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Abstract: A decentralized control algorithm for the construction of a tetrahedral configuration using
differential lift and drag forces is proposed in this paper. Four 3U CubeSats launched in LEO
are considered. Satellite attitude-controlled motion relative to the incoming airflow provides the
required differential forces in order to change the relative translational motion. The developed control
algorithm allows one to track the relative reference trajectories for the satellites at the vertices of
the tetrahedron of the required shape and size. The influence of the initial launch conditions on the
controlled tetrahedral motion is studied in this paper.

Keywords: formation flying; relative motion control; differential drag; differential lift; nanosatellites

1. Introduction

One of the most important features of satellite formation flying is the ability to instantly
measure the spatial distribution of parameters of interest in near-Earth space. Formation
flying missions are used to study gravitational waves [1], Earth magnetosphere parame-
ters [2,3], the stereo imaging of Earth surface [4], etc. In the case of 3D spatial scanning,
at least four satellites are required. In an ideal case, the satellites should move at the
vertices of the regular tetrahedron. Relative motion control must be applied to construct
and maintain such a configuration. The control can be implemented using an onboard
propulsion system [5,6] though for low-Earth orbits (LEOs), control can be implemented
using differential aerodynamic forces [7,8].

The most famous tetrahedral satellite formation flying mission is the Magnetospheric
Multiscale Mission for Earth magnetosphere studying [9]. Four satellites move along
highly elliptical Earth orbits and are controlled using onboard thrusters via a ground
command center. The implementation of such a mission using small satellites is restricted
by their limited control abilities. The authors of [10] outlined the problem of designing
and deploying a highly elliptical orbit tetrahedral formation of one controllable chief
microsatellite and several passive deputy nanosatellites. A propellantless control approach
using solar radiation pressure and atmospheric drag for reconfiguration maneuvers applied
to a tetrahedral formation in highly elliptical orbits was proposed in [11]. Another idea is
to use tethers to form the required tetrahedral formation. In [12], stationary configurations
for a tethered tetrahedron were studied. It was shown in [13] that for low Earth orbits, it
is possible to define such initial conditions of passive satellite motion that allow for the
tetrahedron to preserve its volume and shape in a linear model. This type of tetrahedron
has been considered for geomagnetic measurement exchange and interpolation in [14].
However, atmospheric drag and J2 perturbation result in a relative drift between satellites,
and translational control is required. In this paper, differential aerodynamic forces were
applied to the problem.
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Differential, drag-based, formation flying control is well-studied in the literature.
Leonard first proposed such a control using the change of the satellites cross section
area relative to the incoming airflow in 1986 [15]. Since then, a variety of algorithms
based on this idea have been developed [8,16–19]. In 2013, Horsley et al. [20] proposed
an idea to use the lift and drag components of aerodynamic force for formation flying
control that also allowed them to control the relative out-of-plane and in-plane motion.
A set of papers developed this idea and demonstrated control performance under J2
perturbations and atmospheric density uncertainties [21,22]. All the above-mentioned
papers about differential forces control considered formations consisting of two satellites,
and a centralized control approach was implemented. It is not clear how to use differential
forces to achieve the required relative trajectories when there are more than two satellites.
Decentralized control strategies or rules for implementation can be proposed for the
task. In [23,24], cyclic and optimal control were proposed for a cluster flight. Another
idea is to consider a communicational constraints, and decentralized control is based
on neighbor satellite motion inside an individual communication sphere [25,26]. To the
authors’ knowledge, the current paper is the first to propose decentralized control for
differential lift and drag applications.

