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The study focuses on extending the fast mean-reversion volatility, which was developed by the author in a previous work, to the
multiscale volatility model so that it can express a well-separated time scale. The leading-order term and first-order correction
terms are analytically computed using the perturbation theory based on the Lie–Trotter operator splitting method. Finally, the
study is concluded by deriving the numerical results that further validate the effectiveness of the model.

1. Introduction

A stochastic process provides a useful tool to analyze time
series data and wide applications in many fields such as phys-
ics, finance, biotechnology, and telecommunication studies.
The transition density function of a continuous-time process
plays an important role in understanding and explaining the
dynamics of the process. However, the transition density
functions are unknown for general diffusion processes except
for a few special cases (refer to Aït‐Sahalia [1], Black and
Scholes [2], Cox et al. [3], and Vasicek [4]). So finding analyt-
ical approximations to them is important as numerical
methods, such as finite-difference method, Monte Carlo sim-
ulation, and Fourier inversion, because of much faster and
precise at least under certain model parameter regime.

In particular, the multivariate log-normal distribution is
a widely used stochastic model in social sciences. What is
the probability of the sum or difference of log-normal ran-
dom variables? The solution to this question has wide appli-
cations in many fields such as finance [5], physics [6], and
actuarial science [7]. However, to the best of the author of
this paper’s knowledge, almost nothing is known about the
question yet (see [8]).

Fat-tailed distribution and volatility clustering are
widely utilized to yield stylized facts in the field of financial
modeling. It is known that high volatility leads to high vol-
atility and low volatility leads to low volatility. Generally,

such phenomena are observed on different time scales and
are characterized by the tendency of short-run volatility
clustering (or fast mean-reversion) and long-run volatility
clustering. In addition, these phenomena can only be delin-
eated by multiscale models and not by single-scale models.
Therefore, this study focuses on extending the fast mean-
reversion volatility (FMRV) model, which is a previously
proposed model by the author, to multiscale volatility
(MSV) model. This extension would aid the researchers
and practitioners, such as Adrian and Rosenberg [9], Cher-
nov et al. [10], Fouque et al. [11], and Gallant et al. [12], in
obtaining financial derivatives, especially those with derived
empirical evidence.

Based on the observation that the well-separated time
scale exists in financial time series data, in this work, a slow
varying process is incorporated into the previously derived
results. Moreover, approximate transition density under the
MSV model is derived by the perturbation theory based on
the Lie–Trotter operator splitting method.

2. Asymptotic Analysis

2.1. Problem Formulation.We denote x1 ± x2 and x10 ± x20 as
x± and x±0 , respectively. The probability distribution of the
sum or difference of the two correlated log-normal distribu-
tions can be obtained by calculating the integral
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u± t, x± ; t0, x10, x20
� �

=
ð∞
0

ð∞
0
dx1dx2u t, x1, x2 ; t0, x10, x20ð Þδ

� x± − x±0
� �

,
ð1Þ

where u is the joint probability distribution of the two log-
normal random variables and δðx± − x±0 Þ is the Dirac delta
function. However, a closed-form representation for this
probability distribution does not exist. Thus, we derive an
analytic approximation of the transition density function of
the sum or difference of the two correlated log-normal distri-
butions (refer to [13]).

We start with a process ðX1, X2, Y , ZÞ describing the con-
ditionally log-normal random variables X1 and X2 and two
processes Y and Z to express a well-separated time scale.
These two processes represent a fast scale factor and a slow
scale factor of the volatility, respectively. The dynamics of
the joint process ðX1, X2, Y , ZÞ are given by the following sto-
chastic differential equations (SDEs) under a risk-neutral
measure:

d X1 ± X2ð Þ = f1 Y , Zð Þ ± f2 Y , Zð Þð Þ X1 ± X2ð Þd W1 ±W2ð Þ,

dY = 1
ε
m − Yð Þdt + ν

ffiffiffi
2

p
ffiffi
ε

p dWY ,

dZ = δg Zð Þdt +
ffiffiffi
δ

p
h Zð ÞdWZ ,

ð2Þ

whereW1,W2,WY , andWZ are standard Brownian motions
correlated as follows:

d W1,W2h it = ρ12dt, d W1,WYh it
= ρ1Ydt, d W2,WYh it = ρ2Ydt,

d W1,WZh it = ρ1Zdt, d W2,WZh it
= ρ2Zdt, d WY ,WZh it = ρYZdt,

ð3Þ

with −1 ≤ ρ12, ρ1Y , ρ2Y , ρ1Z , ρ2Z , ρYZ ≤ 1. Here, the functions
f1 : ℝ

2 ⟶ℝ+ and f2 : ℝ
2 ⟶ℝ+ are assumed to be

bounded, smooth, and strictly positive. The functions g and
h satisfy the Lipschitz and growth conditions such that the
corresponding SDE yields a unique strong solution. The
parameters ε, δ,m, and ν are positive constants with the same
order of ε ≈ δ≪ 1. Notably, the process Y is an ergodic pro-
cess such that its invariant distribution is given by the Gauss-
ian probability distribution function as

