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In this paper, we investigate the relativistic quantum dynamics of spin-0 massive charged particle subject to a homogeneous
magnetic field in the Gödel-type space-time with potentials. We solve the Klein-Gordon equation subject to a homogeneous
magnetic field in a topologically trivial flat class of Gödel-type space-time in the presence of Cornell-type scalar and Coulomb-
type vector potentials and analyze the effects on the energy eigenvalues and eigenfunctions.

1. Introduction

The first solution to Einstein’s field equations containing
closed time-like curves is the cylindrical symmetry Gödel
rotating universe [1]. Reboucas et al. [2–4] investigated the
Gödel-type solutions characterized by vorticity, which repre-
sents a generalization of the original Gödel metric with pos-
sible sources, and analyzed the problem of causality. The
line element of Gödel-type solution is given by

ds2 = − dt + Aidx
i

� �2
+ δijdx

idxj, ð1Þ

where the spatial coordinates of the space-time are repre-
sented by xi and i, j = 1, 2, 3. The different classes of Gödel-
type solutions have been discussed in [5].

Investigation of relativistic quantum dynamics of spin-
zero and spinhalf particles in the Gödel universe and
Gödel-type space-times as well as the Schwarzschild and
the Kerr black hole solution has been addressed by several
authors. The study of relativistic wave equations, particularly
the Klein-Gordon and Dirac equations, in the background of
Gödel-type space-time was first conducted in [6]. The close
relation between the relativistic energy levels of a scalar par-

ticle in the Som-Raychaudhuri space-time with the Landau
levels was studied in [7]. The same problem in the Som-
Raychaudhuri space-time was investigated and compared
with the Landau levels [8]. The Klein-Gordon equation in
the background of Gödel-type space-times with a cosmic
string was studied in [9], and the similarity of the energy
levels with Landau levels in flat space was analyzed. The
Klein-Gordon oscillator in the background of Gödel-type
space-time under the influence of topological defects was
studied in [10]. The relativistic quantum dynamics of a scalar
particle in the presence of external fields in the Som-
Raychaudhuri space-time under the influence of topological
defects was studied in [11]. The relativistic quantum motion
of spin-0 particles in a flat class of Gödel-type space-time was
studied in [12]. The study of the spin-0 system of the DKP
equation in a flat class of Gödel-type space-time was studied
in [13]. In all the above systems, the influence of topological
defects and vorticity parameter characterizing the space-time
on the relativistic energy eigenvalues was analyzed. Linear
confinement of a scalar particle in the Som-Raychaudhuri
space-time with a cosmic string was studied in [14] (see also
[15]). The behavior of a scalar particle with Yukawa-like con-
fining potential in the Som-Raychaudhuri space-time in the
presence of topological defects was investigated in [16]. The
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ground state of a bosonic massive charged particle in the
presence of external fields in Gödel-type space-time was
investigated in [17] (see also [18]). The relativistic quantum
dynamics of spin-zero particles in 4D curved space-time with
the cosmic string subject to a homogeneous magnetic field
was studied in [19]. In addition, the relativistic wave equa-
tions in the ð1 + 2Þ-dimensional rotational symmetry space-
time background were investigated in [20–25].

Furthermore, Dirac and Weyl fermions in the back-
ground of the Som-Raychaudhuri space-times in the presence
of topological defects with torsion were studied in [26].
Weyl fermions in the background of the Som-Raychaudhuri
space-times in the presence of topological defects were stud-
ied in [27] (see Refs. [28, 29]). The relativistic wave equations
for spinhalf particles in theMelvin space-time, a kind of space-
time where the metric is determined by a magnetic field, were
studied in [30]. The Fermi field and Dirac oscillator in the
Som-Raychaudhuri space-time were studied in [31]. The
Fermi field with scalar and vector potentials in the Som-
Raychaudhuri space-time was investigated in [32]. The Dirac
particles in a flat class of Gödel-type space-time were studied
in [5]. Dirac fermions in the ð1 + 2Þ-dimensional rotational
symmetry space-time background were investigated in [33].

