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In this study, the exact traveling wave solutions of the time fractional complex Ginzburg-Landau equation with the Kerr law and
dual-power law nonlinearity are studied. The nonlinear fractional partial differential equations are converted to a nonlinear
ordinary differential equation via a traveling wave transformation in the sense of conformable fractional derivatives. A range of
solutions, which include hyperbolic function solutions, trigonometric function solutions, and rational function solutions, is
derived by utilizing the new extended (G'/G)-expansion method. By selecting appropriate parameters of the solutions,

numerical simulations are presented to explain further the propagation of optical pulses in optic fibers.

1. Introduction

The Ginzburg-Landau (GL) equation [1-7] is one of the most
important partial differential equations in the field of mathe-
matics and physics, which was introduced into the study of
superconductivity phenomenology theory in the 20th cen-
tury by Ginzburg and Landau. The GL equation usually
describes the optical soliton [8-15] propagation through
optical fibers over longer distances. Therefore, it is very
important to analyze the dynamic behavior of the GL equa-
tion. In particular, searching for the approximate analytical
solutions or exact traveling solutions of the GL equation
has been more and more widely followed with interest
because they can help to explain the complexity of nonlinear
optics. So, in recent years, many powerful methods were used
for finding the exact traveling solutions of the GL equation,
which include the first integral method [16], dynamical sys-
tem method [17], (G’/G)—expansion method [18], Hirota’s
method [19], and harmonic balance method [20].

In recent years, the fractional GL equation [21-24] has
been more and more widely followed with interest because
it can be used to accurately model some nonlinear optical

phenomena. In particular, constructing the exact traveling
solutions of the fractional GL equation is very important
work because it can be better explained the dynamics of sol-
iton propagation through optical fibers over longer distances
in nonlinear optics. So far, many important methods have
been proposed to find the exact solutions of the fractional
GL equation. In [25], Arshed extracted the hyperbolic, trigo-
nometric, and rational function solutions of the fractional GL
equation by the exp (—¢(§))-expansion method. In [26],
Raza obtained the periodic and hyperbolic soliton solutions
of the conformable time fractional GL equation by using
the solitary wave ansatz method and exp (—¢(y))-expan-
sion method. In [27], Abdou et al. employed Jacobi’s elliptic
function expansion approach to retrieve doubly periodic
function solutions for the time-space fractional GL equation.
In [28], Sirisubtawee et al. investigated the cubic-quintic GL
equation by the modified Kudryashov method and (G'/G, 1
/G)-expansion method. In [29], Ghanbari and Goémez-
Aguilar obtained the periodic and hyperbolic soliton solu-
tions of the conformable GL equation by using the general-
ized exponential rational function method. Although exact
traveling wave solutions of the fractional GL equation have
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been successfully obtained by utilizing the above methods, it
is far from enough on searching for the exact solution of a
more general fractional complex GL equation. The main pur-
pose of this paper is to construct exact traveling wave solu-
tions of the time fractional complex GL equation with the
Kerr law and dual-power law nonlinearity by using the new
extended (G'/G)-expansion method, and a range of solutions
which include hyperbolic function solutions, trigonometric
function solutions, rational function solutions, and negative
power solutions is derived.

In this paper, we will consider the following time frac-
tional complex GL equation [26, 29]:

iDu + au,, + bF (|uf*)u

_aful(|uf),, - B((14f),)" (1)

P +yu, 0<6<1,
u|u

where x represents distance across the fiber in dimensionless
form. a and b denote the coeflicient of the group velocity dis-
persion and the coeflicient of nonlinearity. The terms with
constants o and f3 arise from the perturbation effects. In par-
ticular, y comes from the detuning effect. g, b, o, 3, and y are
real-valued constants. u* is the complex conjugate numbers
of u. Equation (1) is used to model various physical phenom-
ena, such as nonlinear waves, Bose-Einstein condensation,
second-order phase transitions, superconductivity, superflu-
idity, liquid crystals, and strings.

In Equation (1), F(|u|*)u : C— C is a real-valued alge-
braic function. Let F(|u|*)u be k times continuously differen-
tiable. Then,

X (—=m, m) ;Rz), (2)

F([u)ue G C*((-nn

myn=1

where C is a complex plane of two-dimensional linear space
in R%.