ϕ yð Þ = 1ffiffiffiffiffiffiffiffiffiffi
2πν2

p exp −
y −mð Þ2
2ν2

 !
, y ∈ℝ: ð4Þ

This provides an important averaging tool for the unob-
served process Y that is well documented in [11]. Notation
h·i is adopted for the expectation with respect to this invari-
ant distribution.

By using the four-dimensional Feynman–Kac formula
(cf. [14]), we obtain a singularly and regularly perturbed par-
tial differential equation (PDE) problem given by

Lε,δuε:δ± t, x±, y1, z1 ; t0, x10, x20, y0, z0
� �

= 0, t0 < t, ð5Þ

Lε,δ ≔
1
ε
L0 +

1ffiffi
ε

p L1 +L2 +
ffiffiffi
δ

p
K1 + δK2 +

ffiffiffi
δ

ε

r
K3,

ð6Þ

uε,δ± t, x±, y1, z1 ; t0 ⟶ t, x10, x20, y0, z0
� �

= δ x± − x±0
� �

,
ð7Þ

where

L0 = m − yð Þ ∂
∂y

+ ν2
∂2

∂y2
,

L1 = ν
ffiffiffi
2

p
f1 y, zð Þx1ρ1Y

∂2

∂x1∂y

+ ν
ffiffiffi
2

p
f2 y, zð Þx2ρ2Y

∂2

∂x2∂y
,

L2 =
∂
∂t

+ 1
2 x

2
1 f

2
1 y, zð Þ ∂2

∂x21
+ 1
2 x

2
2 f

2
2 y, zð Þ ∂2

∂x22

+ x1x2 f1 y, zð Þf2 y, zð Þρ12
∂2

∂x1∂x2
,

K1 = x1 f1 y, zð Þh zð Þρ1Z
∂2

∂x1∂z

+ x2 f2 y, zð Þh zð Þρ2Z
∂2

∂x2∂z
,

K2 = g zð Þ ∂
∂z

+ 1
2 h

2 zð Þ ∂2

∂z2
,

K3 = ν
ffiffiffi
2

p
h zð ÞρYZ

∂2

∂y∂z
:

ð8Þ

Here, L0 is the infinitesimal generator of the Ornstein–
Uhlenbeck (OU) process Y .L1 consists of the mixed partial
derivatives due to the correlations of the two Brownian
motionsW1 andWY andW2 andWY , respectively.L2 cor-
responds to the operator of a generalized version of the two-
dimensional standard Brownian motion at the volatility
levels f1ðy, zÞ and f2ðy, zÞ instead of constant volatilities σ1
and σ2, respectively. K1 includes the mixed partial deriva-
tives due to the correlations of the two standard Brownian
motions W1 and WZ and W2 and WZ , respectively. K2 is
the infinitesimal generator of the process Z. Finally, K3
denotes the mixed partial derivative due to the correlation
of the two standard Brownian motions WY and WZ .
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2.2. Multiscale Analysis. Since it is difficult to solve the PDE
problem (5), we are interested in the following asymptotic
expansions:

uε,δ± t, x±, y1, z1 ; t0, x10, x20, y0, z0
� �
= 〠

∞

j=0
δj/2uε,j± t, x±, y1, z1 ; t0, x10, x20, y0, z0

� �
,

ð9Þ

uε,j± t, x±, y1, z1 ; t0, x10, x20, y0, z0
� �
= 〠

∞

i=0
ui,j± t, x±, y1, z1 ; t0, x10, x20, y0, z0
� �

,
ð10Þ

such that uε,δ± is a series of the general term εj/2δj/2ui,j± .
Substituting the expansion (9) into (5) gives uε,0± and uε,1± ,
given by the solutions of the PDEs