A set of papers were devoted to the problem of reference trajectory tracking control.
A linear–quadratic regulator (LQR) is a widely implemented relative motion control algo-
rithm for formation flying, and it was tested onboard the PRISMA [27] and CanX-4&5 [28]
missions. In [29], a novel adaptive trajectory tracking algorithm for a space manipulator
was proposed; it guarantees a prescribed performance while considering actuator satu-
ration. An adaptive guidance architecture using Guardian Map was developed in [30];
it provides asymptotic convergence to the fuel-efficient natural trajectories of formation
flying in elliptical orbits. The neural-network-based adaptive controller from [31] is able
to tune algorithm parameters for better trajectory tracking in cases of uncertainties in
dynamical disturbances acting on deep-space formation flying. In our work, LQR-based
control was applied to the tracking of an average deviation from three relative trajectories
at the same time for tetrahedral formation flying.

The purpose of this paper was to develop and study a decentralized algorithm for
group satellite control after launch to construct a tetrahedral configuration. 3U CubeSats
motion after deployment from the launcher is considered. An LQR-based decentralized
control algorithm to track the relative reference trajectory is proposed. The reference
trajectory of the satellites was selected to obtain a tetrahedron of required quality. The
convergence time, depending on the initial conditions and tetrahedron size, is investigated.

2. Problem Statement

The problem of satellite tetrahedral formation construction after launch is considered
because it is necessary to achieve defined relative trajectories in order to provide satellite
motion in the vertices of a tetrahedron of required size. Each satellite is given information
about the relative motion of other satellites. This information is obtained via an inter-
satellite link or using an autonomous relative motion determination system.

Consider a formation launched in LEO: each satellite is assumed to be equipped with
an attitude control system. Thus, the satellites’ relative motion can be controlled by the
difference in aerodynamic forces, which depends on the attitude of the satellites relative
to the incoming airflow. The 3U CubeSats considered in this paper have a form-factor
that is suitable for differential aerodynamic control. The goal of the work was to develop
decentralized aerodynamic control to construct the tetrahedral formation.

2.1. Motion Equations

The Hill–Clohessy–Wiltshire relative motion equations [32,33] for two satellites in
near circular orbits in a central gravitational field were considered for control algorithm
development. These equations were written in the orbital reference frame, the origin of
which moves along the circular orbit with radius r0. The Oz axis is aligned along the nadir
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direction, the Oy axis is directed along the orbital momentum vector, and the Ox axis
complements the triad (Figure 1).
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Consider two 3U CubeSats with the radius-vectors ri = (xi, yi, zi) and rj = (xj, yj, zj)
for i-th and j-th satellites written in the orbital reference frame. The relative radius-vector
rij = rj − ri = (xij, yij, zij) components change according to the following equations:

..
xij + 2ω

.
zij = uij

x ,
..
yij + ω2yij = uij

y ,
..
zij − 2ω

.
xij − 3ω2zij = uij

z ,

(1)

where ω =
√

µ/r3
0 is the orbital angular velocity, µ is the Earth gravitational parameter,

uij = ∆fij/m, ∆fij = fj − fi is the difference between the aerodynamic forces acting on the
i-th and the j-th satellites, and m is the mass of the satellites. For the case of free motion,
the solution of Equation (1) is as follows

xij(t) = −3Cij
1 ωt + 2Cij

2 cos(ωt)− 2Cij
3 sin(ωt) + Cij

4 ,
yij(t) = Cij

5 sin(ωt) + Cij
6 cos(ωt),

zij(t) = 2Cij
1 + Cij

2 sin(ωt) + Cij
3 cos(ωt),

where Cij
1 − Cij

6 are trajectory parameters dependent on the initial conditions at t = 0.

2.2. Aerodynamic Force Model

Assume that the i-th and j-th satellites are the identical 3U CubeSats and their shape
is rectangular parallelepiped with a size of 10 × 10 × 30 cm. The satellites are equipped
with solar panels that cover the bodies of the satellites. For simplicity, consider that the
satellites rotate in a way that only one of the greater sides of each satellite (30 × 10 cm2) is
affected by the incoming airflow. The other two greater sides are always perpendicular
to the velocity vector, and the last one is in the shadow relative to the incident flow. Only
one of the two smaller sides (10 × 10 cm2) can be directed toward the velocity vector of
the satellites.