The rest of this paper is organized as follows. In Section 2,
we will give the definition of the conformable fractional
derivative and its properties. In Section 3, we will introduce
the extended (G'/G)-expansion method. In Section 4, we will
discuss the exact traveling solutions of the fractional complex
GL equation with the Kerr law and dual-power law nonline-
arity by using the extended (G'/G)-expansion method and
plot the profiles of several representative exact traveling solu-
tions. In Section 5, we will present the concluding remarks.

2. Preliminaries

Definition 1 [28]. Let f : [0,00) = R. Then, the conformable
fractional derivative of f of order « is defined as

DYf(t) :hmf(HStlj) i}

e—0

forallt>0,0<d<1.

(3)
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If the limit in Equation (3) exists, then we say that f is §
-conformable differentiable at a point ¢.

Theorem 2 [28]. Let € (0, 1] and f(t) and g(t) be 8-con-
formable differentiable at a point t > 0. Then,

DY(t#) = ut*®,  forallueR,
Dl (af (t) + bg(t)) = aDf(t) + bDg(t), foralla,beR,
DY (f(1)g(1)) = f(H)D)g(t) + g(1)DYf (1),
((?) gD (1) —f(1)D} 9.
g*(t)
provided that f (t) is differentiable.
(4)

Theorem 3 [28]. Let f : (0,00) — R be a function such that f
is differentiable and §-conformable differentiable. Further, let
g be a differentiable function defined in the range of f. Then,

“*09

D{(feg)(t)=t""g()"'g" (ODI(f())| gy (5)

where the prime notation (') denotes the classical derivative.

3. Overview of the Extended (G'/G)-Expansion
Method

Let us consider a general fractional partial differential equa-
tion in the form

P(u,ut, -.DPu, Dou, DfDﬁ,-.-)=0, 0<8<1, (6)

where u is an unknown function and P is a polynomial of u
and its partial fractional order derivatives, in which the high-
est order derivatives and nonlinear terms are involved.

Step 1. By using the traveling wave transformation u(f, x) =
U (&), where & = x — 1(t°/8), | is a nonzero arbitrary constant,
0 <8 <1, we can rewrite Equation (6) as the following non-
linear ordinary differential equation (ODE) of the integer
order with respect to &:

Q(U, U’,U”,--~) 0. (7)

If it is possible, we should integrate Equation (7) term by
term one or more times; the constants of integration are con-
sidered to be zero.

Step 2. Assume that the traveling wave solution of Equation
(7) can be expressed as follows:
"\
bl =1 » 8
©. o

N N\
2(3)

1P
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where either ay or by may be zero, but both ay and by
cannot be zero at a time, and a,(i=0,1,2,---,N) and b,
(i=1,2,---,N) are arbitrary constants, where G=G(&)
satisfies the following nonlinear ODE:

GG'' = AG"” + BGG' + CG?, (9)
where A, B, and C are real parameters.

Step 3. The value of the positive integer N in Equation (8) can
be computed by using the homogeneous balance between the
highest order nonlinear term and the highest order derivative
in U(&) appearing in Equation (8).

Step 4. Substituting Equations (8) and (9) into Equation (7)
with the value of N obtained in Step 3, we obtain polynomials

in (G'1G)N(N=0,1,2,-) and (G'/G) "(N=0,1,2,").

Then, we collect all coefficients of the resulted polynomial
to zero, and we obtain a set of algebraic equations for g;
(i=0,1,2,-+) and b,(i=1,2,--,N).

Step 5. By solving the algebraic equations obtained in Step 4,
we can obtain the values of the constants a,(i =0, 1, 2,---) and
b;(i=1,2,---,N). Replacing the values into Equation (8), we
construct a more general type and new exact traveling wave
solutions of Equation (3).

The solutions of Equation (9) can be categorized into the

following three cases.