The relativistic quantum dynamics of a scalar particle
subject to different confining potentials has been studied in
several areas of physics by various authors. The relativistic
quantum dynamics of scalar particles subject to Coulomb-
type potential was investigated in [34–37]. It is worth men-
tioning studies that have dealt with Coulomb-type potential
in the propagation of gravitational waves [38], quark models
[39], and relativistic quantum mechanics [40–43]. Linear
confinement of scalar particles in a flat class of Gödel-type
space-time was studied in [44]. The Klein-Gordon equation
with vector and scalar potentials of Coulomb type under
the influence of noninertial effect in cosmic string space-
time was studied in [45]. The Klein-Gordon oscillator in
the presence of Coulomb-type potential in the background
space-time generated by a cosmic string was studied in [43,
46]. Other works on the relativistic quantum dynamics are
the Klein-Gordon scalar field subject to a Cornell-type poten-
tial [47] and a survey on the Klein-Gordon equation in
Gödel-type space-time [48].

Our aim in this paper is to investigate the quantum effects
on a bosonic massive charged particle by solving the Klein-
Gordon equation subject to a homogeneous magnetic field
in the presence of Cornell-type scalar and Coulomb-type vec-
tor potentials in Gödel-type space-time. We see that the pres-
ence of a magnetic field as well as various potentials modifies
the energy spectrum.

2. Bosonic Charged Particle: The KG Equation

The relativistic quantum dynamics of a charged particle of
modifying mass m⟶m + S, where S is the scalar potential
which is described by the following equation [42]:

1ffiffiffiffiffiffi−gp Dμ
ffiffiffiffiffiffi
−g

p
gμvDvð Þ − m + Sð Þ2 − ξR

� �
Ψ = 0, ð2Þ

where g is the determinant of a metric tensor with gμν as its
inverse, Dμ = ∂μ − ieAμ is the minimal substitution, in which
e is the electric charge and Aμ is the electromagnetic four-
vector potential, and ξ is the nonminimal coupling constant
with the background curvature.

We choose the electromagnetic four-vector potential
Aμ = ð−V , A~Þ with [49]

Ay = −xB0,

A
!
= 0, Ay , 0
� �

,
ð3Þ

such that the constant magnetic field is along the axis B
!
=

∇
!
× A

!
= −B0ẑ.

Consider the following stationary space-time [50] (see
[5, 12, 13, 44, 51]) in the Cartesian coordinates ðx0 = t,
x1 = x, x2 = y, x3 = zÞ which is given by

ds2 = − dt + α0xdyð Þ2 + δijdx
idxj, ð4Þ

where α0 > 0 is a real positive constant. In Ref. [5], we
have discussed different classes of Gödel-type space-time.
For the space-time geometry (4), it belongs to a linear or
flat class of Gödel-type metrics. The parameter α0 = 2Ω,
where Ω characterizes the vorticity parameter of the
space-time. For Ω⟶ 0, the study space-time reduces to
four-dimensional flat Minkowski metric.

The determinant of the corresponding metric tensor gμν is

det g = −1: ð5Þ

The scalar curvature of the metric is

R = α20
2 = 2Ω2: ð6Þ

For the space-time geometry (4), equation (2) becomes

"
−

∂
∂t

+ ieV
	 
2

+ ∂
∂y

− ieAy

	 

− 2Ωx

∂
∂t

+ ieV
	 
� �2

+ ∂2

∂x2
+ ∂2

∂z2
− m = Sð Þ2 − 2ξΩ2

#
Ψ = 0:

ð7Þ

Since the metric is independent of t, y, z, one can choose
the following ansatz for the function Ψ:

Ψ t, x, y, zð Þ = ei −Et+ly+kzð Þψ xð Þ, ð8Þ

where E is the total energy of the particle, l = 0, ±1, ±2,⋯ are
the eigenvalues of the y-component operator, and −∞ < k <
∞ is the eigenvalues of the z-component operator.
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Substituting the ansatz (equation (8)) into equation (7),
we obtain the following differential equation for ψðxÞ:

"
d2

dx2
+ E − eVð Þ2 − k2 − l + eB0xð Þ + 2Ωx E − eVð Þf g2

− m + Sð Þ2 − 2ξΩ2
#
ψ xð Þ = 0:

ð9Þ

2.1. Interaction with Cornell-Type and Coulomb-Type
Potentials. Here, we study a spin-0 massive charged particle
by solving the Klein-Gordon equation in the presence of
external fields in a flat class of Gödel-type space-time subject
to Cornell-type scalar and Coulomb-type vector potentials.
We obtain the energy eigenvalues and eigenfunctions and
analyze the effects due to various physical parameters.