Consider an aerodynamic force model that accounts the lift component [34]. The outer
unit normal vector nk to the k-th side of the CubeSat can be written as follows:

nk =

 sin θk
cos θk cos ϕk
cos θk sin ϕk

.

where the angle θk is chosen such that the aerodynamic force does not act on the satellite
when θk = 0. θk ∈ [0; π/2]; if θk < 0, then the other side of the CubeSat should be
considered. Additionally, angle ϕk ∈ [0, 2π). Assume that the vector of the incoming
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airflow is directed along the Ox axis, as this is an adequate assumption for near circular
orbits. In this case, the aerodynamic force has the following expression in the orbital
reference frame [22]:

fk = K

 −2ε(sin θk)
3 + η(ε− 1)(sin θk)

2 + (ε− 1) sin θk
− cos θk sin θk(η − εη + 2ε sin θk) cos ϕk
− cos θk sin θk(η − εη + 2ε sin θk) sin ϕk

, (2)

where K = 1
m ρV2Sk, ρ is the atmosphere density, V is the airflow velocity, Sk is the CubeSat

side area, and ε and η are constant parameters describing the interaction of molecules with
the surface. To calculate the overall aerodynamic force acting on the i-th satellite, all the
forces with θk > 0 for the outer normal vector to the satellite sides should be summarized:

fi =
6

∑
k=1

fk, if θk ≥ 0.

The resulting control force is the difference between the forces acting on two satellites:

∆fij = fj − fi (3)

In case of two satellites in formation, the control force is the function of the attitude
angles, which is defined as θk, ϕk for each side of each CubeSat. However, if there are four
satellites in the group, there are three reference relative trajectories for each satellite and a
control strategy should be defined.

3. Control Algorithm

Consider an application of the linear quadratic regulator to track the predefined
relative trajectory. This control algorithm is quite simple to implement in the case of two
satellites in a group, but an additional decentralized control rule is needed in the case
of N satellites. In this section, an LQR is constructed and the decentralized approach
is proposed.

3.1. LQR Basics

An LQR can be applied for linear systems with the following relative motion equations:

.
xij = Axij + Buij (4)

where the state vector xij for our case consists of radius-vector and velocity in the orbital

reference frame, xij = [rT
ij vT

ij ]
T is the state vector, A is the dynamic matrix,

A =

[
03x3 E

C D

]
,

E is the identity matrix with a size of 3 × 3,

C =

 0 0 0
0 −ω2 0
0 0 3ω2

, D =

 0 0 −2ω
0 0 0

2ω 0 0

,

and B is the control matrix

B =

[
03x3

E

]
.

The reference trajectory can be obtained through the integration of the free
motion equations:

.
xd

ij = Axd
ij
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where xd
ij is the reference trajectory state vector. For the deviation from the reference

trajectory e = xij − xd
ij, the equation has the following form:

.
eij = Aeij + Buij (5)

The LQR is the feedback control of the form u = −Kce that minimizes the following
functional [35].

J =
∞∫

0

(
eT

ijQeij + uT
ij Ruij)dt (6)

where Kc is the control gain matrix and matrices Q, R are the positive definites that de-
termine the weight of errors for the state vector and the weight of the control resource
consumption, respectively. The control vector is defined by the equation

uij = −R−1BT Peij (7)

where the matrix P is obtained from the solution of the Riccati equation

AT P + PA− PBR−1BT P + Q = 0. (8)

3.2. Average Deviation from the Reference Trajectories

The main challenge of the LQR application to tetrahedral formation control is that
for each satellite, there are three reference trajectories relative to each of the rest of the
satellites. The reference relative trajectories are chosen in a way that during motion, all the
four satellites are located in the vertices of the tetrahedron of required size. Thus, control
from Equation (7) should be applied according to each trajectory deviation. However,
the deviations eij could lead to completely different control vectors uij. That is why
a decentralized control strategy has to be defined for the construction of a tetrahedral
formation. One way to solve this problem is to use an average deviation. The mean vector
of the deviations

_
ei for each satellite is as follows:

_
ei =

3

∑
j=1

eij/3.