1
ε
L0 +

1ffiffi
ε

p L1 +L2

� �
uε,0±

� t, x±, y1, z1 ; t0, x10, x20, y0, z0
� �

= 0, t0 < t,

uε,0± t, x±, y1, z1 ; t0 ⟶ t, x10, x20, y0, z0
� �

= δ x± − x±0
� �

,
1
ε
L0 +

1ffiffi
ε

p L1 +L2

� �
uε,1± t, x±, y1, z1 ; t0, x10, x20, y0, z0
� �

= − K1 +
1ffiffi
ε

p K3

� �
uε,0± t, x±, y1, z1 ; t0, x10, x20, y0, z0
� �

, t0 < t,

uε,1± t, x±, y1, z1 ; t0 ⟶ t, x10, x20, y0, z0
� �

= 0:
ð11Þ

2.3. Perturbation Theory Based on Lie–Trotter Operator
Splitting Method

Theorem 1. Assume that the partial derivative of ui,j± with
respect to y does not grow as much as ð∂ui,j± /∂yÞ ~ ey

2/2 as y
tends to infinity. Then, the leading-order term of the expan-
sion (9) with j = 0 is independent of the fast-scale variable y,
and it takes the following form:

u0,0± = 1

x±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~σ2±π t − t0ð Þ

q exp

� −
ln x±/x±0ð Þ + 1/2ð Þ~σ2

± t − t0ð Þ� �2
2~σ2

± t − t0ð Þ

" #
,

ð12Þ

where

~σ+ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σ21 zð Þ + �σ22 zð Þ + 2�σ1 zð Þ�σ2 zð Þ�ρ zð Þ

p
2

,

~σ− =
�σ2
1 zð Þ − �σ22 zð Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σ2
1 zð Þ + �σ22 zð Þ − 2�σ1 zð Þ�σ2 zð Þ�ρ

p
zð Þ

,

�ρ zð Þ = ρ12 f1 ·, zð Þf2 ·, zð Þh i
�σ1 zð Þ�σ2 zð Þ :

ð13Þ

Here, �σ1ðzÞ and �σ1ðzÞ are defined by

�σ1 zð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 21 ·, zð Þ	 
q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
ℝ
f 21 y, zð Þϕ yð Þdy

s
,

�σ2 zð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 22 ·, zð Þ	 
q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
ℝ
f 22 y, zð Þϕ yð Þdy

s
,

ð14Þ

respectively, in terms of ϕ (the invariant distribution of Y).

Proof of Theorem 1. Applying the expansion with j = 0 to u0,0±
leads to

1
ε
L0u

0,0
± + 1ffiffi

ε
p L0u

1,0
± +L1u

0,0
±

� �
+ L0u

2,0
± +L1u

1,0
± +L2u

0,0
±

� �
+

ffiffi
ε

p
L0u

3,0
± +L1u

2,0
± +L2u

1,0
±

� �
+⋯ = 0:

ð15Þ

By multiplying (15) with ε and then letting ε tend to zero,
we obtain the ordinary differential equation (ODE)

L0u
0,0
± = 0: ð16Þ

Reiterating the fact that the operator L0 is the generator
of the OU process Y , the solution u0,0± of this ODE must be a
constant with respect to the y variable because of the assumed
growth condition:

u0,0± = u0,0± t, x±, z1 ; t0, x10, x20, y0, z0
� �

: ð17Þ

In addition, we have the PDE L0u
1,0
± +L1u

0,0
± = 0.

Applying the y-independence of u0,0± to this PDE reduces it
to the ODE L0u

1,0
± =0. Therefore, u1,0± is independent of y

because of the same reason as u0,0± :

u1,0± = u1,0± t, x±, z1 ; t0, x10, x20, y0, z0
� �

: ð18Þ

Hitherto, the first two terms u0,1± and u1,0± did not depend
on the current level y of the fast-scale volatility, which is driv-
ing the process Y .

To simplify the equation, one can continue to eliminate
the terms of order 1, ffiffi

ε
p , ε, and so forth. From the order 1

terms of (15), we get L0u
2,0
± +L1u

1,0
± +L2u

0,0
± = 0. Then,

this PDE becomes

L0u
2,0
± +L2u

0,0
± = 0, ð19Þ

due to the y-independence of u1,0± . Equation (19) is a Poisson
equation for u2,0± with respect to the operatorL0 in the y var-
iable. It is well known from the Fredholm alternative (solv-
ability condition) that it has a solution only if the source
termL2u

0,0
± is centered with respect to the invariant distribu-

tion of Y ; namely,
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L2h iu0,0± t, x±, z1 ; t0, x10, x20, y0, z0
� �

= 0, ð20Þ

L2h i≔ ∂
∂t

+ 1
2 x

2
1�σ1 zð Þ ∂2

∂x21
+ 1
2 x

2
2�σ2 zð Þ ∂2

∂x22

+ x1x2�σ1 zð Þ�σ2 zð Þ�ρ zð Þ ∂2

∂x1∂x2
:

ð21Þ

Then, u0,0± solves the PDE (20).