Case 1 (hyperbolic function solutions). When B* — 4(A — 1)
C>0and A #1, then

(%) VB +ic—44c (Cisinh (VB +4C-4ACR)E) + C, cosh (VB +4C-4ACR)E) B

GE)  2(1-4A)

Case 2 (trigonometric function solutions). When 4(A — 1)C
—B*>0and A # 1, then

G'(¥) B VAAC—4Cc - B [—Cisin ((\/M/z)g) + C, cos ((Vm&)ﬁ) B

C, cosh ((m/z)g) +C, sinh ((mn)s)

+ ST-A) (10)

(11)

G(E&) 2(1-A)

Case 3 (rational function solutions). When B?> —4(A - 1)C
=0and A # 1, then

G'§_ 1 [ ¢ B
G

Remark 4. In fact, by taking A=0, B=-A, and C=—-p in
Equation (9), the second nonlinear ODE reduces into the fol-
lowing second-order linear ODE:

G'"+MAG' +uG=0. (13)

4. Exact Solutions of the Time Fractional
Complex Ginzburg-Landau Equation

In order to obtain the traveling wave solution of Equation (1),
we assume that the exact solution has the following form:

u(t, x) = U(E)e™, (14)

where & = x — v(#°/8) and 1 = —kx + w(t°/8) + 6.

C, cos ((m/z) E) +C, sin ((\/4AC —4C- 32/2) E)

+2(1—A)'

Substituting (14) into Equation (1), then collecting the
real and imaginary parts, we get the following equations:

Re :—wU + a(U” - kZU) +bF(U?)U=2(a~ 2ﬁ)@

+2aU"" +yU,

Im : v=-2ak, (16)

where U'' = 2U/dE>.
By taking a =23, Equation (15) becomes

~wU +a(U" - RU) +bF(U)U=20U" +yU.  (17)

4.1. Kerr Law Nonlinearity. The Kerr law nonlinearity is the
case when F(U) = U; then, Equation (17) reduces to

2a-a)U" —bU* + (y+w+ak’) U =0. (18)
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FIGURE 1: The positive real part of u; (t,x) in Equation (23) for differential values of the fractional parameter §.

By using the homogeneous balance principle, we select
N = 1. Then, we suppose that the solution of Equation (18)

satisfies
G AN
U@)=a, <E> +a,+Db (E) ,

where a,, a;, and b, are constants to be determined.

Substituting (19) together with (9) into (18) yields a poly-
nomial in (G'/G)Y (N=0,1,2,--) and (G'/G
(N=0,1,2,--). Collecting the coefficient of the resulted
polynomial and setting them to zero, we obtain a nonlinear
algebraic equation in a;, a,, and b,. Solving the algebraic
equation using the computer algebraic software of Maple,
we get the following results:

(19)

)—N

Case L ay=+/(2Q2a-a)(A-17),
((2a—a)B?)/2b, b, =0, k=k, and w=((2a—a)(B* +4C
~4AC))/2 —y - ak’.

a,=+

Case 2. a,=0, ay;=+/((2a—a)B?)/2b, b=+

V(2(2a—a)C?)/b, k=k, and w= (((2a — a)(B* + 4C — 4AC
/2) —y—ak®, where A, B, C, a, b, «, an are free
))/2) —y —ak?, where A, B, C, a, b dy fi
parameters.

Substituting these solutions into (19), using (14), we
obtain the traveling wave solution as follows:

u(t, x) = _J_r\/ (2 ;;)B N \/2(20‘ - “l))(A -1 (C(f'; ((ff))ﬂ o (-hrtu(116)+0)

u(t,x) =

-+\/(20¢ —-a)B? . \/2(2(x -a)C? (G' (f)) _1:| ol (o (£16)+6)
B 20 b G(@¥) ’

(20)

where G'(£)/G(&) is defined in Section 3, and & = x + 2ak
(£019).
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Family 1. The hyperbolic function solutions can be obtained
as B2 —4(A-1)C>0and A # 1. Then,

uy(t,x) = {i\/(Z(x ;ba)BZ . \/z(mx - al),(A —1)?