The resulting control vector can be calculated using Equation (7):

_
ui = −R−1BT P

_
ei (9)

Thus, the proposed control leads to the convergence of the mean trajectory deviation
to zero; the relative trajectories reach the reference trajectories, and the required tetrahedron
motion is obtained.

3.3. Constraints of the Differential Aerodynamic Forces

The decentralized control approach means that each satellite is individually and
independently controlled based on the relative motion of the neighbor satellites. The
differential force is the difference between each pair of the satellites, which means that the
i-th satellite can partly implement the calculated control. According to the aerodynamic
force model, the force component in the along-track direction is always negative, and the
possible values are inside the interval ux

i ∈ [−ux
max;−ux

min], where ui
max > 0 represents the

maximum and minimum values that correspond to CubeSat positions of maximum and
minimum cross-section area relative to the incoming airflow.

Thus, it is assumed that in the case of the control saturation, it is necessary to im-
plement maximum possible components along the Ox axes, but according to the force
model in this case, the other components are zero: ux

max = [−ux
max 0 0]. In the case

that the calculated control
_
ui is in the acceptable control region, it can be implemented.
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However, in the case that the calculated average deviation control ux
i is of a negative value,

then its vector ui cannot be implemented and set to a minimum value corresponding to
ux

min =
[
−ux

min 0 0
]
. When 0 < ux

i < ux
max in the acceptable control region but the sum

of the other two components are saturated, i.e.,

√(
uy

i

)2
+ (uz

i )
2 > uyz

max, it is reasonable to

implement its maximum value uyz
max. However if the angle θ ≈ 52 degrees for the largest

side of the CubeSat and the Ox component ũx
i at this angle is ux

i /K ≈ 0.8, the control vector

to be applied in that case is uyz
max =

[
ũx

i uy
i /uyz

max uz
i /uyz

max

]
, i.e., the calculated values

for the Oy and Oz values are normalized to the maximum possible value uyz
max.

In summation, for ui, one can propose the following decentralized control law:

ui =



−ux
max, if ux

i > ux
max,

−uyz
max, if 0 < ux

i < ux
max,

and

√(
uy

i

)2
+ (uz

i )
2 > uyz

max,

− _
ui, if 0 < ux

i < ux
max,

−ux
min, if ux

i < 0.

(10)

The proposed decentralized control strategy was empirically derived based on practi-
cal logic, and its values were partly based on the LQR because it considers aerodynamic
force value constrains. Thus, algorithm performance needed to be demonstrated. Due
to actual aerodynamic force restrictions, the convergence of the relative deviations of the
trajectories cannot be analytically proved. That is why only numerical simulations were
used for the controlled motion study.

4. Numerical Study

Consider the application of the proposed control algorithm for tetrahedron construc-
tion. The control is developed under assumptions of linear motion equations, a circular
orbit, and a constant atmosphere density. In this section, we discuss the results of a nu-
merical study using the simulation of orbital motion that considered the orbit eccentricity,
the second harmonic J2, and the GOST atmosphere model of upper Earth atmospheric
density [36]. Thus, the performance of controlled motion in presence of disturbances and
density uncertainty is analyzed.

The simulation start time was set as 1 January 2020, 0:00 a.m. For this date, all the
parameters required for the atmosphere density model were used. The 3U CubeSat cluster
launch scheme was considered. It was assumed that the satellites were separated from the
launcher in the Ox axis direction one after another, with the time interval ∆t between the
launches. The velocity of the ejection Ve was assumed to be the same for all the CubeSats,
but due to launch system inaccuracy, the ejection velocity was subjected to errors. Thus,
the initial velocity vector V0 in the orbital reference frame was modelled as follows:

V0 =

 Ve + δV
δV
δV

, (11)

where δV is the ejection error considered to be a normally distributed random value with
zero mean and a covariance of σ2