The Cornell-type potential contains a confining (linear)
term besides the Coulomb interaction and has been success-
fully accounted for the particle physics data [52]. This type of
potential is a particular case of the quark-antiquark interac-
tion, which has one more harmonic-type term [53]. The
Coulomb potential is responsible for the interaction at small
distances, and the linear potential leads to the confinement.
The quark-antiquark interaction potential has been studied
in the ground state of three quarks [54] and systems of bound
heavy quarks [55–57]. This type of interaction has been stud-
ied by several authors ([11, 23, 42, 58–64]).

We consider the scalar S to be Cornell-type [42].

S = ηc
x

+ ηLx, ð10Þ

where ηc and ηL are the Coulombic and confining potential
constants, respectively.

Another potential that we are interested in here is the
Coulomb-type potential which we discussed in Introduction.
Therefore, the Coulomb-type vector potential is given by

V = ξc
x
, ð11Þ

where ξc is the Coulombic potential constants.
Substituting the potentials (equations (10) and (11)) into

equation (9), we obtain the following equation:

d2

dx2
+ λ − ω2x2 −

j2

x2
−
a
x
− bx

" #
ψ xð Þ = 0, ð12Þ

where we have defined

λ = E2 −m2 − k2 − 2ηcηL − 2ξΩ2 − l − 2eΩξcð Þ2,

ω =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ΩE +mωcð Þ2 + η2L

q
,

j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2c − e2ξ2c

q
,

a = 2 eξcE +mηcð Þ,
b = 2 mηL + ω l − 2eΩξcð Þ½ �,

ωc =
eB0
2m

ð13Þ

is called the cyclotron frequency of the particle moving in the
magnetic field. Let us define a new variable r =√ω x, equa-
tion (12) becomes

d2

dr2
+ β − r2 −

j2

r2
−
η

r
− θr

" #
ψ rð Þ = 0, ð14Þ

where

β = λ

ω
,

η = affiffiffiffi
ω

p ,

θ = b
ω3/2 :

ð15Þ

We now use the appropriate boundary conditions to
investigate the bound state solution in this problem. It is
known in relativistic quantum mechanics that the radial
wave functions must be regular at both r⟶ 0 and r⟶
∞. Then, we proceed with the analysis of the asymptotic
behavior of the radial eigenfunctions at origin and in the infi-
nite. These conditions are necessary since the wave functions
must be well behaved in these limits, and thus, the bound
states of energy eigenvalues for this system can be obtained.
Suppose the possible solution to equation (14) is

ψ rð Þ = r je− 1/2ð Þ θ+rð ÞrH rð Þ: ð16Þ

Substituting the solution (equation (16)) into equation
(14), we obtain

d2H

dr2
+ γ

r
− θ − 2r

h i dH
dr

+ −
χ

r
+Θ

h i
H rð Þ = 0, ð17Þ

where

γ = 1 + 2j,

Θ = β + θ2

4 − 2 1 + jð Þ,

χ = η + θ

2 1 + 2jð Þ:

ð18Þ
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Equation (17) is the biconfluent Heun’s differential equa-
tion [42, 43, 46, 59–63, 65, 66] withHðrÞ as the Heun polyno-
mial function.

Writing the function HðrÞ as a power series expansion
around the origin, we can obtain [49]

H rð Þ = 〠
∞

i=0
cir

i: ð19Þ

Substituting the series solution into equation (17), we
obtain the following recurrence relation:

cn+2 =
1

n + 2ð Þ n + 1 + γð Þ χ + θ n + 1ð Þf gcn+1 − Θ − 2nð Þcn½ �:

ð20Þ

Few coefficients of the series solution are

c1 =
η

γ
+ θ

2

	 

c0,

c2 =
1

2 1 + γð Þ χ + θð Þc1 −Θc0½ �:
ð21Þ

As the function HðrÞ has a power series expansion
around the origin in equation (19), then the relativistic
bound state solution can be achieved by imposing that the
power series expansion becomes a polynomial of degree n
and we obtain a finite degree polynomial for the biconfluent
Heun series. Furthermore, the wave function ψ must vanish
at r⟶∞ for this finite degree polynomial of power series;
otherwise, the function diverges for large values of r. There-
fore, we must truncate the power series expansion HðrÞ as a
polynomial of degree n by imposing the following two condi-
tions [11, 14, 42–44, 46, 59–63, 67, 68]:

Θ = 2n n = 1, 2,⋯ð Þ,
cn+1 = 0:

ð22Þ

By analyzing the condition Θ = 2n, we have the second-
degree eigenvalue equation:

E2
n,l =m2 + k2 + 2ηcηL + 2ξΩ2 + 2ω n + 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2c − e2ξ2c

q	 


−
m2n2L
ω2 −

2mnL l − 2eξcΩð Þ
ω

:

ð23Þ

The corresponding eigenfunctions are given by

ψn,l rð Þ = r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2c − e2ξ2c

q
e− 1/2ð Þ r+θð ÞrH rð Þ: ð24Þ

Note that equation (23) does not represent the general
expression of the eigenvalue problem. One can obtain the
individual energy eigenvalues one by one, that is, E1, E2, E3,
⋯., by imposing the additional recurrence condition cn+1 =

0 on the eigenvalues. The solution with Heun’s equation
makes it possible to obtain the individual eigenvalues one
by one as done in [11, 14, 42–44, 46, 59–63, 67, 68]. In order
to analyze the above conditions, we must assign values to n.
In this case, consider n = 1, which means we want to con-
struct a first-degree polynomial to HðrÞ. With n = 1, we have
Θ = 2 and c2 = 0 which implies equation (21):

χ + θð Þc1 = 2c0 ⇒
η

γ
+ θ

2 = 2
χ + θ

,

a1,l
1 + 2j +

b1,l
2ω1,l

	 

a1,l +

b1,l
ω1,l

j + 3
2

	 
	 

= 2ω1,l,

ω3
1,l −

a2

2 1 + 2jð Þω
2
1,l − ab

1 + j
1 + 2j

	 

ω1,l −

b2

8 3 + 2jð Þ = 0,

ð25Þ

a constraint on the physical parameter ω1,l. The relation
given in equation (25) gives the possible values of the param-
eter ω1,l that permit us to construct a first-degree polynomial
to HðrÞ for n = 1 [42, 43, 46, 59]. Note that its values change
for each quantum number n and l, so we have labeled
ω⟶ ωn,l. In this way, we obtain the following energy
eigenvalue E1,l:

E1,l = ±
(
m2 + k2 + 2ηcηL + 2ξΩ2 + 2 2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2c − e2ξ2c

q	 

ω1,l

−
m2η2L
ω2
1,l

−
2mηL l − 2eξcΩð Þ

ω1,l

)1/2

:

ð26Þ

Then, by substituting the real solution ω1,l from equa-
tion (25) into equation (26), it is possible to obtain the
allowed values of the relativistic energy levels for the radial
mode n = 1 of a position-dependent mass system. We can
see that the lowest energy state is defined by the real solution
of the algebraic equation (equation (25)) plus the expression
given in equation (26) for the radial mode n = 1, instead of
n = 0. This effect arises due to the presence of Cornell-type
potential in the system. Note that it is necessary physically
that the lowest energy state is n = 1 and not n = 0; otherwise,
the opposite would imply that c1 = 0 which is not possible.

The corresponding radial wave function for n = 1 is
given by

ψ1,l rð Þ = r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2c − e2ξ2c

q
e
− 1/2ð Þ r+b/ 3/2ð Þ

ω1,l

	 

r c0+c1rð Þ, ð27Þ

where

c1 =
1ffiffiffiffiffiffiffi
ω1,l

p a

1 + 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2c − e2ξ2c

q + b
2ω1,l

2
64

3
75c0: ð28Þ
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2.2. Interaction without Potential. Here, we study a spin-0
massive charged particle by solving the Klein-Gordon
equation in the presence of external fields in Gödel-type
space-time without potential and obtain the relativistic
energy eigenvalue.

We choose here zero scalar and vector potentials, S =
0 =V . In that case, equation (9) becomes

d2

dx2
+ E2 −m2 − k2 − l2 − 2ξΩ2 − ω2x2 − 2ωlx

" #
ψ xð Þ = 0,

ð29Þ

The above equation can be expressed as

d2

dx2
+ E2 −m2 − k2 − 2ξΩ2 − ω2 x + l

ω

	 
2
" #

ψ xð Þ = 0,

ð30Þ

Let us define a new variable r = ðx + ðl/ωÞÞ; equation
(30) becomes

ψ″ rð Þ + δ − ω2r2
� �

ψ rð Þ = 0, ð31Þ

where

δ = E2 −m2 − k2 − 2ξΩ2: ð32Þ

Again, introducing a new variable ρ =√ω r into equa-
tion (31), we obtain

ψ″ ρð Þ + δ

ω
− ρ2

	 