Note that u0,0± is identical to the transition density function of
Lo’s result such that the coefficients σ1 and σ2 are replaced by
�σ1ðzÞ and �σ2ðzÞ, respectively. Furthermore, we employ the
leading-order solution u0,0± obtained above to derive the
first-order correction terms u1,0± and u0,1± , respectively.

Theorem 2. Assume that the partial derivative of ui,j± with
respect to y does not grow as much as ðui,j± /∂yÞ ~ ey

2/2 as y tends
to infinity. The correction term u1,0± is independent of the y var-
iable, and the first-order correction term satisfies the PDE

L2h iu1,0± t, x±, z1 ; t0, x10, x20, y0, z0
� �

=Au0,0± ,

u1,0± t, x±, z1 ; t0 ⟶ t, x10, x20:y0, z0
� �

= 0,
ð22Þ

where A = hL1L
−1
0 ðL2 − hL2iÞi. Then, one obtains the

solution of the PDE

ffiffi
ε

p
u1,0± = − t − t0ð Þ

"
V1 zð Þ ∂3

∂x31
+V2 zð Þ ∂3

∂x32

+ V12 zð Þ ∂3

∂x1x22
+ V21 zð Þ ∂3

∂x21x2

#
u0,0± ,

ð23Þ

where the constant parameters

V1 zð Þ = νρ1y
ffiffi
ε

p
ffiffiffi
2

p f1 ·, zð Þ ∂ϕ1∂y
·, zð Þ

� �
,

V2 zð Þ = νρ2y
ffiffi
ε

p
ffiffiffi
2

p f2 ·, zð Þ ∂ϕ2∂y
·, zð Þ

� �
,

V12 zð Þ = νρ1y
ffiffi
ε

p
ffiffiffi
2

p f1 ·, zð Þ ∂ϕ2∂y
·, zð Þ

� �

+ ν
ffiffiffi
2

p
ερ12ρ2y f2 ·, zð Þ ∂ϕ12∂y

·, zð Þ
� �

,

V21 zð Þ = νρ2y
ffiffi
ε

p
ffiffiffi
2

p f2 ·, zð Þ ∂ϕ1∂y
·, zð Þ

� �

+ ν
ffiffiffi
2

p
ερ12ρ1y f1 ·, zð Þ ∂ϕ12∂y

·, zð Þ
� �

:

ð24Þ

Here, the functions ϕ1, ϕ2, and ϕ12 are defined by the solu-
tion of

L0ϕ1 = f 21 y, zð Þ − f 21 ·, zð Þ	 

,

L0ϕ2 = f 22 y, zð Þ − f 22 ·, zð Þ	 

,

L0ϕ12 = f1 y, zð Þf2 y, zð Þ − f1 ·, zð Þf2 ·, zð Þh i:
ð25Þ

Proof of Theorem 2. The order
ffiffi
ε

p
terms in (15) lead to L0

u3,0± +L1u
2,0
± +L2u

1,0
± = 0 which is a Poisson equation for

u3,0± whose centering condition is given by

L1u
2,0
± +L2u

1,0
±

	 

= 0: ð26Þ

Meanwhile, from (19) and the operator hL2i, we get

u2,0± = −L−1
0 L2 − L2h ið Þu0,0± + c t, x1, x2, z1ð Þ, ð27Þ

for some function cðt, x1, x2, z1Þ that does not depend on the
y variable. Substituting (27) into (26), a PDE for u1,0± is
obtained as

L2h iu1,0± = L1L
−1
0 L2 − L2h ið Þ	 


u0,0± : ð28Þ

This implies that u1,0± is y-independent. Since we focus on
the first-order correction terms of u0,0± , we reconstruct (28)
with respect to ~u1,0± as follows:

L2h i~u1,0± t, x±, z1 ; t0, x10, x20, y0, z0
� �

= ~Au0,0± ,
~A =

ffiffi
ε

p
L1L

−1
0 L2 − L2h ið Þ	 


:
ð29Þ

To calculate the operator ~A , we aim to derive

L2 − L2h i = 1
2 x

2
1 f 21 y, zð Þ − f 21 ·, zð Þ	 
� � ∂2

∂x21

+ 1
2 x

2
2 f 22 y, zð Þ − f 22 ·, zð Þ	 
� � ∂2

∂x22
+ x1x2ρ12 f1 y, zð Þf2 y, zð Þð

− f1 ·, zð Þf2 ·, zð Þh iÞ ∂2

∂x1∂x2
:

ð30Þ

Thus, the operator ~A can be expressed as

~A = V1 zð Þ ∂3

∂x31
+V2 zð Þ ∂3

∂x32
+V12 zð Þ ∂3

∂x1x22
+V21 zð Þ ∂3

∂x21x2
,

ð31Þ

where V1ðzÞ, V2ðzÞ, V12ðzÞ, and V21ðzÞ are those given in
Theorem 2. Subsequently, we obtain the result of Theorem
2 by direct computation.

Similarly, the correction term u0,1± can be obtained.

4 Advances in Mathematical Physics



Theorem 3. Assume that the partial derivative of ui,j± with
respect to y does not grow as much as ðui,j± /∂yÞ ~ ey

2/2 as y tends
to infinity. The first correction term u0,1± is independent of the y
variable, and the first-order correction term satisfies the PDE
problem

L2h iu0,1± t, x±, z1 ; t0, x10, x20, y0, z0
� �

= − K1h iu0,0± ,

u0,1± t, x±, z1 ; t0 ⟶ t, x10, x20, y0, z0
� �

= 0,
ð32Þ

where

M1h i = ρ1Zx1h zð Þ f1 ·, zð Þh i ∂2

∂x1∂z

+ ρ2Zx2h zð Þ f2 ·, zð Þh i ∂2

∂x2∂z
,

ð33Þ

which makes obtaining the solution to the PDE feasible

ffiffiffi
δ

p
u0,1± = t − t0

2
S zð Þ ∂2

∂x1∂z
+ R zð Þ ∂2

∂x2∂z

 !
u0,0± , ð34Þ

where

S zð Þ = ρ1Zh zð Þ
ffiffiffi
δ

p
f1 ·, zð Þh i,

R zð Þ = ρ2Zh zð Þ
ffiffiffi
δ

p
f2 ·, zð Þh i:

ð35Þ

Proof of Theorem 3. To obtain another first-order correction
term, it is necessary to consider another singular perturba-
tion problem. Applying expansion (9) with j = 0 and j = 1
leads to

1
ε
L0u

0,1
± + 1ffiffi

ε
p L0u

1,1
± +L1u

0,1
±

� �
+ L0u

2,1
± +L1u

1,1
± +L2u

0,1
±

� �
+

ffiffi
ε

p
L0u

3,1
± +L1u

2,1
± +L2u

1,1
±

� �
+⋯

= −
1ffiffi
ε

p K3u
0,0
± − K1u

0,0
± +K3u

1,0
±

� �
−

ffiffi
ε

p
K1u

1,0
± +K3u

2,0
±

� �
−⋯:

ð36Þ

By multiplying (36) with ε and then letting ε tend to zero,
we find the first two leading-order terms as follows:

L0u
0,1
± = 0,

L0u
1,1
± +L1u

0,1
± = −K3u

0,0
± :

ð37Þ

u0,1± (the solution of L0u
0,1
± = 0) must be a constant with

respect to the y variable because the operator L0 is the gen-
erator of the OU process Y . Since K3 has a derivative with
respect to the y variable and u0,0± is independent of y, we
obtain

K3u
0,0
± = 0: ð38Þ

Moreover, because each term ofL1 has a derivative with
respect to y, L1u

0,1
± = 0 holds. In light of the above observa-

tions, the equation

L0u
1,1
± +L1u

0,1
± = −K3u

0,0
± ð39Þ

reduces to

L0u
1,1
± = 0, ð40Þ

which implies u1,1± does not depend on the y variable. Hence,
the two terms u0,1± and u1,1± do not depend on the current level
y of the fast-scale volatility driving process Y :

u0,1± = u0,1± t, x±, z1 ; t0, x10, x20, y0, z0
� �

,

u1,1± = u1,1± t, x±, z1 ; t0, x10, x20, y0, z0
� �

:
ð41Þ

This makes the continuous elimination of order 1 terms,
e.g.,

ffiffi
ε

p
and ε, possible.