δV .
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After separation, the implementation of control aimed at achieving the tetrahedral
formation began. A tetrahedron with the best quality was accomplished if the satellites
move along the following reference orbits [37]:

x1 = 2A cos(ω t− arccos(1/3)),
y1 = A

√
3 sin(ω t),

z1 = A sin(ω t− arccos(1/3)),

x2 = 2A cos(ω t),
y2 = A

√
3 sin(ω t + arccos(1/3)),

z2 = A sin(ω t),

x3 = D,
y3 = 0,
z3 = 0,

x4 = −D,
y4 = 0,
z4 = 0,

(12)

where ri = [xi yi zi]
T represents the radius-vector of i-th satellite in the orbital reference

frame and A and D are constants. According to that equation, two of the satellites were
moving along the same the circular path with a constant separation equal to 2D. The
other two satellites were moving along the circular relative trajectories with the angular
separation shown in Figure 2.
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All the parameters used in the simulation of the controlled motion of the CubeSat
formation flying are presented in Table 1. The constant atmosphere density corresponding
to the average density for altitude of 340 km was used for the control calculation, though the
actual atmosphere density corresponded to the GOST model. Thus, the density uncertainty
for the decentralized algorithm was simulated.

Figure 3 shows the relative trajectories of the three satellites relative to the forth
satellite in the case of uncontrolled motion. One can see that the relative trajectories were
diverging along the Ox axes due to initial launch velocity errors. Figure 4 demonstrates
the relative motion trajectories under the proposed decentralized control Equation (10).
One can see that the trajectories relative to the fourth satellite converged to the desired
trajectory described by Equation (12).

Figure 5 presents the vector deviations relative to the fourth satellite. One can see that
all the deviations after approximately 35 h finally converged to a zero vicinity of a few
meters. The slowest convergence had the Oy component of the vector deviations due to
relatively small lift component of the aerodynamic force. The final tracking error of the
required tetrahedron was about 1 m, and it was caused by control implementation errors
and J2 perturbation.
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Table 1. Parameters and initial conditions of the numerical simulation.

Main Parameters of the Formation

Number of satellites in the formation 4

Time interval between control calculation, ∆T 150 s

Orbit attitude, h 340 km

Orbit inclination, i 51.7 deg

Parameter of tetrahedron A 100 m

Parameter of tetrahedron D 115 m

Launch Parameters

Time interval between the launches, ∆t 10 s

Ejection velocity, Ve 0.5 m/s

Ejection error deviation, σδV 0.015 m/s

CubeSat Parameters

Mass of satellite, m 3 kg

Difference between maximum and minimum
value of the cross-sectional area, ∆S 0.02 m2

Aerodynamic drag coefficient, Ca 2

LQR Parameters

Matrix Q E6x6

Matrix R diag ([10−13; 10−14; 10−14])

Aerodynamic Force Parameters

Constant atmosphere density, ρ 10−11 kg/m3

Airflow velocity, V =
√

µ/(RE + h) 7.69 km/s

Parameters ε and η 0.1

Maximum of the control source, umax 4.1 · 10−6 m/s2
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The calculated control according to Equation (9) for the average relative vector devi-
ations for all the satellites is presented in Figure 6, and the corresponding implemented
value according to Equation (10) is shown in Figure 7. The control vectors were divided by
the aerodynamic force coefficient K from Equation (2) and are presented in dimensionless
units for convenience. One can see that in the beginning of the simulation, the calculated
control value for the Ox component was positive for some time intervals. This could not be
realized by aerodynamic force, so its value was set to zero in the implemented control algo-
rithm according to Equation (10). After approximately 3 h, the deviation along the Ox axis
considerably decreased, but all the positive calculated values were still not implemented.
After 3 h, the deviation along the Oy axis still was large enough to lead to saturation for the
corresponding control vector component. During this case that lasted for approximately
the next 20 h, the second control situation from Equation (10) was implemented. It caused
a temporarily increased deviation along the Ox axis. However, after 23 h, the deviations
along the Oy axis decreased and all of the components of the calculated control fell into the
acceptable control region.
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Figure 7. The implemented control according to the restrictions of Equation (10).