. (2(1 B o VB +4C—4AC H‘)} (ckes(0)10)

2(1-4)
(21)
_ s (20{—6[)32+ 2(2a—a)C?
”2(”)_{‘\/ 2 ‘\/ b

. <2(1li i VB +4C—4AC H}) " een(#0))
(22)

2(1-4)

where H, = (C, sinh ((VB? +4C — 4AC/2)(x + 2ak(t°/9)))
+ Cycosh  ((VB2+4C—-4AC/2) (x + 2ak(t°/5))))/

(C, cosh ((VB?+4C - 4AC/2) (x+2ak(t°/8))) + C, sinh

((VB? +4C - 4AC/2)(x + 2ak(t°/8)))), and C, and C, are

arbitrary constants.

In particular, if we assume that C, =0, A>1, B> 0, and
C, #01in (21), then we have

2b 2

. (x+Zak(ta/a))ﬂef<—kx+w<m>+e>,

D e I (e

(23)
andif C; =0, A >1,B>0,and C, # 0 in (21), then we obtain

<\/B2 +4C—4AC
coth | ——M — —

(b0) = \/(m ~a) (1322;J 4C - 4AC)

. (x " 2ak<t6/6) > )] o (herw(£16)+6)

2

(24)

The fixed valuesarea =2,a=1,b=1,A=2,B=4,C=3,
and k=1, and the fractional parameter § € {1/5,1/2,1} is
used to plot the positive real part of the exact solution
uy (t,x) as in Figures 1 and 2.

Family 2. The trigonometric function solutions can be
obtained as 4(A —1)C — B> >0 and A # 1. Then,

w(t2) = [i\/(Za ;ba)BZ N \/Z(Z(x— al)j(A - 1)? (2(1114)

T e
2(1-A)

(25)

(=)

0.2 0.4 0.6

> > je)
1} 1} 1}
SIS

FIGURE 2: The positive real part of u; (¢,x) at x =1.0 in Equation
(23) for differential values of the fractional parameter §.

. \/(m ;ba)Bz . \/2(20c ; a)C?

. ( B VAAC-4C-FB >_1:|ei(kx+w(t‘§/5)+9)
2(1-A) ? ’

2(1-A)

(26)

where H, = (~C, sin ((V4AC — B> — 4C/2)(x + 2ak(t°/3)))
+ Cycos ((VAAC-B*—-4C/2) (x + 2ak(t%/8))))/ (C,
cos ((V4AC - B2 —4C/2) (x + 2ak(t°/8))) + C,sin ((
VA4AC - B2 - 4C/2)(x + 2ak(t°/3)))), and C, and C, are

arbitrary constants.
Specifically, if we suppose that C, =0, A>1, B> 0, and
C, #0in (25), then we obtain

uy(t,x) =

iy (%) = i\/(206 -a))(4AC-4C-B?) {tan (m

2b 2

: (x +2ak %5) ) } ¢i(heru(t910)+0)

andif C, =0, A> 1, B>0, and C, # 0 in (25), then we have

(27)

s (1,5) =¢\/(2“‘a)(4AC—4C—BZ) {Cot (m

2b 2

(v 20 %m (-twu(se):0).
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FIGURE 3: The positive real part of u; (£,x) in Equation (27) for differential values of the fractional parameter §.

The fixed valuesarea =2,a=1,b=1,A=4,B=3,C=3,
and k=1, and the fractional parameter 8 € {1/5,1/2,4/5}
is used to plot the positive real part of the exact solution
us (t,x) as in Figures 3 and 4.

Family 3. The rational function solutions can be obtained as
B> -4(A-1)C=0and A # 1. Then,

|, /Ra—a)B 1 22a-a)(A-1)?
”S(t’x)_[‘\/ 2 1-4 b

: ( G N E)} o (hru(18)16)
Ci(x+2ak(t18)) +C, 2

20— a)B? 1 2(2a—a)C?
Hs(f»x):[ir ( 2b) 14 : b :
-1
. C, LB (ke (£15)+6)
C,(x+2ak(1218)) +C, 2

(29)

where C, and C, are arbitrary constants.