For the order 1 term, we have

L0u
2,1
± +L1u

1,1
± +L2u

0,1
± = − K1u

0,0
± +K3u

1,0
±

� �
: ð42Þ

As u1,0± and u1,1± are y-independent, the preceding PDE
(42) can be expressed as

L0u
2,1
± +L2u

0,1
± +K1u

0,0
± = 0: ð43Þ

This represents a Poisson equation for u2,1± with respect to
the operatorL0 in the y variable, which has a solution only if

L2u
0,1
± +K1u

0,0
± ð44Þ

is centered with respect to the invariant distribution of Y .
Since u0,0± and u0,1± do not depend on the variable y, we have

L2h iu0,1± = − K1h iu0,0± : ð45Þ

Then, we obtain the result of Theorem 3 by direct
computation.

As a result, one can approximate uε,δ to the summation of
the leading-order term u0,0± and the first correction terms u1,0±
and u0,1± as follows:

uε,δ t, x±, y1, z1 ; t0, x10, x20, y0, z0
� �
≈ u0,0± t, x±, z1 ; t0, x10, x20, y0, z0

� �
+

ffiffi
ε

p
u1,0± t, x±, z1 ; t0, x10, x20, y0, z0
� �

+
ffiffiffi
δ

p
u0,1± t, x±, z1 ; t0, x10, x20, y0, z0
� �

:

ð46Þ

Note that the distributions of the sum and difference of
correlated log-normal random variables under the MSV
model are observed to follow a combination of shifted log-
normal distribution and their mixed partial derivatives. In
addition, all the original parameters are absorbed in the
group parameters V1ðzÞ, V2ðzÞ, V12ðzÞ, V21ðzÞ, SðzÞ, and
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RðzÞ. The present level y of the hidden process Y that
drives the fast time scale volatility need not be specified
in the present approximation.

3. Numerical Experiment

In this section, we strengthen the effectiveness of the derived
result (46) by showing numerical results.

Several parameter sets are obtained from the study of Ma
except for new group parameters. Three main results can be
observed from the left of Figure 1. First, the constant volatil-
ity is the leading-order term (shifted log-normal distribu-
tion). Second, the short-scale volatility is a combination of
the leading-order term and the first correction term driven
by the fast moving fluctuation (shifted log-normal distribu-
tions under the FMRV model). Finally, two different time
scale volatility is a combination of the leading-order term
and the first correction terms (shifted log-normal distribu-
tions under the MSV model). The right of Figure 1 depicts
the errors calculated by subtracting the log-normal distribu-
tions under the FMRV model and the MSV model from the
log-normal distribution, respectively. Additionally, we
applied the same result to the difference in the probability

density function in Figure 2. Numerical results delineate that
the short-scale volatility and the multiscale volatility shift to
the left (or to the right) from the constant volatility. The left
and right skew scenarios are presented through the first-
order correction terms, and the major discrepancies appear
around the peak of the probability density function. There
is a small gap between the FMRVmodel and the MSVmodel;
this implies that the prices of financial derivatives with short-
term maturity levels are ruled by a fast-scale volatility pro-
cess. On the contrary, those of financial derivatives with
long-term maturity levels are dominated by a slow-scale vol-
atility process in the area of financial modeling. Finally, a
simulation result shows that our result could explain a finan-
cial point of view. Note that the numerical result clearly out-
lines that this domain is sensitive to the choice of the
involved parameters and provides considerable flexibility to
the shape of the transition density.

4. Final Remarks

We incorporate a slow varying process into the previously
published result of the author. A two-factor stochastic vola-
tility model is formulated that comprises a slow varying
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Figure 1: Sum of probability density function and error.

0
0

0.005

0.01

0.015

0.02

Log‑normal
Log‑normal with FMRV model
Log‑normal with MSV model

0.025

50 100 150

Pr
ob

ab
ili

ty
 d

en
sit

y

200

X1+X2

250 300 350 400 0

−1.5

−2

−1

−0.5

0

0.5

1

1.5

Log‑normal with FMRV model error
Log‑normal with MSV model error

2

50 100 150

Er
ro

r

200

S1+S2

250 300 350 400

Figure 2: Difference of probability density function and error.
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process representing one persistent factor for volatility and
one ergodic process for displaying rapidly moving fluctua-
tions. Using perturbation theory based on the Lie–Trotter
operator splitting method, we compute the leading-order
term, the first-order correction terms, and the effectiveness
of the slow-scale volatility factor by outlining numerical
results.

This paper offers various possible directions for further
development. This result can provide a very useful guide for
credit risk management (see [13, 15–17]). We leave these
issues as future research topics.

Data Availability

Our paper contains numerical experimental results, and
values for these experiments are included in the paper. The
data is freely available.
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