It is possible that the proposed decentralized control algorithm could fail to construct a
tetrahedral configuration in a case of implemented control saturation for a long time period
(several orbital periods). This could be the result of incorrectly chosen weight matrices
Q and R in the LQR. In order to avoid the implemented control saturation, preliminary
deviations from the required trajectories should be estimated using a priori information of
the launch’s initial conditions. Then, the weight matrices Q and R should be selected in
such a way that the calculated LQR-based control from Equation (9) is inside an acceptable
control region that could be implemented by aerodynamic forces. The methodology for
these parameter selections is described in [22]. Though the LQR parameters were correctly
chosen in the presented simulation example, there was a temporary saturation of the
implemented control. Despite the control implementation errors at the initial time of
simulation, the proposed control the convergence to the required trajectories.

Figure 8 presents the change in orbit altitude of the satellites in formation flying.
Over 60 h of simulation, the altitude decreased by about 300 m. At the beginning of the
simulation, the required control in the along-track direction was significant, so it caused
faster orbit degradation. In first 10 h, altitude decreased by more than 100 m. Afterwards,
the cross-section relative to the incoming airflow was about the minimum value of 0.01 m2.
The orbit degradation continued but at a slower rate. Figure 9 presents the GOST model of
atmosphere density, which considers the day–night variation and current solar activity. The
control was calculated using a constant density model without actual density information.
This led to certain implementation control errors that influenced the trajectory performance.
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It was important to investigate the time that is needed to construct the tetrahedral
flying formation depending on launch conditions. A set of the possible time intervals
between the launches was considered, and the time of tetrahedral construction was numer-
ically estimated. It was assumed that the configuration was formed if the deviations of
all the trajectories from the reference trajectories were less than 5 m. Twenty simulations
for each time interval were carried out. Since the initial velocity contained the random
term characterizing the launch errors with normal distribution, the convergence time was
also random. Figure 10 presents boxplots for the results of the simulations of the depen-
dence of the time of tetrahedron construction on the time between launches. The boxplot
presents 50% of the simulation results inside the rectangle, each outside interval contains
25% of results, and the mean value is depicted as horizontal line in the box. One can see
that there was a minimum construction time that corresponded to the 25 s between the
launches of the CubeSats for the considered example. This minimum can be explained by
the more convenient initial conditions for the control algorithm, and it resulted in a faster
convergence time.
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Figure 10. The dependence of the time of tetrahedron construction on the time between launches.

Another important parameter influencing convergence is that of launch errors. To
study its effect on algorithm performance, twenty simulations were carried out with the
same value of the standard deviation of the error in initial velocity. The time between
the launches was fixed at value 25 s. The results of numerical experiments are presented
in Figure 11. As expected, the greater the value of the standard deviation of the launch
velocity, the greater the mean of the convergence time and the greater the deviations.
Nevertheless, such a simulation can allow one to estimate the convergence time for a
particular launch system with a defined level of ejection error.
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Figure 11. The dependence of the time of tetrahedron construction on the standard deviation of the
launch velocity.

For magnetosphere measurements, it is important to scale the size of the tetrahedron
to investigate the magnetic effects at different scales. For reconfiguration to the same
tetrahedron (as described by Equation (12)) but of different size, numerical experiments
were performed. The time of reconfiguration’s dependence on the similarity coefficient is
presented in Figure 12. For the considered tetrahedron, the time required for the double
reduction in size was about 14 h, and it was about 18 h for the double enlargement.
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5. Conclusions

A decentralized control scheme is proposed for a tetrahedral formation flying using
aerodynamic force with the lift component. This scheme considers the constraints on the
force maximum values. It was shown that the control scheme can successfully lead to
the required configuration for the considered tetrahedron. A study of the convergence
time after launch showed that there the minimum depends on the time between the
launches of the satellites. Ejection errors during the launch result in deviations in the
convergence time that increase with the standard deviation of the launch velocity. The
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