4.2. Dual-Power Law. In this case, F(U) = U" + [U*"; then,
Equation (17) takes the following form:

2a-a)U" + (y+w+ak)U - (U + IU*) =0,
(30)

where [ is a constant.
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FIGURE 4: The positive real part of u; (t,x) at x = 1.0 in Equation (27) for differential values of the fractional parameter &

Using transformation
U — Vl/2n) (3 1 )
Equation (30) will be reduced into the following ODE:

(20— a) [(1 - 211)V'2 + 2nVV"} +4n’ (y +w +ak®) V?
—4bn® V3 (V +1V?) =0
(32)

Now, applying the balancing principle between V* and
VV'"in the above equation, we get N = 1. Therefore, we have

V(E) =a, (%) ay+b, <%> N EE)

where a,, a,, and b, are constants to be determined.

Substituting (33) together with (9) into (32) yields a poly-
nomial in (G'/G)" (N=0,1,2,--) and (G'/G)"
(N=0,1,2,---). Collecting the coefficient of the resulted
polynomial and setting them to zero, we obtain a nonlinear
algebraic equation in a;, a;, and b;. Solving the algebraic
equation using the computer algebraic software of Maple,
we get the following results:

Case 1.a, = +(1/2n) \/((2n+1)(2(x a)(A-1)*)/bl, a,

= —((2n + /@ + 1) + (B/(dn(A - 1)))

1)%)/bl, b, =0, k=k, and w= (((2«
((3b(2n+1))/(81(n+1)%)) -

V(2 +1)(20-a)(A-
—a)(B?+4C-4AC))/8n*) -

y — ak®.
Case 2.a; = 0,a, = —((2n + 1)/(4l(n + 1))) = (B/ 4n
C)v/((2n+1)(2a — a)C?)/bl, b, =+(1/2n)

V(2n+1)(2a-a)C?)/bl), k=k, and w = (((2a — a)(B* +
4C - 4AC))/8n%) - ((3b(2n +1))/(81(n+1)%)) -y — ak?,
where A, B, C, a, b, a, and y are free parameters.

Substituting these solutions into (33), using (14) and
(31), we obtain the traveling wave solution as follows:

_ 2n+1 N B (2n+1)(2zx a)(A- 1)
u(tx)= {_41(;“1) an (A—l)\/
. i (21’1 + 1 206 a < > e kx+w(t'5/6)+6)
T 2n

>

Zn +1 B 2n + 1 20c a
, L [errie-ac (G'm) ] " ()
*on bl G(&) ’

(34)

where G'(§)/G(£) is defined in Section 3, and & = x + 2ak(t?
/8).
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FIGURE 5: The positive real part of u; (t,x) in Equation (37) for differential values of the fractional parameter §.

Family 1. The hyperbolic function solutions can be obtained
as B> —4(A-1)C>0and A # 1. Then,

fa= |- 2n+1 N B
(B0 =\ =g F ana-

. i\/(2n+ 1)(2a—a)(A-1)

(2n+1)(2a—a)(A-1)?
)\/ bl

T 2n bl
5 1/2n
. B VB+ 4C-4AC H, (kv (116)+0)
2(1-A) 2(1-A)

(35)

B (2n+1)(2a—a)C?
4l(n+1)  4nC bl

-191/2n
\/Bzzzl4c;)4Ac H1> } (ckera()10)

(36)

where H, = (C, sinh ((VB?+4C—4AC/2) (x + 2ak(t/
8))) + C, cosh ((VB2+4C —4AC/2)(x + 2ak(t°/8))))/(C,
cosh ((VB?+4C-4AC2)(x + 2ak(t°/8)) + C, sinh ((
VB? +4C — 4AC/2)(x + 2ak(t°/3)))), and C, and C, are

arbitrary constants.

In particular, if we assume that C, =0, A>1,and C,; #0
in (35), then we have

| 2n+1 _ 1 [(2n+1)(2x—a)(B*+4C - 4AC)
, (hx) = [74l(n+ D) bl
1/2n

. <\/m< té)):| ei(’kX+W(t'5/5)+9)»

> x+2ak§

tanh

(37)

and if C, =0, A> 1, and C, # 0 in (35), then we obtain

u (%) = |- 2n+1 ii (2n+1) (20— a)(B* + 4C - 4AC)
2 4(n+1) 4n bl

. (m < t5>):| llznei(—kx+u'<t5/5)+9).

coth

(38)
3 x+ Zakg
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FIGURE 6: The positive real part of u; (£, x) at x = 1.0 in Equation (37) for differential values of the fractional parameter §

The fixed valuesarea=2,a=1,b=1,A=2,B=4,C=3,
k=1,1=3, and n=2, and the fractional parameter & € {1/5
,1/2,1} is used to plot the real part of the exact solution Uy,

(t,x) as in Figures 5 and 6.