ψ ρð Þ = 0, ð33Þ

which is similar to a harmonic-type oscillator equation.
Therefore, the energy eigenvalue equation is

δ

ω
= 2n + 1⇒ δ = 2n + 1ð Þω⇒ E2

n − 2Ω 2n + 1ð ÞEn

−m2 − k2 − 2ξΩ2 − 2mωc 2n + 1ð Þ = 0:
ð34Þ

The energy eigenvalues associated with the nth modes are

En = 2n + 1ð ÞΩ
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n + 1ð Þ2Ω2 +m2 + k2 + 2ξΩ2 + 2mωc 2n + 1ð Þ

q
= 2n + 1ð ÞΩ

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n + 1ð Þ2Ω2 +m2 + k2 + 2ξΩ2 + eB0j j 2n + 1ð Þ

q
,

ð35Þ

where n = 0,1,2,⋯. We can see that the energy eigenvalues
(35) depend on the parameter Ω characterizing the vorticity
parameter of the space-time geometry and the external mag-
netic field B0 as well as the nonminimal coupling constant
ξ with the background curvature.

In the absence of external magnetic fields, B0 ⟶ 0, and
without the nonminimal coupling constant, ξ⟶ 0, the
eigenvalue (35) becomes

En = 2n + 1ð ÞΩ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n + 1ð Þ2Ω2 +m2 + k2

q
: ð36Þ

Equation (36) is the energy eigenvalues of the spin-0 par-
ticle in the background of a flat class of Gödel-type space-
time and consistent with the result in [12]. Thus, we can
see that the energy eigenvalues (35) in comparison to the
result in [12] get modified due to the presence of external
fields and the nonminimal coupling constant with the back-
ground curvature.

Therefore, the individual energy levels for n = 0, 1 using
(35) are follows:

n = 0 : E0 =Ω +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 + 2ξΩ2 + 2mωc +m2 + k2

q
,

n = 1 : E1 = 3Ω +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9Ω2 + 2ξΩ2 + 6mωc +m2 + k2

q
:

ð37Þ

A special case corresponds to m = 0 = k, and the energy
eigenvalues (35) reduce to

En = 2n + 1ð ÞΩ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n + 1ð Þ2Ω2 + 2ξΩ2 + eB0j j 2n + 1ð Þ

q
:

ð38Þ

The individual energy levels for n = 0, 1 in that case are as
follows:

n = 0 : E0 =Ω +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 + 2ξΩ2 + eB0j j

q
,

n = 1 : E1 = 3Ω +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9Ω2 + 2ξΩ2 + 3 eB0j j

q
:

ð39Þ

And others are in the same way. We can see that the pres-
ence of the external magnetic field B0 as well as the nonmini-
mal coupling constant ξ causes asymmetry in the energy
levels, and hence, the energy levels are not equally spaced.

The eigenfunctions are given by

ψn ρð Þ = Nj jHn ρð Þe− ρ2/2ð Þ, ð40Þ

where jNj =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/2nn! ffiffiffiπpp

is the normalization constant and
HnðρÞ are the Hermite polynomials and are defined as

Hn ρð Þ = −1ð Þneρ2 dn

dpn
e−ρ

2
� �

,
ð∞
−∞

e−ρ
2
Hn ρð ÞHm ρð Þdρ = ffiffiffi

π
p

2nn!δnm:
ð41Þ

3. The Klein-Gordon Oscillator

Here, we study a spin-0 massive charged particle by solving
the Klein-Gordon equation of the Klein-Gordon oscillator
in the presence of external fields in Gödel-type space-time
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subject to Cornell-type scalar and Coulomb-type vector
potentials. We analyze the effects on the relativistic energy
eigenvalue and corresponding eigenfunctions due to various
physical parameters.

