the article 
applied the proposed model to neonatal mortality 
rate and found that its fitness to the data was 
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better as compared to the transmuted two-
parameter Lindley distribution (TraTPLinD), 
Lomax-Lindley distribution (LomLinD), 
Transmuted Lindley distribution (TraLinD) and 
the Lindley distribution (LinD) based on the 
neonatal mortality dataset used in this study.  
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