Family 2. The trigonometric function solutions can be
obtained as 4(A —1)C — B> >0 and A # 1. Then,

_|_ 2+l B (2n+1)(2a—a)(A-1)?
us(x) = [_4l(n+ D " an(A-1) \/ bl

1 [2n+1)(2a—-a)(A-1)>?

T 2n bl
VIAC-iC- B e
| (2(1114) " 4Azfl —4§) Dy || ety
(39)
| 2n+1 B (2n+1)(2a—a)C?
ua(bx) = { dn+) - ac\ W
N 1 [/2n+1)(2a—-a)C?
o bl
—19 1/2n
. (2(1 B i \/4142%—_45)— B’ H2> } (kesu(0)10)

(40)

where H, = (-C, sin ((V4AC - B*-4C/2) (x + 2ak (£°/
8))) + C, cos ((VAAC - B> —4C/2) (x + 2ak(t°15))))/ (C,
cos ((VAAC—-B?-4C/2) (x + 2ak(t°/8))) + C,sin ((
VA4AC - B2 — 4C/2)(x + 2ak(t°/3)))), and C, and C, are

arbitrary constants.

Specifically, if we suppose that C, =0, A>1,and C, #0
in (39), then we obtain

B 2n+l 1 (2n+1)(2a—a)(4AC - 4C - B?)
U (0= =) an bl
\/72 5 1/2n (41)
an (w (HM%))} J(Ctsnu()-0)
and if C, =0, A> 1, and C, # 0 in (39), then we obtain
B 2n+1 _ 1 [(2n+1)(2a—a)(4AC-4C - B?)
ts, (62 = {_41(;1 ¥1) " an ol
(42)

1/2n
\/ — _RB2 5 .
- cot <74AC iC-B (x + 2ak %) e’('k’(*"’("s/a)"g)‘

2

The fixed valuesare . =2,a=1,b=1,A=4,B=3,C=3,
k=1,1=3, and n =2, and the fractional parameter § € {1/5,
1/2,1} is used to plot the real part of the exact solution u;

(t,x) as in Figures 7 and 8.

Family 3. The rational function solutions can be obtained as
B> -4(A-1)C=0and A # 1. Then,

_|_2n+1 B (2n+1)(2a—a)(A-1)*
(1) = {_41(;“1) - 4n(A—1)\/ bl

1 (2n+1)(2a—a)(A - 1)
oV

+
2n(1- bl
12n
) Cl N § ei(—kx+w(t6/5)+9)’
Cié+C, 2
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FIGURE 7: The positive real part of u; (,x) in Equation (41) for differential values of the fractional parameter §.
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5. Conclusion

The time fractional complex GL equation with the Kerr law
and dual-power law nonlinearity, which depicts the dynam-
ics of soliton propagation through optical fibers over longer
distances, is studied by using the extended (G'/G)-expan-
sion method. A series of new exact solutions are constructed,
including hyperbolic function solutions, trigonometric func-
tion solutions, and rational function solutions. Comparing
our results with the solutions in the previous literature, we
get many new exact solutions. In order to further understand
the dynamic behaviors of these results, with the help of soft-
ware Maple 18, we have provided some graphical representa-
tion of the exact solutions of the time fractional complex GL
equation with the Kerr law and dual-power law nonlinearity
by setting the appropriate parameters. We believe that the
obtained solutions may be of cardinal significance in the field
of nonlinear optics. Moreover, in the paper, we have con-
firmed that the extended (G'/G)-expansion method is pow-
erful, reliable, and systematic, and they could be applied for

solving more extensive and complicated fractional partial dif-
ferential equations.
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