To couple the Klein-Gordon field with the oscillator [69,
70], we adopted the generalization of Mirza and Mohadesi’s
prescription [71], in which the following change in the
momentum operator is considered [71]:

pμ ⟶ pμ + imω0Xμ, ð42Þ

wherem is the particle mass at rest, ω0 is the frequency of the
oscillator, and Xμ = ð0, x, 0, 0Þ, with x being the distance of
the particle. In this way, the Klein-Gordon oscillator equa-
tion becomes

1ffiffiffiffiffiffi−gp Dμ +mω0Xμ

� � ffiffiffiffiffiffi
−g

p
gμv Dv +mω0Xvð ÞΨ = m + Sð Þ2Ψ:

ð43Þ

Using the space-time (2), we obtain the following equa-
tion:

−
∂
∂t

+ ieV
	 
2

+ ∂
∂y

ieAy

	 

− αx

∂
∂t

+ ieV
	 
� �2

"

+ ∂
∂z2

+ ∂
∂x

+mω0x
	 


∂
∂x

−mω0x
	 


− m + Sð Þ2
#
ψ = 0:

ð44Þ

Using the ansatz (8) into equation (44), we arrive at the
following equation:

d2ψ

dx2
+ E − eVð Þ2 − α0x E − eVð Þ + l − eAy

� �
 �2h
− k2 −mω0 −m2ω2

0x
2 − m + Sð Þ2

i
ψ = 0:

ð45Þ

Substituting the potentials (equations (3), (10), and (11))
into equation (45), we obtain the following equation:

ψ″ xð Þ + ~λ − ~ω2x2 −
j2

x2
−
a
x
− ~bx

� �
ψ xð Þ = 0, ð46Þ

where we have defined

~λ − E2 −m2 − k2 − 2ηcηL − 2ξΩ2 − l − 2eΩξcð Þ2 −mω0,

~ω =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 ΩE +mωcð Þ2 +m2ω2

0 + η2L

q
,

j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2c − e2ξ2c

q
,

a = 2 eξcE +mηcð Þ,
~b = 2 mηL + ~ω l − 2eΩξcð Þ½ �:

ð47Þ

Let us define a new variable r =
ffiffiffiffi
~ω

p
x, equation (46)

becomes

d2

dr2
+ ~β − r2 −

j2

r2
−
~η

r
− ~θr

" #
ψ rð Þ = 0, ð48Þ

where

~β = λ

~ω
,

~η = affiffiffiffi
~ω

p ,

~θ =
~b

~ω3/2 :

ð49Þ

Suppose the possible solution to equation (48) is

ψ rð Þ = r je− 1/2ð Þ θ+rð ÞrH rð Þ: ð50Þ

Substituting the solution (equation (50)) into equation
(48), we obtain

H″ rð Þ + γ

r
− ~θ − 2r

h i
H ′ rð Þ + −

~χ

r
+Θ

� �
H rð Þ = 0, ð51Þ

where γ is given earlier and

~Θ = ~β +
~θ
2

4 − 2 1 + jð Þ,

~χ = ~η +
~θ

2 1 + 2jð Þ:
ð52Þ

Equation (51) is the biconfluent Heun’s differential equa-
tion [42, 43, 46, 59–63, 65, 66].

Substituting the series solution (equation (19)) into equa-
tion (51), we obtain the following recurrence relation:

cn+2 =
1

n + 2ð Þ n + 1 + γð Þ ~χ + ~θ n + 1ð Þ
n o

cn+1 − ~Θ − 2n
� �

cn
h i

:

ð53Þ

Few coefficients of the series solution are

c1 =
~η

γ
+
~θ

2

 !
c0,

c2 =
1

2 1 + γð Þ ~χ + ~θ
� �

c1 −Θc0
h i

:

ð54Þ

The power series expansion becomes a polynomial of
degree n by imposing the following two conditions [11, 14,
42–44, 46, 59–63, 67, 68]:
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~Θ = 2n n = 1, 2,⋯ð Þ,
cn+1 = 0:

ð55Þ

Using the first condition, we obtain the following energy
eigenvalues:

E2
n,l =m2 + k22ηcηL + 2ξΩ2 +mω0 + 2 n + 1 +

ffiffiffiffiffiffiffiffiffi
η2cξ

2
c

q	 

~ω

−
m2η2L
~ω2 −

2mηL l − 2eξcΩð Þ
~ω

:

ð56Þ

The corresponding eigenfunctions are given by

ψn,l rð Þ = r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2c − e2ξ2c

q
e− 1/2ð Þ r+~0ð ÞrH rð Þ: ð57Þ

As done earlier, we obtain the individual energy levels by
imposing the recurrence condition cn+1 = 0. For n = 1, we
have c2 = 0 which implies from equation (54).

~ω3
1,l −

a2

2 1 + 2jð Þ ~ω
2
1,l − a~b

1 + j
1 + 2j

	 

~ω1,l −

~b
2

8 3 + 2jð Þ = 0,

ð58Þ

a constraint on the physical parameter ~ ω1,l. The rela-
tion given in equation (58) gives the possible values of the
parameter ~ ω1,l that permit us to construct a first-degree
polynomial to HðrÞ for n = 1 [42, 43, 46, 59]. In this way,
we obtain the following second-degree algebraic equation
for E1,l:

E1,l = ± m2 + k2 + 2ηcηL + 2ξΩ2 + 2 2 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2c − e2ξ2c

q	 

~ω1,l

(

−
m2n2L
~ω2
1,l

−
2mηL l − 2eξcΩð Þ

~ω1,l

)1/2

:

ð59Þ

Then, by substituting the real solution ~ ω1,l from equa-
tion (58) into equation (59), it is possible to obtain the
allowed values of the relativistic energy levels for the radial
mode n = 1 of a position-dependent mass system. We can
see that the lowest energy state is defined by the real solution
of the algebraic equation (equation (58)) plus the expression
given in equation (59) for the radial mode n = 1, instead of
n = 0. This effect arises due to the presence of Cornell-type
potential in the system. Note that it is necessary physically
that the lowest energy state is n = 1 and not n = 0; otherwise,
the opposite would imply that c1 = 0 which is not possible.

The corresponding radial wave function for n = 1 is
given by

ψ1,l rð Þ = r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2c − e2ξ2c

q
e
− 1/2ð Þ r+ b/ 3/2ð Þð Þ

~ω1,l

 !
r c0 + c1rð Þ, ð60Þ

where

c1 =
1ffiffiffiffiffiffiffi
~ω1,l

p 2 eξcE1,l +mηcð Þ
1 + 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2c − e2ξ2c

q + 2 mηL + ω1,l l − 2eΩξcð Þð Þ
2~ω1,l

2
64

3
75c0:
ð61Þ

4. Conclusions

The relativistic quantum system of scalar and spinhalf parti-
cles in Gödel-type space-times was investigated by several
authors (e.g., [7–9, 11–14, 44, 59]). They demonstrated that
the energy eigenvalues of the relativistic quantum system
get modified and depend on the global parameters character-
izing the space-times.

In this work, we have investigated the influence of vortic-
ity parameter on the relativistic energy eigenvalues of a rela-
tivistic scalar particle in Gödel-type space-time subject to a
homogeneous magnetic field with potentials. We have
derived the radial wave equation of the Klein-Gordon equa-
tion in a class of flat Gödel-type space-time in the presence
of external fields with or without potentials by choosing a
suitable ansatz of the wave function. In Section 2.1, we have
introduced Cornell-type scalar and Coulomb-type vector
potentials into the considered relativistic system and
obtained the energy eigenvalue (equation (23)) and corre-
sponding eigenfunctions (equation (24)). We have seen that
the presence of a uniform magnetic field and potential
parameters modifies the energy spectrum in comparison to
those results obtained in [12]. By imposing the additional
recurrence condition cn+1 = 0, we have obtained the ground
state energy levels (equation (26)) and wave functions (equa-
tions (27) and (28)) for n = 1. In Section 2.2, we have consid-
ered zero potential into the relativistic system and solved the
radial wave equation of the Klein-Gordon equation in the
presence of an external field. We obtained the energy eigen-
values (equation (35)) and compared them with the results
obtained in [12]. We have seen that the relativistic energy
eigenvalues (equation (35)) get modified in comparison to
those in [12] due to the presence of a homogeneous magnetic
field. In Section 3, we have solved the Klein-Gordon equation
of the Klein-Gordon oscillator in Gödel-type space-time sub-
jected to a homogeneous magnetic field in the presence of
Cornell-type scalar and Coulomb-type vector potentials.
We have obtained the energy eigenvalue (equation (56))
and corresponding eigenfunctions (equation (57)). We have
seen that the presence of a uniformmagnetic field and poten-
tial parameters modifies the energy spectrum in comparison
to those in [12]. By imposing the additional recurrence con-
dition cn+1 = 0, we have obtained the ground state energy
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levels (equation (59)) and wave function (equation (60)) for
n = 1 and others are in the same way.

So, in this paper, we have some results which are in addi-
tion to the previous results obtained in [7–9, 11–13, 44, 51,
59] which may present interesting effects. This is the funda-
mental subject in physics, and the connection between these
theories (quantum mechanics and gravitation) is not well
understood.
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